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An example of graph limits of growing sequences of
random graphs

Svante Janson and Simone Severini

In this paper, we consider a class of growing random graphs ob-
tained by creating vertices sequentially one by one. At each step,
we uniformly choose the neighbors of the newly created vertex; its
degree is a random variable with a fixed but arbitrary distribu-
tion, depending on the number of existing vertices. Examples from
this class turn out to be the Erdős–Rényi random graph, a nat-
ural random threshold graph, etc. By working with the notion of
graph limits, we define a kernel which, under certain conditions, is
the limit of the growing random graph. Moreover, for a subclass of
models, the growing graph on any given n vertices has the same
distribution as the random graph with n vertices that the kernel
defines. The motivation stems from a model of graph growth whose
attachment mechanism does not require information about prop-
erties of the graph at each iteration.
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1. Introduction

Many models of randomly grown graphs have been studied during the recent
years in the attempt of reproducing characteristic properties of natural and
engineered networks. For example, it is well known that the power law (Zipf’s
law) on the degree distribution observed for many real-world networks can
occur as a result of preferential attachment following some local rule (see,
e.g. Mitzenmacher [19] and Durrett [11]).

We may initially distinguish between two types of growth depending
on whether the random steps require or do not require local knowledge
of the graph. Of course, preferential attachment requires local knowledge
either available for free or provided by some dynamics that generates it, for
example, a random walk. Such a distinction is meaningful because it helps
to isolate the type of information needed for the construction of specific
network ensembles. Once we have assumed no knowledge, we may further
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distinguish between rewiring schemes acting on the whole set of vertices
and mechanisms concerned only with the lastly added vertex. This latter
scenario is considered in the present note.

We grow graphs by attaching vertices one by one. At each step, the
neighbors of the new vertex are chosen uniformly, and the number is a
random variable with a fixed but arbitrary distribution depending on the
number of vertices already present. This mechanism reflects the idea that
the graph is constructed by an agent without any kind of knowledge of the
graph, apart from the labels of the vertices. The role of the agent is to attach
vertices according to the chosen distribution. Related results for some other
models of growing random graphs can be found in [8].

We study examples of growing sequences of these random graphs within
the framework of graph limits. (See Lovász [16]; for additional references and
basic definitions see Section 4 below.) Every convergent sequence of growing
graphs, where “convergent” means Cauchy in a specific metric, has a limit
which can be represented in the form of a symmetric measurable function in
two variables also called a graphon. The notion of graph limits has been cen-
tral to a general theory of parameter testing as developed by Borgs et al. [7].
The wider perspective of graph limits is to propose an approximation theory
of graphs. This would help to study large graphs/networks by looking at the
the proportion of copies of any fixed graph as a subgraph.

Section 2 defines our construction and lists some of its natural examples.
Section 3 recasts a special case of the construction in terms of a certain
infinite random graph. Section 4 gives the necessary definitions concerned
with graph limits and kernels. Section 5 contains the main result. Section 6
states further remarks and formulates several open problems.

2. Preliminaries

Consider a growing sequence of random graphs (Gn)
∞
n=1 defined by the fol-

lowing Markov process:

Construction 2.1. For each n ≥ 1, let νn be a given probability distribution
on {0, . . . , n− 1}. Construct the random graphs G1, G2, . . . as follows.

(i) G1 = K1, the graph with a single vertex.
(ii) For n ≥ 2, let Dn be a random variable with distribution νn and

construct Gn by adding a new vertex to Gn−1 and connecting it to Dn

of the previously existing vertices; these vertices are chosen randomly
and uniformly among all

(
n−1
Dn

)
possibilities. (Dn and the choice of

vertices are independent of Gn−1.)
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We may label the vertices 1, 2, 3, . . . in the order they are added, so Gn has
vertex set [n] := {1, . . . , n}. Since edges are added only incident to the new
vertex and edges are never removed, we can define the infinite random graph
G∞ :=

⋃∞
n=1Gn with vertex set [∞] := {1, 2, . . . }; then Gn = G∞|[n], the

restriction of G∞ to the vertex set [n].

We may regard Gn as a directed graph by directing each edge towards
the endpoint with largest label. Then Dk is the indegree of vertex k in Gn,
for any n ≥ k. The outdegree of k is 0 in Gk, and increases (weakly) as n
grows.

Example 2.2. Fix p ∈ [0, 1] and let νn = Bi(n − 1, p), n ≥ 1. Then
Construction 2.1 yields the same result as connecting the new vertex n to
each previous vertex i with probability p, with these events independent for
i = 1, . . . , n−1. Hence, Gn = G(n, p), the Erdős–Rényi random graph where
all edges appear independently and with probability p each. This random
graph has been extensively studied, see e.g. [2] and [14].

Example 2.3. Fix p ∈ [0, 1] and let νn be concentrated on {0, n− 1} with
νn{n − 1} = P(Dn = n − 1) = p and νn{0} = P(Dn = 0) = 1 − p. Thus,
each new vertex is with probability p joined to all previous vertices and with
probability p to none. This is an example of a random threshold graph, see
[9, Section 6.3], where this Gn is denoted Tn,p.

Note that each pair of vertices in Gn is joined by an edge with probabil-
ity p, just as in Example 2.2. However, in the present example, these events
are not always independent for different pairs.

Example 2.4. Let νn be the uniform distribution on {0, . . . , n− 1}. In this
case, the degree of vertex n in Gn is then chosen uniformly at random among
all possibilities. Thus, if we only consider the number of added edges, this
example uses the “highest possible amount of randomness” for the construc-
tion of the n-th iteration graph, in the sense that the entropy of this number
is maximal. Hence, of all graph ensembles obtained with Construction 2.1,
Gn is in some sense the less predictable one. Note also that the neighbors
of n are also chosen at random once the degree has been determined, again
maximizing the entropy of this step. Nevertheless, as is well known, the total
entropy of the growing random graph is not maximized by this procedure
but by Example 2.2 with p = 1/2.

The purpose of the present note is to find the limit of the sequence Gn

in the sense of graph limits, see Section 4.
All graphs are undirected and finite except when we explicitly say oth-

erwise. All unspecified limits are as n → ∞.
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3. A related construction

A class of examples, including the three examples above, can be obtained as
follows.

Construction 3.1. Let ν be a given probability measure on [0, 1]. Let
θ1, θ2, . . . , be an i.i.d. sequence of random variables with distribution ν.
Then, conditionally given this sequence, let G∞ be the infinite random graph
on [∞] where the edge {i, j} appears with probability θmax{i,j}, and all edges
appear independently (conditionally on (θj)

∞
j=1). Further, let Gn := G∞|[n].

If Dn := |{i < n : in ∈ E(Gn)}|, i.e. the indegree of n if we orient the
edges as above, then Dn conditioned on (θj)j has the distribution Bi(n− 1,
θn). Hence, the distribution of Dn is a mixture of binomial distributions:

P(Dn = k) = EBi(n− 1, θn){k} = E

(
n− 1

k

)
θkn(1− θn)

n−1−k(3.1)

=

(
n− 1

k

) ∫ 1

0
θk(1− θ)n−1−k dν(θ), 0 ≤ k ≤ n− 1.

It is obvious that Construction 3.1 is a special case of Construction 2.1, with
νn := L(Dn) given by (3.1).

Example 3.2. Let ν = δp, a point mass at p ∈ [0, 1]. Then θn = p and
Dn ∼ Bi(n−1, p), in other words, νn = Bi(n−1, p); hence, Construction 3.1
with this ν yields the Erdős–Rényi random graph G(n, p) in Example 2.2.

Example 3.3. Let ν = pδ1 + (1 − p)δ0. (This is the Bernoulli distribution
Be(p).) Then θ ∈ {0, 1}, which implies Dn = (n− 1)θn, and

P(Dn = n− 1) = P(θn = 1) = p,

P(Dn = 0) = P(θn = 0) = 1− p.

Hence, Construction 3.1 yields the random threshold graph in Example 2.3.

Example 3.4. Let ν be the uniform distribution on [0, 1]; thus, ν = λ, the
Lebesgue measure on [0, 1]. Then each θn ∼ U(0, 1) and (3.1) yields by the
evaluation of a beta integral, as is well known,

νn{k} = P(Dn = k) =

(
n− 1

k

)∫ 1

0
θk(1− θ)n−1−k dθ(3.2)

=

(
n− 1

k

)
B(k + 1, n− k) =

1

n
, 0 ≤ k ≤ n− 1.
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Consequently, νn is uniform on {0, . . . , n−1}, so Construction 3.1 with ν = λ
yields the random graphs Gn in Example 2.4.

Example 3.5. The random graph Gn in Examples 2.4 and 3.4 can also be
constructed as follows, using some basic results on Pólya–Eggenberger urns.

Recall that a Pólya–Eggenberger urn contains red and black balls; we
repeatedly draw a ball at random from the urn, and then replace the ball
together with another ball of the same color. If we start the urn with one ball
of each color, then the sequence of drawn balls has the same distribution
as the sequence obtained by first taking a random θ ∼ U(0, 1) and then,
conditioned on θ, taking a sequence of i.i.d. balls, each being red with prob-
ability θ and black otherwise. This is easily verified by a direct calculation,
see [12], [18, Theorem 3.1] and (3.2). Alternatively, it is easily seen (again
by direct calculation) that the sequence of drawn balls is exchangeable. By
de Finetti’s theorem (see e.g. [18, Theorem 1.2] or, in a more general ver-
sion, [15, Theorem 11.10]), there exists a random variable θ with values in
[0, 1] such that conditioned on θ, the sequence of drawn balls is i.i.d. with
each ball being red with probability θ. The law of large numbers yields
Rn/n

a.s.−→ θ, where Rn is the number of red balls drawn in the first n draws.
To see the representation above, with θ ∼ U(0, 1), it thus suffices to show

that Rn/n
d−→ U(0, 1), see [12], [18, Exercise 3.4].

The sequence of the first n−1 drawn balls in this urn thus has the same
distribution as the sequences of indicators of edges {i, n}, i = 1, . . . , n−1 in
the random graph Gn in Example 3.4. (We translate red = 1 and black = 0.)
The graph Gn is therefore described by a sequence of (finite) draws from
Pólya–Eggenberger urns, independent of each other. This can be formulated
as the following, rather curious, construction:

Start with vertices {−1, 0, 1, 2, 3, . . . }. Connect 0 to all other vertices
(except −1), but do not connect −1 to any vertex. For each k ≥ 1, consider
i = 1, . . . , k − 1 in order; for each i < k pick a random j in −1, 0, . . . , i − 1
(uniformly and independent of everything else), and add an edge {i, k} if
and only if there already is an edge {j, k}. The sequence of edge indicators
{i, k}, i = 1, . . . , k − 1, then forms a Pólya–Eggenberger sequence as above,
for each k. Consequently, if we discard vertices 0 and −1 at the end, the
random graph constructed in this way equals G∞ in Example 3.4, and we
obtain Gn if we do the same construction for k = 1, . . . , n.

We note the following consequence of the law of large numbers.

Lemma 3.6. Let ν be a probability measure on [0, 1], and let Dn have the

mixed binomial distribution in (3.1). Then Dn/n
d−→ ν as n → ∞.



72 Svante Janson and Simone Severini

Proof. Since Dn conditioned on θn has the distribution Bi(n−1, θn), we have

the law of large numbers Dn/(n − 1) − θn
p−→ 0 as n → ∞. (For example,

by computing the variance.) The result follows since θn ∼ ν.

4. Graph limits and kernels

We assume that the reader is familiar with the theory of graph limits de-
veloped in Lovász and Szegedy [17] and Borgs, Chayes, Lovász, Sós and
Vesztergombi [5, 6], see also e.g. Austin [1], Bollobás and Riordan [3], Borgs,
Chayes and Lovász [4], Lovász [16], Diaconis and Janson [10], Janson [13].
We recall only a few definitions; these will help to fix our notation.

If F and G are finite graphs, let t(F,G) be the probability that a random
mapping ϕ : V (F ) → V (G) is a graph homomorphism, i.e., satisfies ϕ(i) ∼
ϕ(j) in G whenever i ∼ j in F . We say that a sequence (Gn) of graphs with
|Gn| → ∞ converges if limn→∞ t(F,Gn) exists for every graph F .

Graph limits. The graph limits are objects in a suitable space defined such
that each convergent sequence of graphs has a graph limit as its limit. If Γ
is a graph limit, then t(F,Γ) is defined for every graph F , and a sequence of
graphsGn with |Gn| → ∞ converges to Γ if and only if t(F,Gn) → t(F,Γ) for
every F . Hence, a graph limit Γ is determined by the numbers t(F,Γ) ∈ [0, 1]
for graphs F . Formally, the graph limits may be defined as equivalence
classes of convergent sequences of graphs, or as suitable families (tF )F∈U of
numbers, where U is the set of graphs. The graph limits can be equivalently
defined as classes of kernels, as we do below. This distinction is immaterial.
We tacitly refer to unlabelled graphs.

It is important that the set of all graphs together with all graph limits
is a compact metric space.

Kernels. Let (S,F , μ) be a probability space. (We usually denote this space
simply by S or (S, μ), with F and perhaps μ being clear from the context.)
A kernel or graphon on (S, μ) is a measurable symmetric function W : S2 →
[0, 1]. We will consider graphons with domain [0, 1]2. For this specific setting
see e.g. Borgs, Chayes, Lovász, Sós and Vesztergombi [5].

The basic fact is that every kernelW on a probability space (S, μ) defines
a graph limit ΓW . Conversely, every graph limit equals ΓW for some kernel
W . We say that the graph limit is represented by the kernel W . Note that
ΓW implicitly depends on S and μ, as well as on W . However, such represen-
tations of graph limits are not unique. We say that two kernels W1 and W2,
possibly on different probability spaces, are equivalent if they represent the
same graph limit, i.e., if ΓW1

= ΓW2
. Since every kernel is equivalent to some
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kernel on [0, 1], every graph limit may be represented by a kernel W on [0, 1],
equipped with Lebesgue measure λ, but even then W is not unique. Detailed
results are in Borgs, Chayes and Lovász [4], Bollobás and Riordan [3] and
Janson [13].

If Gn is a sequence of graphs with Gn → ΓW , for some kernel W , we
also write Gn → W .

Random graphs. Let W be a kernel, defined on a probability space (S, μ).
We define a random graph G(n,W ) with vertex set [n], for 1 ≤ n ≤ ∞,
by first taking an i.i.d. sequence {Xi}ni=1 of random points in S with the
distribution μ, and then, given this sequence, letting {i, j} be an edge in
G(n,W ) with probability W (Xi, Xj). For a given sequence (Xi)i, this is
done independently for all pairs (i, j) ∈ [n]2 with i < j. Note that we may
construct G(n,W ) for all n by first constructing G(∞,W ) and then taking
the subgraph induced by the first n vertices. A fundamental result is that
for every kernel W , G(n,W ) → W a.s.

Furthermore, two kernels W1 and W2 are equivalent, i.e. ΓW1
= ΓW2

, if

and only if G(n,W1)
d
= G(n,W2) for every finite n, and then also for n = ∞.

5. Main results

Given a probability measure ν on [0, 1], let μ = μν := ν × λ be a measure
on the product space S := [0, 1]2. Define the kernel W : S2 → [0, 1] by

(5.1) W
(
(s1, t1), (s2, t2)

)
:=

{
s2, if t1 < t2;

s1, if t1 > t2.

We may define W
(
(s1, t1), (s2, t2)

)
:= 0 if t1 = t2; this is not important since

it really is sufficient to have W defined μ-almost everywhere.

Theorem 5.1. Let ν be a probability measure on [0, 1], and let 1 ≤ n < ∞.
The random graph Gn defined by Construction 3.1 and the random graph
G(n,W ) defined by the kernel W in (5.1) on the probability space (S, μν)
are, regarded as unlabelled graphs, equal in the sense that they have the same
distribution.

Remark 5.2. We have to regard the graphs as unlabelled here, since the
vertices in Gn are (in general) not equivalent, while they are in G(n,W ).
For example, in Example 3.3, the edges in Gn incident to vertex 1 appear
independently of each other, so the degree of 1 has distribution Bi(n− 1, p),
while the degree of n is Dn, which is 0 or n− 1.
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If we prefer to consider labelled graphs, the correct conclusion is that Gn

with a (uniform) random relabelling of the vertices has the same distribution
as G(n,W ), for any finite n.

Remark 5.3. Similarly, the conclusion of Theorem 5.1 fails for n = ∞.
Consider again Example 3.3. It is easily verified that in G∞ there is a pair
of vertices i and j with the same closed neighbourhoods N̄(i) and N̄(j) (for
example, vertices 1 and 2; in fact, there are a.s. infinitely many such pairs),
while there is a.s. no such pair in G(∞,W ).

Proof of Theorem 5.1. Let Xi = (ξi, ηi), i = 1, 2, 3, . . . , be i.i.d. points in
S = [0, 1]2 with distribution μν ; thus each ξi has distribution ν and ηi ∼
U(0, 1), and all ξi, ηi are independent.

The numbers η1, . . . , ηn are a.s. distinct. Order them in increasing or-
der as ηi1 < ηi2 < · · · < ηin , and let θk := ξik . Then θ1, . . . , θn are i.i.d.
with distribution ν, and (θi)

n
i=1 is independent of the random permutation

(i1, . . . , in).
Conditioned on (X1, . . . , Xn), the edges in G(n,W ) appear indepen-

dently, and the probability of an edge between ij and ik, with j < k, is
W (Xij , Xik) = ξik = θk. Thus, given (i1, . . . , in), G(n,W ) has the same
distribution as Gn in Construction 3.1 after the relabelling k �→ ik. Hence,
G(n,W ) has the same distribution as Gn with a uniform random relabelling.

Consequently, G(n,W )
d
= Gn as unlabelled graphs.

Theorem 5.4. If Gn is defined by Construction 3.1 for some probability
measure ν on [0, 1], then Gn

p−→ Γν as n → ∞, where Γν is the graph limit
defined by the kernel W in (5.1) on the probability space ([0, 1]2, μν).

Proof. An immediate consequence of Theorem 5.1 and G(n,W )
p−→ ΓW =

Γν .

We have a similar result for the more general construction Construc-
tion 2.1, provided the distributions νn converge to ν after rescaling by n (or
n− 1).

Theorem 5.5. Let Gn be defined by Construction 2.1 for some probability

measures νn and suppose that Dn/n
d−→ ν as n → ∞ for some probability

measure ν on [0, 1], where Dn ∼ νn. Then Gn
p−→ Γν as n → ∞, where Γν

is the graph limit defined by the kernel W in (5.1) on the probability space
([0, 1]2, μν).

Proof. If F and G are labelled graphs, let n(F,G) be the number of graph
homomorphisms ϕ : F → G; thus, t(F,G) = n(F,G)/|G||F |. Further, let
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n<(F,G) be the number of graph homomorphisms ϕ : F → G that are
increasing, i.e., ϕ(i) < ϕ(j) when i < j, and let n0(F,G) be the number of
graph homomorphisms F → G that are not injective.

Let F be a fixed graph with vertices labelled 1, . . . ,m = |F |. If σ is a
permutation of [m], let Fσ be F relabelled by i �→ σ(i). For any labelled
graph G,

(5.2) n(F,G) =
∑
σ

n<(Fσ, G) + n0(F,G),

since an injective map V (F ) → V (G) is increasing as a map Fσ → G for
exactly one permutation σ.

Fix a permutation σ and consider n<(Fσ, Gn), with Gn as in Construc-
tion 2.1. We regard Fσ as a directed graph by directing each edge towards
the endpoint with the largest label. Let d−j := |{i < j : {i, j} ∈ E(Fσ)}| be
the indegree in Fσ of j ∈ [m].

Let ϕ : [m] → [n] be an increasing map. Then ϕ is a graph homo-
morphism Fσ → Gn if and only if, for each j = 1, . . . ,m, Gn contains the
d−j edges {ϕ(i), ϕ(j)} for i < j with {i, j} ∈ E(Fσ). Conditioned on the
indegrees D1, . . . , Dn in Gn, this happens with probability

(5.3)

m∏
j=1

(Dϕ(j)

d−
j

)
(ϕ(j)−1

d−
j

) =

m∏
j=1

(
Dϕ(j)

)
d−
j

(ϕ(j)− 1)d−
j

.

Hence, taking the expectation, summing over all ϕ, and using the indepen-
dence of D1, . . . , Dn,

(5.4) En<(Fσ, Gn) =
∑

1≤ϕ(1)<···<ϕ(m)≤n

m∏
j=1

E
(
Dϕ(j)

)
d−
j

(ϕ(j)− 1)d−
j

.

By assumption, Dk/k
d−→ ν as k → ∞. By dominated convergence,

since 0 ≤ Dk/k ≤ 1, we have

(5.5)
EDd

k

kd
→ Md :=

∫ 1

0
xd dν(x), k → ∞,

for every d ≥ 0. Hence also

(5.6)
E (Dk)d
(k − 1)d

=
EDd

k +O(kd−1)

kd +O(kd−1)
→ Md, k → ∞.
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Let ε > 0, it follows from (5.6) that there exists nε such that if ϕ(1) ≥ nε,
then the product in (5.4) differs by at most ε from

∏m
j=1Md−

j
. For smaller

ϕ(1) we use the fact that the product is bounded by 1. The total number
of terms in the sum in (5.4) is

(
n
m

)
, of which O(nm−1) have ϕ(1) < nε, and

thus we obtain

(5.7)

∣∣∣∣∣∣En<(Fσ, Gn)−
(
n

m

) m∏
j=1

Md−
j

∣∣∣∣∣∣ ≤ ε

(
n

m

)
+O(nm−1),

which implies,

(5.8) En<(Fσ, Gn) =

(
n

m

) m∏
j=1

Md−
j
+ o(nm) =

nm

m!

m∏
j=1

Md−
j
+ o(nm),

since ε > 0 is arbitrary.
We have so far considered a fixed σ, but we now sum (5.8) over all σ

and use (5.2). Since n0(F,Gn) = O(nm−1),

(5.9) En(F,Gn) = tFn
m + o(nm)

for some constant tF depending on F and ν. We havem! tF =
∑

σ

∏m
j=1Md−

j
,

where d−j depends on F and σ.
Since t(F,Gn) = n(F,Gn)/n

m, (5.9) is the same as

(5.10) E t(F,Gn) → tF .

We have proved this for any graph F , and it follows by [10, Corollary 3.2]

that Gn
p−→ Γ for some graph limit Γ.

It remains to identify the limit Γ as Γν . We have proved that tF for each
graph F , and thus the limit Γ, depends on ν but not otherwise on the distri-
butions νn. For a given distribution ν, we consider Construction 3.1, which
is a special case of Construction 2.1 with νn the mixture of binomial distri-

butions given by (3.1). By Lemma 3.6, we have Dn/n
d−→ ν. We are then

in the setting of the present theorem and the proof above shows Gn
p−→ Γ.

On the other hand, Theorem 5.4 shows Gn
p−→ Γν . Hence, Γ = Γν .

6. Further comments and open problems

We have found the limit of the random sequence Gn as a graph limit defined
by a kernel on ([0, 1]2, ν × λ). It is easy to find an equivalent kernel on
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([0, 1]2, λ × λ): Let ψ : [0, 1] → [0, 1] be the right-continuous inverse of the
distribution function of ν. If U ∼ U(0, 1), then ψ(U) ∼ ν. We define Wν as
the pullback of W via the map (s, t) �→ (ψ(s), t), i.e.,

(6.1)

Wν

(
(s1, t1), (s2, t2)

)
:= W

(
(ψ(s1), t1), (ψ(s2), t2)

)
=

{
ψ(s2), if t1 < t2;

ψ(s1), if t1 > t2.

Then Wν is a kernel on ([0, 1]2, λ2) which is equivalent to W on ([0, 1]2,

ν × λ); thus we also have Gn
p−→ Wν under the conditions of Theorem 5.4

or Theorem 5.4. However, it is at least sometimes possible to find simpler
representations.

Example 6.1. In Examples 2.2 and 3.2, ν = δp and ψ(s) = p for all s; thus,
Wν = p is constant. (Similarly, W = p a.e. with respect to μν .) In fact, as is
well known, the graph limit of G(n, p) is represented by the constant kernel
p on any probability space. (Conversely, any representing kernel equals p
a.s., see [13, Corollary 8.12].)

Example 6.2. In Examples 2.3 and 3.3, ν is concentrated on {0, 1}, so μν is
concentrated on {0, 1}× [0, 1]. In particular, the kernel W is a.e. 0/1-valued.
(This is a general property of kernels representing limits of threshold graphs;
see [9] and [13, Section 9].)

The representation theorem in [9] for general limits of threshold graphs
yields a kernel on [0,1]. (This kernel is monotone, and this property makes
it uniquely determined a.e.) In the present case, the kernel is the indicator
function of the quadrilateral Sp having vertices in (0, 1), (1− p, 1− p), (1, 0)
and (1, 1), see [9, Section 6]. Denote this kernel by W ′.

It is easy to find a relation between the two representations. Let ϕ :
[0, 1] → {0, 1}×[0, 1] be defined by ϕ(x) = (0, 1−x/(1−p)) for 0 ≤ x ≤ 1−p
and ϕ(x) = (1, (x−1+p)/p) for 1−p < x ≤ 1. Then ϕ is measure preserving
([0, 1], λ) → ([0, 1]2, μν) and W ′(x, y) is the pullback W (ϕ(x), ϕ(y)) of W .

As said in Section 4, it is always possible to find an equivalent kernel
on [0, 1]. In the two examples above, there are simple and natural choices of
such kernels. However, in Examples 2.4 and 3.4, we do not know any natural
kernel on [0, 1] representing the limit.

Problem 6.3. Find a natural kernel on [0, 1] representing the limit in Ex-
ample 2.4, i.e., a natural kernel on [0, 1] that is equivalent to W in (5.1) on
([0, 1]2, λ2). More generally, find a natural representing kernel on [0, 1] for
any ν.
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We close with two different problems inspired by the results above.

Problem 6.4. We have stated Theorems 5.4 and 5.5 with convergence in
probability. Are these results true also a.s.?

Problem 6.5. In Theorem 5.5, we assume that Dn/n converges in distribu-
tion, i.e., that the distributions νn converge after rescaling. What happens
for more general sequences νn? Is it possible to characterize the sequences
νn that give convergence of Gn to some graph limit?
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