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Quadrant marked mesh patterns in alternating
permutations II

Sergey Kitaev and Jeffrey Remmel

This paper is a continuation of the systematic study of distribu-
tion of quadrant marked mesh patterns initiated in [7]. We study
quadrant marked mesh patterns on up-down and down-up permu-
tations.

1. Introduction

Let σ = σ1 · · ·σn be a permutation in the symmetric group Sn written in
one-line notation. Then we will consider the graph of σ, G(σ), to be the set
of points (i, σi) for i = 1, . . . , n. For example, the graph of the permutation
σ = 471569283 is pictured in Figure 1. Then if we draw a coordinate system
centered at a point (i, σi), we will be interested in the points that lie in the
four quadrants I, II, III, and IV of that coordinate system as pictured in
Figure 1.

For any a, b, c, d ∈ N where N = {0, 1, 2, . . .} is the set of natural numbers
and any σ = σ1 · · ·σn ∈ Sn, we say that σi matches the quadrant marked
mesh pattern MMP (a, b, c, d) in σ if in G(σ) relative to the coordinate sys-
tem which has the point (i, σi) as its origin, there are ≥ a points in quadrant
I, ≥ b points in quadrant II, ≥ c points in quadrant III, and ≥ d points in
quadrant IV. For example, if σ = 471569283, the point σ4 = 5 matches the
quadrant marked mesh pattern MMP (2, 1, 2, 1) since relative to the coor-
dinate system with origin (4, 5), there are 3 points in G(σ) in quadrant I, 1
point in G(σ) in quadrant II, 2 points in G(σ) in quadrant III, and 2 points
in G(σ) in quadrant IV.

Note that if a coordinate in MMP (a, b, c, d) is 0, then there is no con-
dition imposed on the points in the corresponding quadrant. In addition,
we shall consider patterns MMP (a, b, c, d) where a, b, c, d ∈ N ∪ {∅}. Here
when one of the parameters a, b, c, or d in MMP (a, b, c, d) is the empty
set, then for σi to match MMP (a, b, c, d) in σ = σ1 · · ·σn ∈ Sn, it must be
the case that there are no points in G(σ) relative to coordinate system with
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Figure 1: The graph of σ = 471569283.

origin (i, σi) in the corresponding quadrant. For example, if σ = 471569283,
the point σ3 = 1 matches the marked mesh pattern MMP (4, 2, ∅, ∅) since
relative to the coordinate system with origin (3, 1), there are 6 points in
G(σ) in quadrant I, 2 points in G(σ) in quadrant II, no points in G(σ) in
quadrant III, and no points in G(σ) in quadrant IV. We let mmp(a,b,c,d)(σ)
denote the number of i such that σi matches the marked mesh pattern
MMP (a, b, c, d) in σ.

The notion of mesh patterns was introduced by Brändén and Claesson [4]
to provide explicit expansions for certain permutation statistics as, possibly
infinite, linear combinations of (classical) permutation patterns (see [6] for
a comprehensive introduction to the theory of permutation patterns). This
notion was further studied in [3, 5, 7–11, 14].

Note how the (two-dimensional) notation of Úlfarsson [14] for marked
mesh patterns corresponds to our (one-line) notation for quadrant marked
mesh patterns. For example,

MMP (0, 0, k, 0) = , MMP (k, 0, 0, 0) = ,

MMP (0, a, b, c) = and MMP (0, 0, ∅, k) = .

Kitaev and Remmel [7] studied the distribution of quadrant marked
mesh patterns in the symmetric group Sn, and Kitaev, Remmel, and Tiefen-
bruck [9, 10] studied the distribution of quadrant marked mesh patterns
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in 132-avoiding permutations in Sn. In [8], Kitaev and Remmel studied
the distribution of the statistics mmp(1,0,0,0), mmp(0,1,0,0), mmp(0,0,1,0), and
mmp(0,0,0,1) in the set of up-down and down-up permutations. The main
goal of this paper is to study the distribution of the statistics mmp(1,0,∅,0),
mmp(0,1,0,∅), mmp(0,∅,0,1), and mmp(∅,0,1,0) in the set of up-down and down-
up permutations. Given a permutation σ = σ1 · · ·σn ∈ Sn, we let Des(σ) =
{i : σi > σi+1}. Then we say that σ is an up-down permutation if Des(σ) is
the set of all even numbers less than or equal to n and a down-up permuta-
tion if Des(σ) is the set of all odd numbers less than or equal to n. That is,
σ is an up-down permutation if

σ1 < σ2 > σ3 < σ4 > σ5 < · · ·

and σ is an down-up permutation if

σ1 > σ2 < σ3 > σ4 < σ5 > · · · .

Let UDn denote the set of all up-down permutations in Sn and DUn de-
note the set of all down-up permutations in Sn. Given a permutation σ =
σ1 · · ·σn ∈ Sn, we define the reverse of σ, σr, to be σnσn−1 · · ·σ2σ1 and the
complement of σ, σc, to be (n+ 1− σ1) · · · (n+ 1− σn).

For n ≥ 1, we let

A
(a,b,c,d)
2n (x) =

∑
σ∈UD2n

xmmp(a,b,c,d)(σ), B
(a,b,c,d)
2n−1 (x) =

∑
σ∈UD2n−1

xmmp(a,b,c,d)(σ),

C
(a,b,c,d)
2n (x) =

∑
σ∈DU2n

xmmp(a,b,d,d)(σ), and D
(a,b,c,d)
2n−1 (x) =

∑
σ∈DU2n−1

xmmp(a,b,c,d)(σ).

We then have the following simple proposition.

Proposition 1. For all n ≥ 1,

(1) A
(a,b,c,d)
2n (x) = C

(b,a,d,c)
2n (x) = C

(d,c,b,a)
2n (x) = A

(c,d,a,b)
2n (x),

(2) C
(a,b,c,d)
2n (x) = A

(b,a,d,c)
2n (x) = A

(d,c,b,a)
2n (x) = C

(c,d,a,b)
2n (x),

(3) B
(a,b,c,d)
2n−1 (x) = B

(b,a,d,c)
2n−1 (x) = D

(d,c,b,a)
2n−1 (x) = D

(c,d,a,b)
2n−1 (x), and

(4) D
(a,b,c,d)
2n−1 (x) = D

(b,a,d,c)
2n−1 (x) = B

(d,c,b,a)
2n−1 (x) = B

(c,d,a,b)
2n−1 (x).

Proof. It is easy to see that for any σ ∈ Sn,

mmp(a,b,c,d)(σ) = mmp(b,a,d,c)(σr) = mmp(d,c,b,a)(σc) = mmp(c,d,a,b)((σr)c).
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Then part 1 easily follows since

σ ∈ UD2n ⇐⇒ σr ∈ DU2n ⇐⇒ σc ∈ DU2n ⇐⇒ (σr)c ∈ UD2n.

Parts 2, 3, and 4 are proved in a similar manner.

In [8], we studied the distribution of the statistics mmp(1,0,0,0),
mmp(0,1,0,0), mmp(0,0,1,0), and mmp(0,0,0,1) in the set of up-down and down-
up permutations. It follows from Proposition 1 that the study of the distribu-
tion of the statistics mmp(1,0,0,0), mmp(0,1,0,0), mmp(0,0,1,0), and mmp(0,0,0,1)

in the set of up-down and down-up permutations can be reduced to the
study of the following generating functions:

A(1,0,0,0)(t, x) = 1 +
∑
n≥1

A
(1,0,0,0)
2n (x)

t2n

(2n)!
,

B(1,0,0,0)(t, x) =
∑
n≥1

B
(1,0,0,0)
2n−1 (x)

t2n−1

(2n− 1)!
,

C(1,0,0,0)(t, x) = 1 +
∑
n≥1

C
(1,0,0,0)
2n (x)

t2n

(2n)!
, and

D(1,0,0,0)(t, x) =
∑
n≥1

D
(1,0,0,0)
2n−1 (x)

t2n−1

(2n− 1)!
.

In the case when x = 1, these generating functions are well known. That

is, for any (a, b, c, d), let A2n(1) = A
(a,b,c,d)
2n (1), B2n+1(1) = B

(a,b,c,d)
2n+1 (1),

C2n(1) = C
(a,b,c,d)
2n (1), and D2n(1) = D

(a,b,c,d)
2n (1). The operation of comple-

mentation shows that A2n(1) = C2n(1) and B2n−1(1) = D2n−1(1) for all
n ≥ 1. André [1, 2] proved that

(1) 1 +
∑
n≥0

A2n(1)
t2n

(2n)!
= sec(t)

and

(2)
∑
n≥1

B2n−1(1)
t2n+1

(2n+ 1)!
= tan(t).

In [8], we proved the following which can be viewed as a refinement of
André’s results.
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Theorem 1.

A(1,0,0,0)(t, x) = (sec(xt))1/x,(3)

B(1,0,0,0)(t, x) = (sec(xt))1/x
∫ t

0
(sec(xz))−1/xdz,(4)

C(1,0,0,0)(t, x) = 1 +

∫ t

0
(sec(xy))1+

1

x

∫ y

0
(sec(xz))1/xdz dy, and(5)

vD(1,0,0,0)(t, x) =

∫ t

0
(sec(xz))1+

1

xdz.(6)

In this paper, we prove a different refinement of André’s results by study-

ing the distribution of the statistics mmp(1,0,∅,0), mmp(∅,0,1,0), mmp(0,1,0,∅),
and mmp(0,∅,0,1) in the set of up-down and down-up permutations. It fol-

lows from Proposition 1 that the study of the distribution of the statistics

mmp(1,0,∅,0), mmp(∅,0,1,0), mmp(0,1,0,∅), and mmp(0,∅,0,1) in the set of up-down

and down-up permutations can be reduced to the study of the following gen-

erating functions:

A(1,0,∅,0)(t, x) = 1 +
∑
n≥1

A
(1,0,∅,0)
2n (x)

t2n

(2n)!
,

B(1,0,∅,0)(t, x) =
∑
n≥1

B
(1,0,∅,0)
2n−1 (x)

t2n−1

(2n− 1)!
,

C(1,0,∅,0)(t, x) = 1 +
∑
n≥1

C
(1,0,∅,0)
2n (x)

t2n

(2n)!
, and

D(1,0,∅,0)(t, x) =
∑
n≥1

D
(1,0,∅,0)
2n−1 (x)

t2n−1

(2n− 1)!
.

The main goal of this paper is prove the following theorem.

Theorem 2.

A(1,0,∅,0)(t, x) = (sec(t))x,

B(1,0,∅,0)(t, x) =
sin(t) cos(t)(1− x+ x sec(t))

x+ (1− x) cos(t)

×
(
(1− x) 2F1

(
1

2
,
1 + x

2
;
3

2
; (sin(t))2

)

+ x 2F1

(
1

2
,
2 + x

2
;
3

2
; (sin(t))2

))
,
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D(1,0,∅,0)(t, x) = x(sec(t))x
∫ t

0
(cos(z))xdz + (1− x)

∫ t

0
(sec(z))xdz, and

C(1,0,∅,0)(t, x) = 1 +

∫ t

0

[
x(sec(z))x(1− x+ x sec(z))

∫ z

0
cos(y)dy

]
dz

+ (1− x)

∫ t

0
B(1,0,∅,0)(t, z)dz.

Here 2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n
(c)n

zn

n! where (x)n = x(x−1) · · · (x−n+1)

if n ≥ 1 and (x)0 = 1.

One can use these generating functions to find some initial values of

the polynomials A
(1,0,∅,0)
2n (x), B

(1,0,∅,0)
2n−1 (x), C

(1,0,∅,0)
2n (x), and D

(1,0,∅,0)
2n−1 (x). For

example, we have used Mathematica to compute the following tables.

n A
(1,0,∅,0)
2n (x)

0 1
1 x
2 x(2 + 3x)

3 x
(
16 + 30x+ 15x2

)
4 x

(
272 + 588x+ 420x2 + 105x3

)
5 x

(
7936 + 18960x+ 16380x2 + 6300x3 + 945x4

)
6 x

(
353792 + 911328x+ 893640x2 + 429660x3 + 103950x4 + 10395x5

)
n B

(1,0,∅,0)
2n+1 (x)

0 1
1 2x
2 x (7 + 9x)

3 x
(
77 + 135x+ 60x2

)
4 x

(
1657 + 3444x+ 2310x2 + 525x3

)
5 x

(
58457 + 135945x+ 112770x2 + 40950x3 + 5670x4

)
6 x

(
3056557 + 7715664x+ 7347945x2 + 3395700x3 + 777625x4

+72765x5
)

n C
(1,0,∅,0)
2n (x)

0 1
1 1
2 x (2 + 3x)

3 x
(
7 + 35x+ 19x2

)
4 x

(
77 + 581x+ 571x2 + 156x3

)
5 x

(
1657 + 16428x+ 21066x2 + 9738x3 + 1587x4

)
6 x

(
58457 + 712579x+ 1079747x2 + 652452x3 + 180240x4 + 19290x5

)
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n D
(1,0,∅,0)
2n+1 (x)

0 1
1 x(1 + x)

2 x
(
2 + 9x+ 5x2

)
3 x

(
16 + 110x+ 113x2 + 33x3

)
4 x

(
272 + 2492x+ 3288x2 + 1605x3 + 279x4

)
5 x

(
7936 + 90384x+ 139756x2 + 87456x3 + 25365x4 + 2895x5

)
6 x

(
353792 + 4803040x+ 8323816x2 + 6110100x3 + 2297778x4

+444045x5 + 35685x6
)

The outline of this paper is as follows. In Section 2, we shall prove
Theorem 2. Then in Section 3, we shall show how several of the entries of
the tables above can be explained. In particular, we will derive formulas for
the coefficient of the highest and lowest coefficient of x in the polynomials

the polynomials A
(1,0,∅,0)
2n (x), B

(1,0,∅,0)
2n+1 (x), C

(1,0,∅,0)
2n (x), and D

(1,0,∅,0)
2n+1 (x), as

well as formulas for the second highest and second lowest coefficient of x in
these polynomials. Finally, in Section 4, we shall discuss some connections
with our previous work [8] on quadrant marked mesh patterns in alternating
permutations, as well as some directions for further research.

In this paper, we need the following notation. Given a sequence σ =
σ1 · · ·σn of distinct integers, we let red(σ) be the permutation found by
replacing the ith largest integer that appears in σ by i. For example, if
σ = 2854, then red(σ) = 1432.

2. Proof of Theorem 2

The proof of all parts of Theorem 2 proceed in the same manner. That

is, there are simple recursions satisfied by the polynomials A
(1,0,∅,0)
2n (x),

B
(1,0,∅,0)
2n+1 (x), C

(1,0,∅,0)
2n (x), and D

(1,0,∅,0)
2n+1 (x) based on the possible positions

of 1 in an up-down or a down-up permutation.

2.1. The generating function A(1,0,∅,0)(t, x)

If σ = σ1 · · ·σ2n ∈ UD2n, then 1 must occur in one of the positions 1, 3, . . . ,

2n − 1. Let UD
(2k+1)
2n denote the set of permutations σ ∈ UD2n such that

σ2k+1 = 1. A schematic diagram of an element in UD
(2k+1)
2n is pictured in

Figure 2.

Consider a σ = σ1 · · ·σ2n ∈ UD
(2k+1)
2n where 0 ≤ k ≤ n − 1. Note that

there are
(
2n−1
2k

)
ways to pick the elements which occur to the right of posi-
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Figure 2: The graph of a σ ∈ UD
(2k+1)
2n .

tion 2k+1 in such a σ and there are D2n−2k−1(1) = B2n−2k−1(1) ways to or-
der them since the elements to the right of position 2k+1 must form a down-
up permutation of length 2n− 2k− 1. The fact that σ2k+1 = 1 implies that
σ2k+1 matches MMP (1, 0, ∅, 0) in σ and that none of the elements to the
right of position 2k+1 match MMP (1, 0, ∅, 0) in σ. Thus, the contribution
of the elements to the right of position 2k + 1 in

∑
σ∈UD(2k+1)

2n
xmmp(1,0,∅,0)(σ)

is B2n−2k−1(1). Now the only possible elements of σ1, . . . , σ2k that can con-
tribute to mmp(1,0,∅,0)(σ) are σ1, σ3, . . . , σ2k−1. Since each of the elements
have an element to its right in σ1 · · ·σ2k which is larger than that element,
it follows that the elements to the right of position 2k+ 1 have no effect on
whether σ1, . . . , σ2k can contribute to mmp(1,0,∅,0)(σ). Hence, the contribu-
tion of the elements to the left of position 2k+1 in

∑
σ∈UD

(2k+1)
2n

xmmp(1,0,∅,0)(σ)

is A
(1,0,∅,0)
2k (x). It thus follows that for n ≥ 1,

A
(1,0,∅,0)
2n (x) = x

n−1∑
k=0

(
2n− 1

2k

)
B2n−2k−1(1)A

(1,0,∅,0)
2k (x)

or, equivalently,

(7)
A

(1,0,∅,0)
2n (x)

(2n− 1)!
= x

n−1∑
k=0

B2n−2k−1(1)

(2n− 2k − 1)!

A
(1,0,∅,0)
2k (x)

(2k)!
.

Multiplying both sides of (7) by t2n−1 and summing for n ≥ 1, we see that

∑
n≥1

A
(1,0,∅,0)
2n (x)t2n−1

(2n− 1)!
= x

⎛
⎝∑

k≥1

B2k−1(1)t
2k−1

(2k − 1)!

⎞
⎠

⎛
⎝∑

k≥0

A
(1,0,∅,0)
2k (x)t2k

(2k)!

⎞
⎠ .
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By (2), ∑
k≥1

B2k−1(1)t
2k−1

(2k − 1)!
= tan(t)

so that

(8)
∂

∂t
A(1,0,∅,0)(t, x) = x tan(t)A(1,0,∅,0)(t, x).

Our initial condition is that A(1,0,∅,0)(0, x) = 1. It is easy to check that the
solution to this differential equation is

A(1,0,∅,0)(t, x) = (sec(t))x.

2.2. The generating function B(1,0,∅,0)(t, x)

If σ = σ1 · · ·σ2n+1 ∈ UD2n+1, then 1 must occur in one of the positions

1, 3, . . . , 2n + 1. Let UD
(2k+1)
2n+1 denote the set of permutations σ ∈ UD2n+1

such that σ2k+1 = 1. A schematic diagram of an element in UD
(2k+1)
2n is

pictured in Figure 3.

A permutation σ = σ1 · · ·σ2n+1 ∈ UD
(2n+1)
2n+1 ends with 1 so that σ2n+1 =

1 does not match MMP (1, 0, ∅, 0) in σ. Moreover, red(σ1 · · ·σ2n) ∈ UD2n

and σ2n+1 = 1 cannot affect whether any of the other elements in σ match
MMP (1, 0, ∅, 0). Thus,

∑
σ∈UD

(2n+1)
2n+1

xmmp(1,0,∅,0)(σ) = A
(1,0,∅,0)
2n (x).

Next, consider UD
(2k+1)
2n+1 where 0 ≤ k ≤ n− 1. Note that there are

(
2n
2k

)
ways to pick the elements which occur to the right of position 2k + 1 in
such a σ and there are C2n−2k(1) = A2n−2k(1) ways to order them since
the elements to the right of position 2k + 1 form a down-up permutation of
length 2n− 2k. That is, the fact that σ2k+1 = 1 implies that σ2k+1 matches
MMP (1, 0, ∅, 0) in σ and that none of the elements to the right of position
2k+1 matches MMP (1, 0, ∅, 0) in σ. Thus, the contribution of the elements
to the right of position 2k + 1 in

∑
σ∈UD

(2k+1)
2n+1

xmmp(1,0,∅,0)(σ) is C2n−2k(1) =

A2n−2k(1) since the elements to the right of position 2k+1 must form a down-
up permutation of length 2n− 2k. As we proved above, the elements to the
right of position 2k+1 have no effect on whether σ1, . . . , σ2k can contribute
to mmp(1,0,∅,0)(σ). It follows that the contribution of the elements to the
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Figure 3: The graph of a σ ∈ UD
(2k+1)
2n+1 .

left of position 2k + 1 in
∑

σ∈UD(2k+1)
2n+1

xmmp(1,0,∅,0)(σ) is A
(1,0,∅,0)
2k (x). It thus

follows that for n ≥ 1,

B
(1,0,∅,0)
2n+1 (x) = A

(1,0,∅,0)
2n (x) + x

n−1∑
k=0

(
2n

2k

)
A2n−2k(1)A

(1,0,∅,0)
2k (x)

or, equivalently,

(9)
B

(1,0,∅,0)
2n+1 (x)

(2n)!
=

A
(1,0,∅,0)
2n (x)

(2n)!
+ x

n−1∑
k=0

A2n−2k(1)

(2n− 2k)!

A
(1,0,∅,0)
2k (x)

(2k)!
.

Note that B
(1,0,∅,0)
1 (x) = 1. Multiplying both sides of (9) by t2n and summing

for n ≥ 1, we see that

∑
n≥0

B
(1,0,∅,0)
2n+1 (x)t2n

(2n)!

=
∑
n≥0

A
(1,0,∅,0)
2n (x)t2n

(2n)!
+ x

⎛
⎝∑

k≥1

A2k(1)t
2k

(2k)!

⎞
⎠

⎛
⎝∑

k≥0

A
(1,0,∅,0)
2k (x)t2k

(2k)!

⎞
⎠ .

By (1), ∑
k≥0

A2k(1)t
2k

(2k)!
= sec(t)
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so that

∂

∂t
B(1,0,∅,0)(t, x) = (sec(t))x + x(sec(t))x(sec(t)− 1)).

Thus,

(10)
∂

∂t
B(1,0,∅,0)(t, x) = (sec(t))x(1− x+ x sec(t)).

Our initial condition is that B(1,0,∅,0)(0, x) = 0. We used Mathematica to
solve this differential equation which gave the following formula for
B(1,0,∅,0)(t, x):

B(1,0,∅,0)(t, x) =
sin(t) cos(t)(1− x+ x sec(t))

x+ (1− x) cos(t)

×
(
(1− x) 2F1

(
1

2
,
1 + x

2
;
3

2
; (sin(t))2

)

+ x 2F1

(
1

2
,
2 + x

2
;
3

2
; (sin(t))2

))
.

2.3. The generating function D(1,0,∅,0)(t, x)

If σ = σ1 · · ·σ2n+1 ∈ DU2n+1, then 1 must occur in one of the positions

2, 4, . . . , 2n. Let DU
(2k)
2n+1 denote the set of permutations σ ∈ DU2n+1 such

that σ2k = 1. A schematic diagram of an element in DU
(2k)
2n+1 is pictured in

Figure 4.
Let

D
(1,0,∅,0)
2n+1 (x, y) =

∑
σ∈DU2n+1

xmmp(1,0,∅,0)(σ)yχ(σ1=2n+1).

First, we want to study the polynomial D
(1,0,∅,0)
2n+1 (x) = D

(1,0,∅,0)
2n+1 (x, x). Sup-

pose that σ = σ1 · · ·σ2n+1 is an element of DU2n+1. If σ1 < 2n + 1, then
σ1 will automatically contribute to mmp(1,0,∅,0)(σ). However, if σ1 = 2n+1,
then σ1 will not contribute to mmp(1,0,∅,0)(σ). Thus, the difference between

D
(1,0,∅,0)
2n+1 (x) and D

(1,0,∅,0)
2n+1 (x) is that σ1 always contributes a factor of x to

xmmp(1,0,∅,0)(σ)xχ(σ1=2n+1).
First, we shall prove a simple recursion for D

(1,0,∅,0)
2n+1 (x). That is, con-

sider a σ = σ1 · · ·σ2n+1 ∈ DU
(2k)
2n+1 where 1 ≤ k ≤ n. Note that there

are
(

2n
2k−1

)
ways to pick the elements which occur to the right of position
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Figure 4: The graph of a σ ∈ DU
(2k)
2n+1.

2k in such a σ and there are D2n−2k+1(1) = B2n−2k−1(1) ways to order

them since the elements to the right of position 2k form a down-up per-

mutation of length 2n − 2k + 1. For a σ = σ1 · · ·σ2n+1 ∈ DU
(2k)
2n+1, none

of the elements σi for i > 2k matches MMP (1, 0, ∅, 0) in σ and σ2k = 1

always matches MMP (1, 0, ∅, 0) in σ. Thus, the only other elements of

σ that can possibly contribute to mmp(1,0,∅,0)(σ)xχ(σ1=2n+1) are the ele-

ments σ1, σ2, σ4, . . . , σ2k−2. Since in D
(1,0,∅,0)
2n+1 (x), σ1 always contributes to

mmp(1,0,∅,0)(σ)xχ(σ1=2n+1) and the elements to the right of position 2k have

no effect on whether σ2, . . . , σ2k−2 contribute to mmp(1,0,∅,0)(σ), it follows

that the contribution of the elements to the left of position 2k to

∑
σ∈DU

(2k)
2n+1

xmmp(1,0,∅,0)(σ)xχ(σ1=2n+1)

is D2k−1(x). Hence, for n ≥ 1,

D
(1,0,∅,0)
2n+1 (x) = x

n∑
k=1

(
2n

2k − 1

)
D

(1,0,∅,0)
2k−1 (x)B2n−2k+1(1)

or, equivalently,

(11)
D

(1,0,∅,0)
2n+1 (x)

(2n)!
= x

n∑
k=1

D
(1,0,∅,0)
2k−1 (x)

(2k − 1)!

B2n−2k+1(1)

(2n− 2k + 1)!
.
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Note that D
(1,0,∅,0)
1 (x) = x. Multiplying both sides of (11) by t2n and sum-

ming for n ≥ 1, we see that

∑
n≥1

D
(1,0,∅,0)
2n+1 (x)t2n

(2n)!
−x = x

⎛
⎝∑

k≥0

D
(1,0,∅,0)
2n+1 (x)t2k

(2k)!

⎞
⎠

⎛
⎝∑

k≥0

B
(1,0,∅,0)
2k+1 (1)t2k+1

(2k + 1)!

⎞
⎠ .

By (2), ∑
k≥1

B2k−1(1)t
2k−1

(2k − 1)!
= tan(t)

so that
∂

∂t
D

(1,0,∅,0)
(t, x) = x+ x tan(x)D

(1,0,∅,0)
(t, x).

Our initial condition is that D
(1,0,∅,0)

(0, x) = 0. One can easily check that
the solution to this differential equation is

(12) D
(1,0,∅,0)

(t, x) = x(sec(t))x
∫ t

0
(cos(z))xdz.

As observed above, the difference between D
(1,0,∅,0)
2n+1 (x) and D

(1,0,∅,0)
2n+1 (x)

is that the permutations σ = σ1 · · ·σ2n+1 ∈ DU2n+1 such that σ1 = 2n + 1
are weighted differently in that such permutations are weighted with an

extra power of x in D
(1,0,∅,0)
2n+1 (x) than they are in D

(1,0,∅,0)
2n+1 (x). That is,

x
∑

σ∈DU2n+1,σ1=2n+1

xmmp(1,0,∅,0)(σ) =
∑

σ∈DU2n+1,σ1=2n+1

xmmp(1,0,∅,0)(σ)xχ(σ1=2n+1).

It is easy to see that ∑
σ∈DU2n+1,σ1=2n+1

xmmp(1,0,∅,0)(σ) = A
(1,0,∅,0)
2n (x).

Thus, it follows that

(13) D
(1,0,∅,0)
2n+1 (x) = D

(1,0,∅,0)
2n+1 (x) + (1− x)A

(1,0,∅,0)
2n (x).

Multiplying both sides of (13) by t2n+1

(2n+1)! and summing for n ≥ 0, we see

that

D(1,0,∅,0)(t, x) = D
(1,0,∅,0)

(t, x) + (1− x)

∫ t

0
A(1,0,∅,0)(z, x)dz.
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Figure 5: The graph of a σ ∈ DU
(2k)
2n .

Hence,

D(1,0,∅,0)(t, x) = x(sec(t))x
∫ t

0
(cos(z))xdz + (1− x)

∫ t

0
(sec(z))xdz.

2.4. The generating function C(1,0,∅,0)(t, x)

If σ = σ1 · · ·σ2n ∈ DU2n, then 1 must occur in one of the positions 2, 4, . . . ,

2n. Let DU
(2k)
2n denote the set of permutations σ ∈ DU2n such that σ2k = 1.

A schematic diagram of an element in DU
(2k)
2n is pictured in Figure 5.

Let

C
(1,0,∅,0)
2n (x, y) =

∑
σ∈DU2n

xmmp(1,0,∅,0)(σ)yχ(σ1=2n).

First, we want to study the polynomial C
(1,0,∅,0)
2n (x) = C

(1,0,∅,0)
2n+1 (x, x). As

was the case with D
(1,0,∅,0)
2n+1 (x), if σ = σ1 · · ·σ2n ∈ DU2n and σ1 < 2n, then

σ1 will automatically contribute to mmp(1,0,∅,0)(σ). However, if σ1 = 2n,

then σ1 will not contribute to mmp(1,0,∅,0)(σ). Thus, the difference between

C
(1,0,∅,0)
2n (x) and C

(1,0,∅,0)
2n (x) is that σ1 always contributes a factor of x to

xmmp(1,0,∅,0)(σ)xχ(σ1=2n).

First, consider σ = σ1 · · ·σ2n ∈ DU
(2n)
2n . Since σ2n = 1, it is easy to see

that ∑
σ∈DU

(2n)
2n

xmmp(1,0,∅,0)(σ)xχ(σ1=2n) = D
(1,0,∅,0)
2n−1 (x).
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Next, consider a σ = σ1 · · ·σ2n ∈ DU
(2k)
2n where 1 ≤ k < n. Note that

there are
(
2n−1
2k−1

)
ways to pick the elements which occur to the right of posi-

tion 2k in such a σ and there are C2n−2k(1) = A2n−2k(1) ways to order them

since the elements to the right of position 2k form a down-up permutation

of length 2n − 2k. For a σ = σ1 · · ·σ2n+1 ∈ DU
(2k)
2n , none of the elements

σi for i > 2k matches MMP (1, 0, ∅, 0) in σ and σ2k = 1 always matches

MMP (1, 0, ∅, 0) in σ. Thus, the only other elements of σ that can possibly

contribute to mmp(1,0,∅,0)(σ)xχ(σ1=2n) are the elements σ1, σ2, σ4, . . . , σ2k−2.

Since in C
(1,0,∅,0)
2n+1 (x), σ1 always contributes to mmp(1,0,∅,0)(σ)xχ(σ1=2n) and

the elements to the right of position 2k have no effect on whether σ2, . . . ,

σ2k−2 contribute to mmp(1,0,∅,0)(σ), it follows that the contribution of the

elements to the left of position 2k to
∑

σ∈DU (2k)
2n

xmmp(1,0,∅,0)(σ)xχ(σ1=2n) is

D2k−1(x). Hence, for n ≥ 1,

C
(1,0,∅,0)
2n (x) = D

(1,0,∅,0)
2n−1 (x) + x

n−1∑
k=1

(
2n− 1

2k − 1

)
D

(1,0,∅,0)
2k−1 (x)A2n−2k(1)

or, equivalently,

(14)
C

(1,0,∅,0)
2n (x)

(2n− 1)!
=

D
(1,0,∅,0)
2n−1 (x)

(2n− 1)!
+ x

n−1∑
k=1

D
(1,0,∅,0)
2k−1 (x)

(2k − 1)!

A2n−2k(1)

(2n− 2k)!
.

Multiplying both sides of (14) by t2n−1 and summing for n ≥ 1, we see

that

∑
n≥1

C
(1,0,∅,0)
2n (x)t2n−1

(2n− 1)!
=

∑
n≥1

D
(1,0,∅,0)
2n−1 (x)t2n−1

(2n− 1)!

+ x

⎛
⎝∑

k≥0

D
(1,0,∅,0)
2n+1 (x)t2n+1

(2n+ 1)!

⎞
⎠

⎛
⎝∑

k≥1

A2k(1)t
2k

(2k)!

⎞
⎠ .

By (1),

∑
k≥0

A2k(1)t
2k

(2k)!
= sec(t)
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so that

∂

∂t
C

(1,0,∅,0)
(t, x) = D

(1,0,∅,0)
(t, x) + xD

(1,0,∅,0)
(t, x)(sec(t)− 1)

= D
(1,0,∅,0)

(t, x)(1− x+ x sec(t))

= x(sec(t))x(1− x+ x sec(t))

∫ t

0
(cos(z))xdz.

Our initial condition is that C
(1,0,∅,0)

(0, x) = 1. Maple will give a solution

to this differential equation, but it is a complicated expression which is not

particularly useful for our purposes so that we will simply record the solution

to this differential equation as

(15)

C
(1,0,∅,0)

(t, x) = 1 +

∫ t

0

[
x(sec(z))x(1− x+ x sec(z))

∫ z

0
(cos(y))xdy

]
dz.

As observed above, the difference between C
(1,0,∅,0)
2n (x) and C

(1,0,∅,0)
2n (x)

is that the permutations σ = σ1 · · ·σ2n+1 ∈ DU2n such that σ1 = 2n are

weighted differently in that such permutations are weighted with an extra

power of x in C
(1,0,∅,0)
2n (x) than they are in C

(1,0,∅,0)
2n (x). That is,

x
∑

σ∈DU2n,σ1=2n

xmmp(1,0,∅,0)(σ) =
∑

σ∈DU2n,σ1=2n

xmmp(1,0,∅,0)(σ)xχ(σ1=2n).

It is easy to see that

∑
σ∈DU2n,σ1=2n

xmmp(1,0,∅,0)(σ) = B
(1,0,∅,0)
2n−1 (x).

Thus, it follows that

(16) C
(1,0,∅,0)
2n (x) = C

(1,0,∅,0)
2n (x) + (1− x)B

(1,0,∅,0)
2n−1 (x).

Multiplying both sides of (16) by t2n

(2n)! and summing for n ≥ 0, we see that

C(1,0,∅,0)(t, x) = C
(1,0,∅,0)

(t, x) + (1− x)

∫ t

0
B(1,0,∅,0)(z, x)dz.
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Hence,

C(1,0,∅,0)(t, x) = 1 +

∫ t

0

[
x(sec(z))x(1− x+ x sec(z))

∫ z

0
(cos(y))xdy

]
dz

+ (1− x)

∫ t

0
B(1,0,∅,0)(z, x)dz.

3. The coefficients of the polynomials A
(1,0,∅,0)
2n (x),

B
(1,0,∅,0)
2n+1 (x), C

(1,0,∅,0)
2n (x), and D

(1,0,∅,0)
2n+1 (x).

The main goal of this section is to explain several of the coefficients of

the polynomials A
(1,0,∅,0)
2n (x), B

(1,0,∅,0)
2n+1 (x), C

(1,0,∅,0)
2n (x), and D

(1,0,∅,0)
2n+1 (x). For

n ≥ 1, let (2n)!! =
∏n

i=1 2i and (2n − 1)!! =
∏n

i=1(2i − 1). First, it is
easy to understand the coefficients of the lowest power of x in each of these
polynomials. That is, we have the following theorem.

Theorem 3.

(1) For all n ≥ 1,

A
(1,0,∅,0)
2n (x)|x = B2n−1(1).

(2) For all n ≥ 1,

B
(1,0,∅,0)
2n+1 (x)|x = A2n(1) +B2n−1(1).

(3) For all n ≥ 2,

C
(1,0,∅,0)
2n (x)|x = A2n−2(1) +B2n−3(1).

(4) For all n ≥ 1,

D
(1,0,∅,0)
2n+1 (x)|x = B2n−1(1).

Proof. For (1), note that if σ = σ1 · · ·σ2n ∈ UD2n where n ≥ 1, then σ1
always matches MMP (1, 0, ∅, 0) in σ. Moreover if σ1 	= 1, then σ2k+1 = 1
for some k ≥ 1 in which case σ2k+1 will also match MMP (1, 0, ∅, 0) in σ.
Thus, the only possible way to have mmp(1,0,∅,0)(σ) = 1 is if σ1 = 1 in which
case none of σ2, . . . , σ2n will match MMP (1, 0, ∅, 0) in σ. Clearly, in such a
situation, red(σ2 · · ·σ2n) ∈ DU2n−1 so that we have D2n−1(1) = B2n−1(1)

ways to choose σ2 · · ·σ2n. It follows that A(1,0,∅,0)
2n (x)|x = B2n−1(1) for n ≥ 1.

For (2), note that if σ = σ1 · · ·σ2n+1 ∈ UD2n+1 where n ≥ 1, then
again σ1 always matches MMP (1, 0, ∅, 0) in σ. However, in this case, if
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σ1 	= 1, then σ2k+1 = 1 for some k ≥ 1 in which case σ2k+1 will also match
MMP (1, 0, ∅, 0) in σ if 1 ≤ k < n, but it will not match MMP (1, 0, ∅, 0)
in σ if k = n. Thus, if σ = σ1 · · ·σ2n+1 ∈ UD2n+1 and mmp(1,0,∅,0)(σ) =
1, it must be the case that σ1 = 1 or σ2n+1 = 1. Now if σ1 = 1, then
none of σ2, . . . , σ2n+1 will match MMP (1, 0, ∅, 0) in σ. Clearly, in such a
situation, red(σ2 · · ·σ2n+1) ∈ DU2n so that we have C2n(1) = A2n(1) ways
to choose σ2 · · ·σ2n+1. If σ2n+1 = 1, then it must be the case that σ1 = 2
since otherwise σ2k+1 = 2 for some k ≥ 1 in which case σ1 and σ2k+1 = 2 will
match MMP (1, 0, ∅, 0) in σ. But then red(σ2 · · ·σ2n) ∈ DU2n−1 so that we

have D2n−1(1) = B2n−1(1) ways to choose σ2 · · ·σ2n. Hence, B
(1,0,∅,0)
2n+1 (x)|x =

A2n(1) +B2n−1(1) for n ≥ 1.
For (3), note that if σ = σ1 · · ·σ2n ∈ DU2n where n ≥ 2, then σ2 always

matches MMP (1, 0, ∅, 0) in σ. Moreover, if σ2 	= 1, then σ2k = 1 for some
k ≥ 2 in which case σ2k will also match MMP (1, 0, ∅, 0) in σ for 1 < k < n
but will not match MMP (1, 0, ∅, 0) in σ if k = n. In addition, σ1 will match
MMP (1, 0, ∅, 0) in σ unless σ1 = 2n. Thus, if σ = σ1 · · ·σ2n ∈ DU2n and
mmp(1,0,∅,0)(σ) = 1, then we must have σ1 = 2n and either σ2 = 1 or
σ2n = 1. If σ2 = 1, then none of σ3, . . . , σ2n will match MMP (1, 0, ∅, 0) in
σ. Clearly, in such a situation, red(σ3 · · ·σ2n) ∈ DU2n−2 so that we have
C2n−2(1) = A2n−2(1) ways to choose σ3 · · ·σ2n. If σ2n = 1, then it must be
the case that σ2 = 2 since otherwise σ2k = 2 for some k ≥ 2 in which case σ2
and σ2k = 2 will match MMP (1, 0, ∅, 0) in σ. But then red(σ3 · · ·σ2n−1) ∈
DU2n−3 so that we have D2n−3(1) = B2n−3(1) ways to choose σ3 · · ·σ2n−1.

Hence, C
(1,0,∅,0)
2n (x)|x = A2n−2(1) +B2n−3(1) for n ≥ 2.

For (4), note that if σ = σ1 · · ·σ2n+1 ∈ DU2n+1 where n ≥ 1, then σ2
always matches MMP (1, 0, ∅, 0) in σ. Moreover if σ2 	= 1, then σ2k = 1
for some k ≥ 2 in which case σ2k will also match MMP (1, 0, ∅, 0) in σ.
Finally, σ1 will also match MMP (1, 0, ∅, 0) in σ unless σ1 = 2n + 1. Thus,
if σ = σ1 · · ·σ2n+1 ∈ DU2n+1 and mmp(1,0,∅,0)(σ) = 1, it must be the case
that σ1 = 2n+1 and σ2 = 1 in which case none of σ3, · · · , σ2n+1 will match
MMP (1, 0, ∅, 0) in σ. Clearly, in such a situation, red(σ3 · · ·σ2n) ∈ DU2n−1

so that we have D2n−1(1) = B2n−1(1) ways to choose σ3 · · ·σ2n+1. It follows

that D
(1,0,∅,0)
2n+1 (x)|x = B2n−1(1) for n ≥ 1.

We can also explain the coefficients of the highest power of x in each
of the polynomials A2n(x), B2n+1(x), and D2n+1(x). That is, we have the
following theorem.

Theorem 4.

(1) For all n ≥ 1, the highest power of x that appears in A
(1,0,∅,0)
2n (x) is xn

which appears with coefficient (2n− 1)!!.
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(2) For all n ≥ 1, the highest power of x that appears in B
(1,0,∅,0)
2n+1 (x) is xn

which appears with coefficient (n+ 1)((2n− 1)!!).

(3) For all n ≥ 2, the highest power of x that appears in C
(1,0,∅,0)
2n (x) is xn

which appears with coefficient (2n2−n− 1)((2n− 4)!!)−n((2n− 3)!!).

(4) For all n ≥ 2, the highest power of x that appears in D
(1,0,∅,0)
2n+1 (x) is

xn+1 which appears with coefficient (2n)!!− (2n− 1)!!.

Proof. For (1), we proceed by induction on n. Clearly, the formula holds

for n = 1 since A
(1,0,∅,0)
2 (x) = x. Thus, assume that n > 1, and that by

induction, we know that A
(1,0,∅,0)
2n−2 (x)|xn−1 = (2n− 3)!!. It is easy to see that

the maximum that mmp(1,0,∅,0)(σ) can be is n since for any σ = σ1 · · ·σ2n ∈
UD2n only σ1, σ3, · · · , σ2n−1 can match MMP (1, 0, ∅, 0) in σ. If σ2k+1 = 1
for some k < n − 1, then σ2k+3, . . . , σ2n−1 will not match MMP (1, 0, ∅, 0)
in σ. Thus, if σ = σ1 · · ·σ2n ∈ UD2n is such that mmp(1,0,∅,0)(σ) = n, then
σ2n−1 = 1 and mmp(1,0,∅,0)(σ1 · · ·σ2n−2) = n−1. We then have (2n−1) ways
to choose the value σ2n, and once we have chosen the value of σ2n, we have
(2n− 3)!! ways to choose σ1 · · ·σ2n−2. Hence, A(1,0,∅,0)(x)|xn = (2n− 1)!!.

For (2), it is easy to see that our formula holds for n = 1 and n = 2 since

B
(1,0,∅,0)
3 (x)|x = 2 and B

(1,0,∅,0)
5 (x)|x2 = 9 = 3(3!!). So assume that n ≥ 3 and

suppose that σ = σ1 · · ·σ2n+1 ∈ UD2n+1. Then only σ1, σ3, . . . , σ2n−1 can
match the MMP (1, 0, ∅, 0) in σ. Thus, the maximum that mmp(1,0,∅,0)(σ)
can be is n. Note that if σ2k+1 = 1 where 0 ≤ k < n−1, then none of σ2j+1 for
j > k will match theMMP (1, 0, ∅, 0) in σ. It follows that if mmp(1,0,∅,0)(σ) =
n, then it must be the case that σ2n+1 = 1 or σ2n−1 = 1. Now if σ2n−1 = 1,
then we have

(
2n
2

)
ways to choose the values of σ2n and σ2n+1, and it must be

the case that red(σ1 · · ·σ2n−2) = τ where τ ∈ UD2n−2 and mmp(1,0,∅,0)(τ) =
n− 1. It then follows from part (1) that we have (2n − 3)!! ways to choose
σ1 · · ·σ2n−2 so that the set of permutations σ = σ1 · · ·σ2n+1 ∈ UD2n+1 with

σ2n−1 = 1 contributes
(
2n
2

)
(2n − 3)!! = n((2n − 1)!!) to B

(1,0,∅,0)
2n+1 (x)|xn . If

σ2n+1 = 1, then it must be the case that σ2n−1 = 2 and red(σ1 · · ·σ2n−2) = τ
where τ ∈ UD2n−2 and mmp(1,0,∅,0)(τ) = n − 1. Thus, we have 2n − 1
choices for the value of σ2n, and then as before we have (2n− 3)!! to choose
σ1 · · ·σ2n−2. Thus, the set of permutations σ = σ1 · · ·σ2n+1 ∈ UD2n+1 with

σ2n+1 = 1 contributes (2n− 1)!! to B
(1,0,∅,0)
2n+1 (x)|xn . Hence, B

(1,0,∅,0)
2n+1 (x)|xn =

(n+ 1)(2n− 1)!!.
For (4), it is easy to see that if σ = σ1 · · ·σ2n+1 ∈ DU2n+1, then only

σ1, σ2, σ4, . . . , σ2n can match MMP (1, 0, ∅, 0) in σ. Thus, mmp(1,0,∅,0)(σ)
is at most n + 1. It is also easy to see that if σ2k = 1 for k < n, then
σ2k+2, . . . , σ2n will not matchMMP (1, 0, ∅, 0) in σ so that if mmp(1,0,∅,0)(σ)=
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n + 1, then it must be the case that σ2n = 1. Thus, assume that σ =
σ1 · · ·σ2n+1 ∈ DU2n+1 is such that mmp(1,0,∅,0)(σ) = n + 1. Since σ2n = 1,
we have two cases.

Case 1. σ2n+1 = 2n + 1. In this case, we know that σ1 will always match
MMP (1, 0, ∅, 0) in σ. Thus, as far as σ1 · · ·σ2n−1 is concerned, we are dealing

with the polynomial D
(1,0,∅,0)
2n−1 (x). We then have the following lemma.

Lemma 5. For n ≥ 1, the highest power of x which occurs in D
(1,0,∅,0)
2n+1 (x)

is xn+1 which occurs with a coefficient of (2n)!!.

Proof. We proceed by induction on n. Our theorem holds for n = 1 since

D
(1,0,∅,0)
3 (x) = 2x2. Now assume that n > 1 and the lemma holds for n− 1.

As in our discussion for D2n+1(x), if σ = σ1 · · ·σ2n+1 ∈ DU2n+1 is such that
χ(σ1 = 2n + 1) + mmp(1,0,∅,0)(σ) = n + 1, then it must be the case that
σ2n = 1. But then we have 2n choices for σ2n+1, and once we have chosen
σ2n+1, then τ = red(σ1 · · ·σ2n−1) must be an element of DU2n−1 such that
χ(τ1 = 2n − 1) + mmp(1,0,∅,0)(τ) = n. By induction, we have (2(n − 1))!!

ways to pick σ1 · · ·σ2n−1. Thus, D
(1,0,∅,0)
2n+1 (x)|xn = (2n)!!.

It follows that in Case 1, we have (2n − 2)!! ways to pick σ1 · · ·σ2n−1

so that the permutations such that σ2n = 1 and σ2n+1 = 2n+ 1 contribute

(2n− 2)!! to D
(1,0,∅,0)
2n+1 (x)|xn+1 .

Case 2. σ2n+1 < 2n + 1. In this case, τ = red(σ1 · · ·σ2n−1) must be
an element of DU2n−1 such that mmp(1,0,∅,0)(τ) = n. It then follows by
induction that we have (2n − 1) ways to pick σ2n+1, and once we have
chosen σ2n+1, we have (2n − 2)!! − (2n − 3)!! ways to pick σ1 · · ·σ2n−1.
Hence, the permutations such that σ2n = 1 and σ2n+1 < 2n + 1 contribute
(2n − 1)((2n − 2)!! − (2n − 3)!!) = (2n − 1)((2n − 2)!!) − (2n − 1)!! to

D
(1,0,∅,0)
2n+1 (x)|xn+1 .

Thus,

D
(1,0,∅,0)
2n+1 (x)|xn+1 = (2n− 2)!! + (2n− 1)((2n− 2)!!)− (2n− 1)!!

= (2n)!!− (2n− 1)!!.

For (3), observe that if σ = σ1 · · ·σ2n ∈ DU2n, then only σ1, σ2, σ4, . . . ,
σ2n−2 can match MMP (1, 0, ∅, 0) so that mmp(1,0,∅,0)(σ) is at most n. It is
also easy to see that if σ2k = 1 for k < n− 1, then σ2k+2, . . . , σ2n−2 will not
match MMP (1, 0, ∅, 0) in σ so that if mmp(1,0,∅,0)(σ) = n, then it must be
the case that σ2n = 1 or σ2n−2 = 1. Suppose that σ = σ1 · · ·σ2n ∈ DU2n

and mmp(1,0,∅,0)(σ) = n. We then have three cases.
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Case I. σ2n = 1. In this case, it must be that τ = red(σ1 · · ·σ2n−1) ∈
DU2n−1 and mmp(1,0,∅,0)(τ) = n. Thus, by part (3), we have (2n − 2)!! −
(2n− 3)!! choices for σ1 · · ·σ2n.

Case II. σ2n−2 = 1 and σ2n−1 = 2n. In this case, we have (2n−2) choices for

σ2n. The fact that σ2n−1 = 2n implies that σ1 will always match MMP (1, 0,

∅, 0) so that γ = red(σ1 · · ·σ2n−3) is a permutation in DU2n−3 such that

χ(σ1 = 2n−3)+mmp(1,0,∅,0)(γ) = n−1. By Lemma 5, we will have (2n−4)!!

choices for σ1 · · ·σ2n−3 once we have chosen σ2n. Thus, the permutations in

Case II will contribute (2n− 2)!! to C
(1,0,∅,0)
2n (x)|xn .

Case III. σ2n−2 = 1 and σ2n−1 < 2n. In this case, τ = red(σ1 · · ·σ2n−3)

must be an element of DU2n−3 such that mmp(1,0,∅,0)(τ) = n− 1. Then we

have
(
2n−2

2

)
ways to pick σ2n−1 and σ2n, and once we have chosen σ2n−1 and

σ2n, we have (2n − 4)!! − (2n − 5)!! ways to pick σ1 · · ·σ2n−3 by part (4).

It follows that the permutations in Case III contribute
(
2n−2

2

)
((2n − 4)!! −

(2n− 5)!!) to C
(1,0,∅,0)
2n (x)|xn .

Thus,

C
(1,0,∅,0)
2n (x)|xn = (2n− 2)!!− (2n− 3)!! + (2n− 2)!!

+

(
2n− 2

2

)
((2n− 4)!!− (2n− 5)!!)

= 2((2n− 2)!!)− (2n− 3)!!

+ (n− 1)(2n− 3)((2n− 4)!!− (2n− 5)!!)

= (2(2n− 2) + (n− 1)(2n− 3))((2n− 4)!!)− n((2n− 3)!!)

= (2n2 − n− 1)((2n− 4)!!)− n((2n− 3)!!).

Next, we give formulas for the coefficient of x2 in the polynomials

A
(1,0,∅,0)
2n (x), B

(1,0,∅,0)
2n+1 (x), C

(1,0,∅,0)
2n (x), and B

(1,0,∅,0)
2n+1 (x). None of the corre-

sponding sequences had previously appeared in the OEIS [12].

Theorem 6.

(1) For n ≥ 2,

A
(1,0,∅,0)
2n (x)|x2 =

n−1∑
k=1

(
2n− 1

2k

)
B2k−1(1)B2n−2k−1(1).
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(2) For n ≥ 3,

B
(1,0,∅,0)
2n+1 (x)|x2 = A

(1,0,∅,0)
2n (x)|x2 +

n−1∑
k=1

(
2n

2k

)
B2k−1(1)A2n−2k(1).

(3) For n ≥ 2,

D
(1,0,∅,0)
2n+1 (x)|x2 =(2n−1)B2n−1(1)+

n−1∑
k=2

(
2n− 1

2k − 2

)
B2k−3(1)B2n−2k+1(1).

(4) For n ≥ 2,

C
(1,0,∅,0)
2n (x)|x2 = D

(1,0,∅,0)
2n−1 (x)|x2 + (2n− 2)A2n−2(1)

+

n−1∑
k=2

(
2n− 2

2k − 2

)
B2k−3(1)A2n−2k(1).

Proof. For (1), suppose that σ = σ1 · · ·σ2n ∈ UD2n and mmp(1,0,∅,0)(σ) = 2.
Then it cannot be that σ1 = 1 since that would force that σ2, . . . , σ2n do
not match MMP (1, 0, ∅, 0) in σ. Thus, 1 ∈ {σ2k+1 : k = 1, . . . , n − 1}.
Now suppose that σ2k+1 = 1 where 1 ≤ k ≤ n − 1. Then σ2k+1 will match
MMP (1, 0, ∅, 0) in σ and σ2k+2, . . . , σ2n will not match MMP (1, 0, ∅, 0) in
σ. Hence, it must be the case that τ = red(σ1 · · ·σ2k) is a permutation in
UD2k such that mmp(1,0,∅,0)(τ) = 1. Thus, we have

(
2n−1
2k

)
ways to choose

the set of elements for σ1, . . . , σ2k, and by Theorem 3, we have B2k−1(1)
ways to order them. We also have B2n−2k−1(1) ways to order σ2k+2 · · ·σ2n.
Hence,

A
(1,0,∅,0)
2n (x)|x2 =

n−1∑
k=1

(
2n− 1

2k

)
B2k−1(1)B2n−2k−1(1).

The argument for (2) is similar. That is, suppose σ = σ1 · · ·σ2n+1 ∈
UD2n+1 and mmp(1,0,∅,0)(σ) = 2. Then again we cannot have σ1 = 1. Thus,
1 ∈ {σ2k+1 : k = 1, . . . , n}. Now suppose σ2k+1 = 1 where 1 ≤ k ≤
n − 1. Then σ2k+1 will match MMP (1, 0, ∅, 0) in σ and σ2k+2, . . . , σ2n+1

will not match MMP (1, 0, ∅, 0) in σ. Hence, it must be the case that τ =
red(σ1 · · ·σ2k) is a permutation in UD2k such that mmp(1,0,∅,0)(τ) = 1. Thus,
we have

(
2n
2k

)
ways to choose the set of elements for σ1, . . . , σ2k, and by The-

orem 3, we have B2k−1(1) ways to order them. We also have A2n−2k(1) ways
to order σ2k+2 · · ·σ2n+1. However if σ2n+1 = 1, then σ2n+1 does not match
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MMP (1, 0, ∅, 0) in σ so that it must be the case that α = red(σ1 · · ·σ2n)
is an element of UD2n such that mmp(1,0,∅,0)(τ) = 2. It follows that in this

case, we have A
(1,0,∅,0)
2n (x)|x2 ways to choose σ1 · · ·σ2n. Hence,

B
(1,0,∅,0)
2n+1 (x)|x2 = A

(1,0,∅,0)
2n (x)|x2 +

n−1∑
k=1

(
2n

2k

)
B2k−1(1)A2n−2k(1).

For part (3), suppose that σ = σ1 · · ·σ2n+1 ∈ DU2n+1 and
mmp(1,0,∅,0)(σ) = 2. Then 1 ∈ {σ2, σ4, . . . , σ2n}. Now if σ2 = 1, then we
cannot have σ1 = 2n + 1 because that would force mmp(1,0,∅,0)(σ) = 1.
Thus, if σ2 = 1, then 2 ≤ σ1 ≤ 2n in which case σ1 and σ2 will be the only
two elements of σ to match MMP (1, 0, ∅, 0) in σ. We then have D2n−1(1) =
B2n−1(1) ways to pick σ3 · · ·σ2n+1 as red(σ3 · · ·σ2n+1) ∈ DU2n−1. Thus, the
number of σ = σ1 · · ·σ2n+1 ∈ DU2n+1 such that mmp(1,0,∅,0)(σ) = 2 and
σ2 = 1 is (2n − 1)B2n−1(1). Next, assume that σ2k = 1 where 2 ≤ k ≤ n.
Then σ2k matches MMP (1, 0, ∅, 0) in σ. It follows that we cannot have
2n + 1 ∈ {σ3, . . . , σ2n+1} since otherwise σ1 and σ2 would also match
MMP (1, 0, ∅, 0) in σ which would force mmp(1,0,∅,0)(σ) ≥ 3. Thus, it must
be the case that σ1 = 2n+1. Moreover, if s = min({σ2, . . . , σ2k−1}), then it
must be the case that σ2 = s since otherwise s = σ2j for some 2 ≤ j ≤ k−1 in
which case both σ2 and σ2j would match MMP (1, 0, ∅, 0) in σ which would
mean mmp(1,0,∅,0)(σ) ≥ 3. Thus, we have

(
2n−1
2k−2

)
ways to choose the elements

σ3, . . . , σ2k−1 and then we have B2k−3(1) ways to order σ3, . . . , σ2k−1 since
red(σ3 · · ·σ2k−1) must be an element of DU2k−3, and we have B2n−2k+1(1)
ways to order σ2k+1 · · ·σ2n+1 since red(σ2k+1 · · ·σ2n+1) must be an element
of DU2n−2k+1. Hence,

D
(1,0,∅,0)
2n+1 (x)|x2 = (2n− 1)B2n−1(1) +

n−1∑
k=2

(
2n− 1

2k − 2

)
B2k−3(1)B2n−2k+1(1).

For part (4), suppose that σ = σ1 · · ·σ2n ∈ DU2n and mmp(1,0,∅,0)(σ) =
2. Then 1 ∈ {σ2, σ4, . . . , σ2n}. We then have three cases.

Case 1. σ2n = 1. In this case, σ2n does not match MMP (1, 0, ∅, 0) in σ so
that it must be the case that if τ = red(σ1 · · ·σ2n−1), then τ is a permutation

in DU2n−1 such that mmp(1,0,∅,0)(τ) = 2. Thus, , we have D
(1,0,∅,0)
2n−1 (x)|x2

choices for σ1 · · ·σ2n−1.

Case 2. σ2 = 1. In this case, we cannot have σ1 = 2n because that
would force mmp(1,0,∅,0)(σ) = 1. Thus, if σ2 = 1, then 2 ≤ σ1 ≤ 2n − 1
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in which case σ1 and σ2 will be the only two elements of σ to match

MMP (1, 0, ∅, 0) in σ. We then have C2n−2(1) = A2n−2(1) ways to pick

σ3 · · ·σ2n as red(σ3 · · ·σ2n)∈ DU2n−2. Thus, the number of σ = σ1 · · ·σ2n ∈
DU2n such that mmp(1,0,∅,0)(σ) = 2 and σ2 = 1 is (2n− 2)A2n−2(1).

Case 3. σ2k = 1 where 2 ≤ k ≤ n − 1. Then σ2k matches MMP (1, 0, ∅, 0)
in σ. It follows that we cannot have 2n + 1 ∈ {σ3, . . . , σ2n} since other-

wise σ1 and σ2 would also match MMP (1, 0, ∅, 0) in σ which would force

mmp(1,0,∅,0)(σ) ≥ 3. Thus, it must be the case that σ1 = 2n. Again, if

s = min({σ2, . . . , σ2k−1}), then it must be the case that σ2 = s since other-

wise s = σ2j for some 2 ≤ j ≤ k − 1 in which case both σ2 and σ2j would

match MMP (1, 0, ∅, 0) in σ which would force mmp(1,0,∅,0)(σ) ≥ 3. It fol-

lows that we have
(
2n−3
2k−2

)
ways to choose the elements σ2, . . . , σ2k−1 and then

we have B2k−3(1) ways to order σ3, . . . , σ2k−1 since red(σ3 · · ·σ2k−1) must

be an element of DU2n−3 and A2n−2k(1) ways to order σ2k+1 · · ·σ2n since

red(σ2k+1 · · ·σ2n) must be an element of DU2n−2k. Hence, the elements in

Case 3 contribute
∑n−1

k=2

(
2n−3
2k−2

)
B2k−3(1)A2n−2k(1) to C

(1,0,∅,0)
2n (x)|x2 . Hence,

C
(1,0,∅,0)
2n (x)|x2 = D

(1,0,∅,0)
2n−1 (x)|x2 + (2n− 2)A2n−2(1)

+

n−1∑
k=2

(
2n− 2

2k − 2

)
B2k−3(1)A2n−2k(1).

Finally, we have the following theorem which gives formulas for the sec-

ond highest coefficient in A
(1,0,∅,0)
2n (x), B

(1,0,∅,0)
2n+1 (x), C

(1,0,∅,0)
2n (x), and

D
(1,0,∅,0)
2n+1 (x). None of the corresponding sequences had previously appeared

in the OEIS [12].

Theorem 7. (1) For all n ≥ 2,

(17) A
(1,0,∅,0)
2n (x)|xn−1 =

2

3

(
n

2

)
((2n− 1)!!).

(2) For all n ≥ 2,

(18) B
(1,0,∅,0)
2n+1 (x)|xn−1 =

(
7

3

(
n

2

)
+ 2

(
n

3

))
((2n− 1)!!).
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(3) For all n ≥ 1,

D
(1,0,∅,0)
2n+1 (x)|xn =

(
n∑

k=1

(5k − 4)k

3
((2k − 2)!!)

n∏
i=k+1

(2i− 1)

)
(19)

− 2

3

((
n

2

)
− 1

)
((2n− 1)!!).

(4) For all n ≥ 3,

C
(1,0,∅,0)
2n (x)|xn−1 = D

(1,0,∅,0)
2n−1 (x)|xn−1 +

(
2n− 2

2

)
D

(1,0,∅,0)
2n−3 (x)|xn−2

(20)

+
28n2 − 72n+ 39

24
((2n− 2)!!)

− 5

3

(
n− 1

2

)
((2n− 3)!!).

Proof. For (1), we proceed by induction on n. Now (17) holds for n = 2 since

A
(1,0,∅,0)
4 (x)|x = 2. Now suppose that n > 2, σ = σ1 · · ·σ2n ∈ UD2n and

mmp(1,0,∅,0)(σ) = n − 1. Only σ1, σ3, . . . , σ2n−1 can match MMP (1, 0, ∅, 0)
in σ. Now it cannot be that σ2k+1 = 1 where k < n − 2 since then
mmp(1,0,∅,0)(σ) ≤ k + 1 < n − 1. Thus, it must be the case that σ2n−3 = 1
or σ2n−1 = 1. Now if σ2n−3 = 1, then σ2n−3 matches MMP (1, 0, ∅, 0) in σ
and σ2n−1 does not match MMP (1, 0, ∅, 0) in σ. Then we have

(
2n−1

3

)
ways

to choose the values of σ2n−2, σ2n−1, and σ2n, and we have two ways to or-
der them. In addition, we must have that mmp(1,0,∅,0)(red(σ1, . . . , σ2n−4)) =
n−2. But then by Theorem 4, we have (2n−5)!! ways to choose σ1 · · ·σ2n−4

so that the number of σ = σ1 · · ·σ2n ∈ UD2n such that σ2n−3 = 1 and
mmp(1,0,∅,0)(σ) = n− 1 is

2

(
2n− 1

3

)
(2n− 5)!! =

2

3
(n− 1)((2n− 1)!!).

Now if σ2n−1 = 1, then we have 2n − 1 ways to pick the value of σ2n and
we must have that mmp(1,0,∅,0)(red(σ1, . . . , σ2n−2)) = n − 2. Thus, we have
A2(n−1)(x)|xn−2 = 2

3

(
n−1
2

)
(2n − 3)!! ways to choose σ1 · · ·σ2n−2. Thus, the

number of σ = σ1 · · ·σ2n ∈ UD2n such that σ2n−1 = 1 and mmp(1,0,∅,0)(σ) =
n− 1 is 2

3

(
n−1
2

)
(2n− 1)!!. Hence,

A2n(x)|xn−1 =
2

3
(n−1)((2n−1)!!)+

2

3

(
n− 1

2

)
((2n−1)!!) =

2

3

(
n

2

)
((2n−1)!!).
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Part (2) can be proved by induction in a similar manner. Now (18)

holds for n = 2 since B
(1,0,∅,0)
5 (x)|x = 7. Now suppose that n > 2, σ =

σ1 · · ·σ2n+1 ∈ UD2n+1, and mmp(1,0,∅,0)(σ) = n − 1. Only σ1, σ3, . . . , σ2n−1

can match MMP (1, 0, ∅, 0) in σ. Again, it cannot be that σ2k+1 = 1 where
k < n− 2 since then mmp(1,0,∅,0)(σ) ≤ k + 1 < n− 1. Thus, it must be the
case that σ2n−3 = 1, σ2n−1 = 1, and σ2n+1 = 1. Thus, we have three cases.

Case A. σ2n−3 = 1. Then σ2n−3 matches MMP (1, 0, ∅, 0) in σ and σ2n−1

does not match MMP (1, 0, ∅, 0) in σ. Then we have
(
2n
4

)
ways to choose the

values of σ2n−2, σ2n−1, σ2n, and σ2n+1, and we have 5 ways to order them.
In addition, we must have that mmp(1,0,∅,0)(red(σ1, . . . , σ2n−4)) = n−2. But
then by Theorem 4, we have (2n− 5)!! ways to pick σ1 · · ·σ2n−4 so that the
number of σ = σ1 · · ·σ2n ∈ UD2n such that σ2n−3 = 1 and mmp(1,0,∅,0)(σ) =
n− 1 is

5

(
2n

4

)
(2n− 5)!! =

5

6
n(n− 1)((2n− 1)!!) =

5

3

(
n

2

)
((2n− 1)!!).

Case B. σ2n−1 = 1. Then we have
(
2n
2

)
ways to pick the values of σ2n, and

σ2n+1 and we must have that mmp(1,0,∅,0)(red(σ1, . . . , σ2n−2)) = n−2. Thus,
we have A2(n−1)(x)|xn−2 = 2

3

(
n−1
2

)
(2n−3)!!) ways to pick σ1 · · ·σ2n−2. Thus,

number of σ = σ1 · · ·σ2n ∈ UD2n such that σ2n−1 = 1 and mmp(1,0,∅,0)(σ) =
n− 1 is(
2n

2

)
2

3

(
n− 1

2

)
((2n− 3)!!) =

2

3
n

(
n− 1

2

)
((2n− 1)!!) = 2

(
n

3

)
((2n− 1)!!).

Case C. σ2n+1 = 1. In this case, σ2n+1 does not match MMP (1, 0, ∅, 0) in
σ so that we must have that mmp(1,0,∅,0)(red(σ1, . . . , σ2n)) = n− 1. By part
(1), we have 2

3

(
n
2

)
((2n− 1)!!) ways to choose σ1 · · ·σ2n in this case.

Thus, it follows that B2n+1(x)|xn−1 = (73
(
n
2

)
+ 2

(
n
3

)
)((2n− 1)!!).

Before we can prove part (3), we first need to establish the following
lemma.

Lemma 8. For n ≥ 1,

(21) D2n+1(x)|xn =
1

3
(n2 − 1)((2n)!!).

Proof. We proceed by induction on n. The lemma holds for n = 1 since

D
(1,0,∅,0)
3 (x) = 2x2 so that D3(x)|x = 0. Now assume that n ≥ 2 and σ =
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σ1 · · ·σ2n+1 ∈ DU2n+1, and mmp(1,0,∅,0)(σ) + χ(σ1 = 2n + 1) = n. Only
σ1, σ2, σ4, . . . , σ2n can match MMP (1, 0, ∅, 0) in σ. Now it cannot be that
σ2k = 1 where k ≤ n − 2 since then mmp(1,0,∅,0)(σ) + χ(σ1 = 2n + 1) ≤
k + 1 < n. Thus, it must be the case that σ2n−2 = 1 or σ2n = 1. Now if
σ2n−2 = 1, then σ2n−2 matchesMMP (1, 0, ∅, 0) in σ and σ2n does not match
MMP (1, 0, ∅, 0) in σ. Then we have

(
2n
3

)
ways to choose the values of σ2n−1,

σ2n, and σ2n+1, and we have two ways to order them. In addition, we must
have that if τ = red(σ1, . . . , σ2n−3), then mmp(1,0,∅,0)(τ) +χ(τ1 = 2n− 3) =
n− 1. By Lemma 5, we then have (2n− 4)!! ways to choose σ1 · · ·σ2n−3 so
that the number of σ = σ1 · · ·σ2n+1 ∈ DU2n+1 such that σ2n−2 = 1 and
mmp(1,0,∅,0)(σ) + χ(σ1 = 2n+ 1) = n is

2

(
2n

3

)
(2n− 4)!! =

2n− 1

3
((2n)!!).

Now if σ2n = 1, then we have 2n ways to pick the value of σ2n+1, and if
α = red(σ1, . . . , σ2n−1), then mmp(1,0,∅,0)(α) + χ(α1 = 2n − 1) = n − 1.
Then we have D2(n−1)+1(x)|xn−1 = 1

3((n−1)2−1)((2n−2)!!) ways to choose
σ1 · · ·σ2n−1. Thus, number of σ = σ1 · · ·σ2n ∈ UD2n such that σ2n−1 = 1
and mmp(1,0,∅,0)(σ) + χ(σ1 = 2n+ 1) = n is 1

3((n− 1)2 − 1)(2n)!!. Hence,

D2n+1(x)|xn

=
2n− 1

3
((2n)!!) +

1

3
((n− 1)2 − 1)((2n)!!) =

1

3
(n2 − 1)((2n)!!).

We prove part (3) by induction. We have that (19) holds for n = 2 since

D
(1,0,∅,0)
5 (x)|x = 9. Now suppose that n > 2, σ = σ1 · · ·σ2n+1 ∈ DU2n+1, and

mmp(1,0,∅,0)(σ) = n. Only σ1, σ2, σ4, . . . , σ2n can match MMP (1, 0, ∅, 0) in
σ. It cannot be that σ2k = 1 where k ≤ n − 2 since then mmp(1,0,∅,0)(σ) ≤
k + 1 < n. Hence, it must be the case that σ2n−2 = 1 or σ2n = 1. Thus, we
have two cases.

Case I. σ2n−2 = 1. Then σ2n−2 matches MMP (1, 0, ∅, 0) in σ and σ2n does
not match MMP (1, 0, ∅, 0) in σ. Then we have two subcases.

Subcase I.a. 2n+1 ∈ {σ2n−1, σ2n, σ2n+1}. In this case, we have
(
2n−1

2

)
ways

to choose the values of the other 2 elements in the set {σ2n−1, σ2n, σ2n+1}
and then we have 2 ways to order σ2n−1σ2nσ2n+1. Then since 2n + 1 ∈
{σ2n−1, σ2n, σ2n+1}, we are guaranteed that σ1 matches MMP (1, 0, ∅, 0)
in σ. Thus, when we consider τ = red(σ1 · · ·σ2n−3), we must have that
mmp(1,0,∅,0)(τ) + χ(τ1 = 2n − 3) = n − 1. It follows from Lemma 5 that
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we have (2n− 4)!! ways to pick σ1 · · ·σ2n−3. Hence, the σ ∈ DU2n+1 in this

subcase contribute 2
(
2n−1

2

)
(2n−4)!! = (2n−1)((2n−2)!!) to D

(1,0,∅,0)
2n+1 (x)|xn .

Subcase I.b. 2n + 1 	∈ {σ2n−1, σ2n, σ2n+1}. We then have
(
2n−1

3

)
ways to

choose the values of the elements of {σ2n−1, σ2n, σ2n+1} and 2 ways to order
them. Because 2n+ 1 	∈ {σ2n−1, σ2n, σ2n+1}, we are not guaranteed that σ1
matchesMMP (1, 0, ∅, 0) in σ. Thus, when we consider τ = red(σ1 · · ·σ2n−3),
we must have that mmp(1,0,∅,0)(τ) = n−1. It follows from Theorem 4 that we
have (2n− 4)!!− (2n− 5)!! ways to pick σ1 · · ·σ2n−3. Thus, the σ ∈ DU2n+1

in this subcase contribute

2

(
2n− 1

3

)
((2n− 4)!!− (2n− 5)!!)

=
(2n− 1)(2n− 3)

3
((2n− 2)!!)− 2

3
(n− 1)((2n− 1)!!)

to D
(1,0,∅,0)
2n+1 (x)|xn .

Case II. σ2n = 1. In this case σ2n matches MMP (1, 0, ∅, 0) in σ. Then
again, we have two subcases.

Subcase II.a. σ2n+1 = 2n + 1. Because 2n + 1 = σ2n+1, we are guar-
anteed that σ1 matches MMP (1, 0, ∅, 0) in σ. Thus, when we consider τ =
red(σ1 · · ·σ2n−1), we must have that mmp(1,0,∅,0)(τ)+χ(τ1 = 2n−1) = n−1.
It follows from Lemma 8 that we have 1

3((n − 1)2 − 1)((2n − 2)!!) ways
to choose σ1 · · ·σ2n−3. Hence, the σ ∈ DU2n+1 in this subcase contribute
1
3((n− 1)2 − 1)((2n− 2)!!) to D

(1,0,∅,0)
2n+1 (x)|xn .

Subcase II.b. 2n+ 1 	= σ2n+1. We then have (2n− 1) ways to choose the
value of σ2n+1. Because 2n+1 	= σ2n+1, then we are not guaranteed that σ1
matchesMMP (1, 0, ∅, 0) in σ. Thus, when we consider τ = red(σ1 · · ·σ2n−1),
we must have that mmp(1,0,∅,0)(τ) = n−1. It then follows by induction that
the permutations σ ∈ DU2n+1 in this subcase contribute

(2n− 1)

((
n−1∑
k=1

(5k − 4)k

3
((2k − 2)!!)

n−1∏
i=k+1

(2i− 1)

)

− 2

3

((
n− 1

2

)
− 1

)
((2n− 3)!!)

)

=

(
n−1∑
k=1

(5k − 4)k

3
((2k − 2)!!)

n∏
i=k+1

(2i− 1)

)
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− 2

3

((
n− 1

2

)
− 1

)
((2n− 1)!!)

to D
(1,0,∅,0)
2n+1 (x)|xn .

It follows that

D
(1,0,∅,0)
2n+1 (x)|xn = (2n− 1)((2n− 2)!!) +

1

3
((n− 1)2 − 1)((2n− 2)!!)

+
(2n− 1)(2n− 3)

3
((2n− 2)!!)− 2n− 2

3
((2n− 1)!!)

+

(
n−1∑
k=1

(5k − 4)k

3
((2k − 2)!!)

n∏
i=k+1

(2i− 1)

)

− 2

3

((
n− 1

2

)
− 1

)
((2n− 1)!!)

= ((2n− 2)!!)

(
(2n− 1) +

(2n− 1)(2n− 3)

3
+

(n− 1)2 − 1

3

)

− ((2n− 1)!!)

(
2

3
(n− 1) +

2

3

((
n− 1

2

)
− 1

))

+

(
n−1∑
k=1

(5k − 4)k

3
((2k − 2)!!)

n∏
i=k+1

(2i− 1)

)

=
(5n− 4)n

3
((2n− 2)!!)− 2

3

((
n

2

)
− 1

)
((2n− 1)!!)

+

(
n−1∑
k=1

(5k − 4)k

3
((2k − 2)!!)

n∏
i=k+1

(2i− 1)

)

=

(
n∑

k=1

(5k − 4)k

3
((2k − 2)!!)

n∏
i=k+1

(2i− 1)

)

− 2

3

((
n

2

)
− 1

)
((2n− 1)!!).

For part (4), suppose that σ = σ1 · · ·σ2n ∈ DU2n. Then only σ1, σ2, . . . ,
σ2n−2 can match MMP (1, 0, ∅, 0) in σ. Thus, it cannot be the case that
σ2k = 1 where k < n− 2 since then mmp(1,0,∅,0)(σ) ≤ k + 1 < n− 1. Thus,
we must have 1 ∈ {σ2n−4, σ2n−2, σ2n}. We then have three cases.

Case 1. σ2n = 1. In this case, σ2n does not match MMP (1, 0, ∅, 0) in σ.
Hence, it must be the case that mmp(1,0,∅,0)(red(σ1 · · ·σ2n−1)) = n − 1 so

that by part (3), we have D
(1,0,∅,0)
2n−1 (x)|xn−1 ways to choose σ1 · · ·σ2n−1.
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Case 2. σ2n−2 = 1. In this case, σ2n−2 matches MMP (1, 0, ∅, 0) in σ. We
then have two subcases.

Subcase 2.1. σ2n−1 = 2n. In this case, we are guaranteed that σ1 will match
MMP (1, 0, ∅, 0) in σ. Thus, if τ = red(σ1 · · ·σ2n−3), then we must have that
mmp(1,0,∅,0)(τ) + χ(τ1 = 2n − 3) = n − 2. We then have (2n − 2) ways to
choose σ2n, and once we have chosen σ2n, we have

2
3((n−2)2−1)((2n−4)!!)

ways to choose σ1 · · ·σ2n−3 by Lemma 8. Thus, the permutations σ ∈ DU2n

in this case contribute 2
3((n− 2)2 − 1)((2n− 2)!!) to C2n(x)|xn−1 .

Subcase 2.2. σ2n−1 	= 2n. In this case, we are not guaranteed that σ1 will
match MMP (1, 0, ∅, 0) in σ. Thus, if τ = red(σ1 · · ·σ2n−3), then we must
have that mmp(1,0,∅,0)(τ) = n−2. We then have

(
2n−2

2

)
ways to choose σ2n−1

and σ2n, and once we have chosen σ2n−1 and σ2n, we have D2n−3(x)|xn−2

ways to choose σ1 · · ·σ2n−3. Thus, the permutations σ ∈ DU2n in this case
contribute

(
2n−2

2

)
D2n−3(x)|xn−2 to C2n(x)|xn−1 .

Case 3. σ2n−4 = 1. In this case, σ2n−4 matches MMP (1, 0, ∅, 0) in σ, but
σ2n−2 does not match MMP (1, 0, ∅, 0) in σ. Again, we have two subcases.

Subcase 3.1. 2n ∈ {σ2n−3, σ2n−2, σ2n−1, σ2n}. In this case, we are guaran-
teed that σ1 will match MMP (1, 0, ∅, 0) in σ. Thus, if τ = red(σ1 · · ·σ2n−5),
then we must have that mmp(1,0,∅,0)(τ)+χ(τ1 = 2n−5) = n−2. We then have(
2n−2

3

)
ways to choose the remaining elements for {σ2n−3, σ2n−2, σ2n−1, σ2n}.

Once we have chosen the remaining elements for {σ2n−3, σ2n−2, σ2n−1, σ2n},
we have 5 ways to order them and we have D2n−5(x)|xn−2 ways to choose
σ1 · · ·σ2n−5. By Lemma 5, D2n−5(x)|xn−2 = (2n − 6)!!. Thus, the permuta-
tions σ ∈ DU2n in this case contribute 5

(
2n−2

3

)
((2n−6)!!) = 5

6(2n−3)((2n−
2)!!) to C2n(x)|xn−1 .

Subcase 3.2. 2n 	∈ {σ2n−3, σ2n−2, σ2n−1, σ2n}. In this case, we are not guar-
anteed that σ1 will matchMMP (1, 0, ∅, 0) in σ. Thus, if τ = red(σ1 · · ·σ2n−5),
then we must have that mmp(1,0,∅,0)(τ) = n − 2. We then have

(
2n−2

4

)
ways to choose the set {σ2n−3, σ2n−2, σ2n−1, σ2n}. Once we have chosen
{σ2n−3, σ2n−2, σ2n−1, σ2n}, we have 5 ways to order them and we have
D2n−5(x)|xn−2 ways to choose σ1 · · ·σ2n−5. By Theorem 4, D2n−5(x)|xn−2 =
(2n − 6)!! − (2n − 7)!!. Thus, the permutations σ ∈ DU2n in this case con-
tribute

5

(
2n− 2

4

)
((2n− 6)!!− (2n− 7)!!)

=
5

24
(2n− 3)(2n− 5)((2n− 2)!!)− 5

3

(
n− 1

2

)
((2n− 3)!!)
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to C2n(x)|xn−1 .

It follows that

C2n(x)|xn−1 = D2n−1(x)|xn−1 +

(
2n− 2

2

)
D2n−3(x)|xn−2

+
2

3
((n− 2)2 − 1)((2n− 2)!!) +

5

6
(2n− 3)((2n− 2)!!)

× 5

24
(2n− 3)(2n− 5)((2n− 2)!!)− 5

3

(
n− 1

2

)
((2n− 3)!!)

= D2n−1(x)|xn−1 +

(
2n− 2

2

)
D2n−3(x)|xn−2

+

(
28n2 − 72n+ 39

24

)
((2n− 2)!!)− 5

3

(
n− 1

2

)
((2n− 3)!!).

4. Conclusions

As pointed out in [8], the simple type of recursions for the distribution
of mmp(1,0,∅,0)(σ) for σ in UDn or DUn proved in this paper no longer
holds for the distribution of mmp(k,0,0,0)(σ) for σ in UDn or DUn if k ≥ 2.

For example, suppose that we try to develop a recursion for A
(2,0,∅,0)
2n (x) =∑

σ∈UD2n
xmmp(2,0,∅,0)(σ). Then if we consider the permutations σ = σ1 · · ·

σ2n ∈ UD2n such that σ2k+1 = 1, we still have
(
2n−1
2k

)
ways to pick the

elements for σ1 · · ·σ2k. However, in this case the question of whether some σi
with i ≤ 2k matches MMP (2, 0, ∅, 0) in σ is dependent on what values occur
in σ2k+2 · · ·σ2n. For example, if 2n ∈ {σ2k+2, . . . , σ2n}, then every σi with
i ≤ k will match MMP (2, 0, ∅, 0) in σ. However, if 2n ∈ {σ1, . . . , σ2k−1},
this will not be the case. Thus, we cannot develop a simple recursion for

A
(2,0,∅,0)
2n (x).
However, one can develop recursions similar to the ones used in this

paper to study the distribution in up-down and down-up permutations of
other quadrant marked meshed patterns MMP (a, b, c, d) in the case where
a, b, c, d ∈ {∅, 1}. Indeed, in some cases, there are simple relations between
such distributions beyond those given in Proposition 1. For example, con-
sider the statistics mmp(1,0,∅,0)(σ) and mmp(0,0,∅,0)(σ) over UD2n. Clearly,
for any σ = σ1 · · ·σ2n ∈ UD2n, σ2i can never match MMP (1, 0, ∅, 0) or
MMP (0, 0, ∅, 0) since (2i− 1, σ2i−1) will always be an element of G(σ) that
lies in the third quadrant with respect to the coordinate system centered
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at (2i, σ2i). On the other hand, elements of the form σ2i−1 for i = 1, . . . , n,
always have an element G(σ) in the first quadrant relative to the coordinate
system centered at (2i− 1, σ2i−1), namely (2i, σ2i). Thus, if σ ∈ UD2n, then
mmp(1,0,∅,0)(σ) = mmp(0,0,∅,0)(σ). Therefore, for all n ≥ 1,

A
(1,0,∅,0)
2n (x) = A

(0,0,∅,0)
2n (x).

It is not true that mmp(1,0,∅,0)(σ) = mmp(0,0,∅,0)(σ) for all σ ∈ UD2n+1

since if σ = σ1 · · ·σ2n+1 ∈ UD2n+1 and σ2n+1 = 1, then σ2n+1 matches
MMP (0, 0, ∅, 0) in σ but does not match MMP (1, 0, ∅, 0) in σ. However,
this is the only case where mmp(1,0,∅,0)(σ) and mmp(0,0,∅,0)(σ) differ. That
is, if σ = σ1 · · ·σ2n+1 ∈ UD2n+1 and σ2n+1 	= 1, then σ2n+1 does not match
MMP (0, 0, ∅, 0) in σ and we can argue as above that mmp(1,0,∅,0)(σ) =
mmp(0,0,∅,0)(σ). However if σ2n+1 = 1, then σ2n+1 matches MMP (0, 0, ∅, 0)
in σ but does not match MMP (1, 0, ∅, 0) in σ. Thus, if σ ∈ UD

(2n+1)
2n+1 ,

1 + mmp(1,0,∅,0)(σ) = mmp(0,0,∅,0)(σ). It is easy to see that∑
σ∈UD

(2n+1)
2n+1

xmmp(1,0,∅,0)(σ) = A
(1,0,∅,0)
2n (x)

so that for all n ≥ 1,

B
(0,0,∅,0)
2n+1 (x) + (1− x)A

(1,0,∅,0)
2n (x) = B

(1,0,∅,0)
2n+1 (x).

A slightly more subtle relation holds between the distribution of
mmp(1,0,0,0)(σ) and mmp(1,0,∅,0)(σ) for σ ∈ UD2n. For example, in [8], the

authors computed the following table for A
(1,0,0,0)
2n (x).

n A
(1,0,0,0)
2n (x)

0 1
1 x
2 x2(3 + 2x)

3 x3
(
15 + 30x+ 16x2

)
4 x4

(
105 + 420x+ 588x2 + 272x3

)
5 x5

(
945 + 6300x+ 16380x2 + 18960x3 + 7936x4

)
6 x6

(
10395 + 103950x+ 429660x2 + 893640x3 + 911328x4 + 353792x5

)
Comparing the tables for A

(1,0,0,0)
2n (x) and A

(1,0,∅,0)
2n (x), one is naturally

led to conjecture that for all n ≥ 1 and 1 ≤ k ≤ n,

(22) A
(1,0,∅,0)
2n (x)|xk = A

(1,0,0,0)
2n (x)|x2n−k .
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This follows from comparing σ = σ1 · · ·σ2n ∈ UD2n with its reverse com-
plement (σr)c = (2n + 1 − σ2n)(2n + 1 − σ2n−1) · · · (2n + 1 − σ1) which is
also in UD2n. That is, suppose that σi matches MMP (1, 0, ∅, 0) in σ. Then
i must be odd, i.e. i = 2k + 1 for some 0 ≤ k ≤ n − 1, and there must
be no elements in σ1 · · ·σ2k which are less than σ2k+1. This means that in
(σr)c, (2n + 1 − σ2k+1) has no elements to its right which are greater than
(2n + 1 − σ2k+1) so that (2n + 1 − σ2k+1) will not match MMP (1, 0, 0, 0)
in (σr)c. Vice versa, if σ2k+1 does not match MMP (1, 0, ∅, 0) in σ, there
is an element in σ1 · · ·σ2k which is less than σ2k+1. This means that in
(σr)c, (2n + 1 − σ2k+1) has an element to its right which is greater than
(2n+1−σ2k+1) so that (2n+1−σ2k+1) will match MMP (1, 0, 0, 0) in (σr)c.
Similarly, in σ, none of σ2, σ4, . . . , σ2n will match MMP (1, 0, ∅, 0) while in
(σr)c, each of (2n+ 1− σ2), . . . , (2n+ 1− σ2n) will match MMP (1, 0, 0, 0)
in (σr)c. Thus, it follows that for all σ ∈ UD2n,

n+ (n−mmp(1,0,∅,0)(σ)) = mmp(1,0,0,0)((σr)c).

This shows that (22) holds.
There is no such simple relation between the distribution of

mmp(1,0,0,0)(σ) and the distribution of mmp(1,0,∅,0)(σ) for UD2n+1, DU2n

or DU2n+1 as can be seen from the following tables computed in [8].
Based on these tables, we conjectured in [8] that the polynomials

A
(1,0,0,0)
2n (x), B

(1,0,0,0)
2n+1 (x), C

(1,0,0,0)
2n (x), and D

(1,0,0,0)
2n+1 (x) are unimodal for all

n ≥ 1. We also conjecture that A
(1,0,∅,0)
2n (x), B

(1,0,∅,0)
2n+1 (x), C

(1,0,∅,0)
2n (x), and

D
(1,0,∅,0)
2n+1 (x) are unimodal for all n ≥ 1. Of course, by (22), the conjectures

for A
(1,0,0,0)
2n (x) and A

(1,0,∅,0)
2n (x) are equivalent.

Finally, we suggest that it should be interesting to study the distribution
of quadrant marked mesh patterns on other classes of pattern-restricted
permutations such as 2-stack-sortable permutations or vexillary permutations
(see [6] for definitions of these) and many other permutation classes having
nice properties.

n B
(1,0,0,0)
2n−1 (x)

1 1
2 2x
3 8x2(1 + x)

4 16x3
(
3 + 8x+ 6x2

)
5 128x4

(
3 + 15x+ 27x2 + 17x3

)
6 256x5

(
15 + 120x+ 381x2 + 556x3 + 310x4

)
7 1024x6

(
45 + 525x+ 2562x2 + 6420x3 + 8146x4 + 4146x5

)
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n C
(1,0,0,0)
2n (x)

0 1
1 1
2 x(2 + 3x)

3 x2
(
8 + 28x+ 25x2

)
4 x3

(
48 + 296x+ 614x2 + 427x3

)
5 x4

(
384 + 3648x+ 13104x2 + 20920x3 + 12465x4

)
6 x5

(
3840 + 51840x+ 282336x2 + 769072x3 + 1039946x4 + 555731x5

)
n D

(1,0,0,0)
2n−1 (x)

1 1
2 x(1 + x)

3 x2
(
3 + 8x+ 5x2

)
4 x3

(
15 + 75x+ 121x2 + 61x3

)
5 x4

(
105 + 840x+ 2478x2 + 3128x3 + 1385x4

)
6 x5

(
945 + 11025x+ 51030x2 + 115350x3 + 124921x4 + 50521x5

)
7 x6

(
10395 + 166320x+ 1105335x2 + 3859680x3 + 7365633x4

+7158128x5 + 2702765x6
)
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[14] H. Úlfarsson (2011). A unification of permutation patterns related to
Schubert varieties, arXiv:1002.4361. MR2924751

Sergey Kitaev

Department of Computer and Information Sciences

University of Strathclyde

Livingstone Tower, 26 Richmond Street

Glasgow G1 1XH

United Kingdom

E-mail address: sergey.kitaev@cis.strath.ac.uk

Jeffrey Remmel

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112

USA

E-mail address: jremmel@ucsd.edu

Received July 9, 2012

http://www.ams.org/mathscinet-getitem?mr=3012380
http://www.ams.org/mathscinet-getitem?mr=2914898
http://www.ams.org/mathscinet-getitem?mr=2914898
http://www.ams.org/mathscinet-getitem?mr=2914898
http://www.ams.org/mathscinet-getitem?mr=2914898
http://www.ams.org/mathscinet-getitem?mr=1676282
http://www.ams.org/mathscinet-getitem?mr=2924751
mailto:sergey.kitaev@cis.strath.ac.uk
mailto:jremmel@ucsd.edu

	Introduction
	Proof of Theorem 2
	The generating function A(1,0,,0)(t,x)
	The generating function B(1,0,,0)(t,x)
	The generating function D(1,0,,0)(t,x)
	The generating function C(1,0,,0)(t,x)

	The coefficients of the polynomials A(1,0,,0)2n(x), B(1,0,,0)2n+1(x), C(1,0,,0)2n(x), and D(1,0,,0)2n+1(x).
	Conclusions
	Acknowledgments
	References

