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Circular law for random discrete matrices of given
row sum
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∗
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†

Let Mn be a random matrix of size n×n and let λ1, . . . , λn be the
eigenvalues of Mn. The empirical spectral distribution μMn of Mn

is defined as

μMn(s, t) =
1

n
#{k ≤ n,�(λk) ≤ s;�(λk) ≤ t}.

The circular law theorem in random matrix theory asserts that
if the entries of Mn are i.i.d. copies of a random variable with mean
zero and variance σ2, then the empirical spectral distribution of the
normalized matrix 1

σ
√
n
Mn of Mn converges almost surely to the

uniform distribution μcir over the unit disk as n tends to infinity.
In this paper, we show that the empirical spectral distribution

of the normalized matrix of Mn, a random matrix whose rows are
independent random (−1, 1) vectors of given row-sum s with some
fixed integer s satisfying |s| ≤ (1 − o(1))n, also obeys the circular
law. The key ingredient is a new polynomial estimate on the least
singular value of Mn.

1. Introduction

Let Mn be a matrix of size n × n and let λ1, . . . , λn be the eigenvalues of
Mn. Then the empirical spectral distribution (ESD) μMn

of Mn is defined as

μMn
(s, t) =

1

n
#{k ≤ n,�(λk) ≤ s;�(λk) ≤ t}.

We also define μcir as the uniform distribution over the unit disk,

μcir(s, t) =
1

π
mes(|z| ≤ 1;�(z) ≤ s,�(z) ≤ t).
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Confirming a long standing conjecture in random matrix theory, a recent
result of Tao and Vu (appendix by Krishnapur) proves a universal law for
the ESD of random i.i.d. matrices.

Theorem 1.1. [32] Assume that the entries of Mn are i.i.d. copies of a
complex random variable of mean zero and finite non-zero variance σ2, then
the ESD of the matrix 1

σ
√
n
Mn converges to μcir almost surely as n tends

to ∞.

The proof of this result is built upon previous important developments
of Girko [9, 10], Bai [1], Götze-Tikhomirov [11], Pan-Zhou [21], Tao-Vu [28]
and many others.

In view of universality phenomenon, it is of importance to study the law
for random matrices of non-independent entries. Probably one of the first
results in this direction is due to Bordenave, Caputo and Chafai [3] who
prove the law for random Markov matrices.

Theorem 1.2. [3, Theorem 1.3] Let X be a random matrix of size n × n
whose entries are i.i.d. copies of a non-negative continuous random variable
with finite variance σ2 and bounded density function. Then with probability
one the ESD of the normalized matrix

√
nX̄, where X̄ = (x̄ij)1≤i,j≤n and

x̄ij := xij/(xi1 + · · ·+ xin), converges weakly to the circular measure μcir.

In particular, when x11 follows the exponential law of mean one, Theo-
rem 1.2 establishes the circular law for the Dirichlet Markov ensemble (see
also [4]). We remark that the assumptions of continuity and boundedness
are crucial in the proof of Theorem 1.2.

Related results with “linear” assumption of independence include a re-
sult of Tao, who among other things proves the circular law for random
zero-sum matrices.

Theorem 1.3. [25, Theorem 1.13] Let X be a random matrix of size n ×
n whose entries are i.i.d. copies of a random variable of mean zero and
variance one. Then the ESD of the normalized matrix 1√

n
X̄, where X̄ =

(x̄ij)1≤i,j≤n and x̄ij := xij − 1
n(xi1 + · · · + xin), converges almost surely to

the circular measure μcir.

The main goal of this note is to show that the circular law also holds for
random discrete matrices of similar constraints.

Theorem 1.4 (Main result). Let 0 < ε ≤ 1 be a positive constant. Let Mn

be a random (−1, 1) matrix of size n×n whose rows are independent vectors
of given row-sum s with some s satisfying |s| ≤ (1− ε)n. Then the ESD of
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Figure 1: The ESD of a random matrix of size 1000 by 1000 whose rows are
(−1, 1) vectors of zero-sum, picture by Phillip Woods.

the normalized matrix 1
σ
√
n
Mn, where σ2 = 1−( sn)

2, converges almost surely

to the distribution μcir as n tends to ∞.

To some extent, our matrix is a discrete version of the random Markov

matrices considered in Theorem 1.2 where the entries are restricted to ±1/s.

However, it is probably more suitable to compare our model with that of

random Bernoulli matrices. By Theorem 1.1, the ESD of the normalized ran-

dom Bernoulli matrices obeys the circular law, and hence our Theorem 1.4

serves as a local version of the law.

We remark that in a very recent result [19], the first author is able to

prove a similar law for random doubly stochastic matrices, thus confirming

the universality principle for another type of matrix of independent entries.

Although the results are similar in spirit, the difficulties in each note are very

different. The main obstacle of this note is to study the singularity of Mn

and its perturbed variants. Inverse techniques developed in the literature

to deal with this problem do not seem to suffice. This leads us to a new

development to be discussed in Section 3. In what follows we present some

reduction steps to simplify our problem.

Observe that, by letting Xn−1 be the submatrix generated by the first

n− 1 rows and columns of Mn, the spectra of Mn is the union of s and the

spectra of the pertubed matrix Xn−1 − Fn−1 where all of the rows of Fn−1
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are identical copies of (mn1, . . . ,mn(n−1)), here by mij we mean the ij-th
entry of Mn.

Indeed, consider the matrix M := Mn − λIn. We have

det(M) = det(M ′),

where M ′ is obtained from M by adding its first n − 1 columns to its last
one.

On the other hand, we also have

det(M ′) = (s− λ) det(M ′′),

where

M ′′ :=

⎛
⎜⎜⎜⎝
m11 − λ · · · m1(n−1) 1

...
. . .

...
...

m(n−1)1 · · · m(n−1)(n−1) − λ 1
mn1 · · · mn(n−1) 1

⎞
⎟⎟⎟⎠ .

It is clear that det(M ′′) = det(M ′′′), where M ′′′ := (Xn−1 − Fn−1) −
λIn−1. Thus, the spectra of Mn is indeed the union of s and the spectra of
the pertubed matrix Xn−1 − Fn−1.

The observation above suggests a way to prove Theorem 1.4 by looking
at the ESD of Xn−1 − Fn−1. This alternative helps us avoid the outlier
eigenvalue s of Mn which may cause certain technical difficulty for any direct
study on Mn.

Notice that the rows of Xn−1 above are independent vectors chosen
uniformly from the set of all (−1, 1) vectors of row-sum either s−1 or s+1.
So for Theorem 1.4 it suffices to show the following.

Theorem 1.5 (Circular law for pertubed matrices). Let Xn be a random
(−1, 1) matrix whose rows are independent random vectors of row-sum either
s−1 or s+1 with given s satisfying |s| ≤ (1− ε)n. Let Fn be a deterministic
matrix whose rows are identical copies of a given (−1, 1) vector f . Then the
ESD of 1

σ
√
n
(Xn + Fn), where σ2 = 1− ( sn)

2, converges almost surely to the

distribution of μcir as n tends to ∞.

For short, by S we denote the set of all (−1, 1) vectors x = (x1, . . . , xn)
of row-sum either s−1 or s+1. To establish Theorem 1.5, we will relate Xn

to a random matrix X ′
n whose entries are i.i.d. copies of a random Bernoulli

variable x of the following form

(1)

{
P(x = −1) = 1

2 − s
2n ,

P(x = 1) = 1
2 + s

2n .
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It is known that the ESD of 1
σ
√
n
(X ′

n + Fn) converges uniformly to μcir

(see for instance [32, Corollary 1.15]). As we desire to pass this result to
Xn + Fn, we will make use of a so-called replacement principle below.

Theorem 1.6. [32, Theorem 2.1] Suppose for each n that An = (aij), Bn =
(bij) are random matrices of size n× n. Assume that

• the sum
1

n2

∑
ij

(|aij |2 + |bij |2)

is bounded almost surely;
• for almost all complex numbers z

1

n
log

∣∣∣∣det
(

1√
n
An − zIn

)∣∣∣∣− 1

n
log

∣∣∣∣det
(

1√
n
Bn − zIn

)∣∣∣∣
converges almost surely to zero.

Then μ 1√
n
An

− μ 1√
n
Bn

converges almost surely to zero.

In application, Xn + Fn plays the role of An and X ′
n + Fn plays that of

Bn. It is clear that the first condition of Theorem 1.6 is satisfied. Thus, for
Theorem 1.5 it suffices to justify the second condition.

Theorem 1.7. For every fixed complex z we have

1

n
log | det((Xn + Fn)− z

√
nIn)| −

1

n
log | det((X ′

n + Fn)− z
√
nIn)|

converges to zero almost surely.

We will outline a proof for Theorem 1.7 in the next section.

Notation. Here and later, asymptotic notations such as O,Ω,Θ, and so
for, are used under the assumption that n → ∞. A notation such as OC(.)
emphasizes that the hidden constant in O depends on C.

For 1 ≤ s ≤ n, we denote by es the unit vector (0, . . . , 0, 1, 0, . . . , 0),
where all but the s-th component are zero. For a real or complex vector
v = (v1, . . . , vn), we use the shorthand ‖v‖ for its L2-norm (

∑
i |vi|2)1/2.

For a matrix M , we use the notation ri(M) and cj(M) to denote its i-th
row and j-th column respectively. For an eventA, we use the subscriptPx(A)
to emphasize that the probability under consideration is taking according
to the random vector x.
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2. Proof of Theorem 1.7: Outline

Let f1, . . . , fn denote the (deterministic) rows of Fn+
√
nzIn, and let x1, . . . ,

xn as well as x′
1, . . . ,x

′
n be the rows of Xn and X ′

n respectively.

For each i ≥ 2, let Vi−1 be the space spanned by x1 + f1, . . . ,xi−1 + fi−1

and let dist(xi+fi, Vi−1) be the distance from xi+fi to Vi−1. Define similarly

for V ′
i−1 and dist(x′

i + fi, V
′
i−1). By the “base times height” formula we have

log
∣∣∣ det((Xn + Fn)− z

√
nIn)

∣∣∣ = ∑
i

log dist((xi + fi), Vi−1).

=
∑
i≤m

log dist((xi + fi), Vi−1) +
∑
m<i

log dist((xi + fi), Vi−1)

:= logS1 + logS2;

and similarly,

log
∣∣∣ det((X ′

n + Fn)− z
√
nIn)

∣∣∣ = ∑
i

log dist((x′
i + fi), Vi−1).

=
∑
i≤m

log dist((x′
i + fi), V

′
i−1) +

∑
m<i

log dist((x′
i + fi), V

′
i−1)

:= logS′
1 + logS′

2.

where we set the threshold m to be m := n− log8 n.

In order to compare log | det((Xn + Fn)− z
√
nIn)| with log | det((X ′

n +

Fn)− z
√
nIn)|, we will show the following.

Theorem 2.1. With probability 1− exp(− log2−o(1) n) we have

1

n
| logS1 − logS′

1| = O(log−2 n).

Theorem 2.2. With probability 1−O(n−100) we have

1

n
(| logS2|+ | logS′

2|) = O(log9 n/n).

It is clear that Theorem 1.7 follows from Theorem 2.1 and Theorem 2.2.

In what follows we outline the approach to prove these results.
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2.3. Sketch of the proof of Theorem 2.1

One of the main ingredients is the following row replacement principle.

Lemma 2.4. Let i be an integer between 1 and m. Let x1, . . . ,xi,x
′
i,x

′
i+1,

. . . ,x′
m be m + 1 independent vectors where the xj’s are random vectors of

type S and x′
k’s are random vectors whose components are i.i.d copies of x

from (1). Assume that voli is the m-dimensional volume of the parallelepiped
generated by x1+ f1, . . . ,xi+ fi,x

′
i+1+ fi+1, . . . ,x

′
m+ fm and voli−1 is that of

the parallelepiped generated by x1 + f1, . . . ,xi−1 + fi−1,x
′
i + fi, . . . ,x

′
m + fm.

Then we have

Px1,...,xi,x′
i,x

′
i+1,...,x

′
m

(
| log voli − log voli−1| = O(log−2 n)

)
= 1− exp(− log2−o(1) n).

Lemma 2.1 then follows by a repeatedly use of Lemma 2.4 and the trian-
gle inequality using the fact that S1 and S′

1 are volumes of the parallelepipeds
generated by x1 + f1, . . . ,xm + fm and by x′

1 + f1, . . . ,x
′
m + fm respectively.

We now justify Lemma 2.4. We express voli as voli = d × vol, where d
is the distance from xi + fi to the space V spanned by x1 + f1, . . . ,xi−1 +
fi−1,x

′
i+1 + f ′i+1, . . . ,x

′
m + fm and vol is the volume of the parallelepiped

generated by these vectors. Similarly, we can express voli−1 as voli−1 =
d′ × vol, where d′ is the distance from x′

i + fi to V .
Thus, we have

| log(voli)− log(voli−1)| = | log d− log d′|.

We will next see that d and d′ are almost identical with very high prob-
ability.

Let f be a fixed vector (whose coordinates may depend on n). In what
follows we denote the translation f + (s/n, . . . , s/n) of f by f ′.

Lemma 2.5. Assume that V ⊂ Cn is a subspace of dimension dim(V ) =
k ≤ n − 10. Let x′ = (x′1, . . . , x

′
n) be a random vector where x′i are i.i.d.

copies of x from (1) and let d′ be the distance from x′ + f to V . Then for
any t > 0 we have

Px′(|d′ −
√

n− k + d2f ′ | ≥ t+ 3) ≤ exp

(
− t2

4

)
,

where df ′ is the distance from f ′ to V .
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Lemma 2.5 can be proved by using a well-known result of Talagrand; we

defer its proof to Section 7.

As E(
∑

i x
′
i) = s and Var(

∑
i x

′
i) = Θ(n), the probability that a random

vector x′ belongs to the set of (−1, 1) vectors of row-sum s + 1 (or s − 1)

is Θ(1/
√
n). Furthermore, condition on x′ ∈ S, x′ is uniformly distributed

over these sets. We thus infer from Lemma 2.5 the following.

Corollary 2.6. Let x be a vector uniformly sampled from S and let d be

the distance from x+ f to V . Then for any t > 0 we have

Px(|d−
√

n− k + d2f ′ | ≥ t+ 3) = O

(√
n exp

(
− t2

4

))
.

One immediate consequence of Lemma 2.5 and Corollary 2.6 is that if

k ≤ n−log4 n, then by setting t = log n, d is nonzero with probability at least

1− O(exp(− log2−o(1) n)). By applying this fact m times, we conclude that

all the voli are non-zero with probability at least 1−O(exp(− log2−o(1) n). So

it is safe to assume that V has dimension exactly m−1 for any V spanned by

x1+f1, . . . ,xi−1+fi−1,x
′
i+1+f ′i+1, . . . ,x

′
m+fm. Next, by applying Lemma 2.5

and Corollary 2.6 once more, with probability 1−O(exp(− log2−o(1) n)) with

respect to xi and x′
i we have

|d−
√

n−m+ 1 + d2f ′i
| ≤ logn

and

|d′ −
√

n−m+ 1 + d2f ′i
| ≤ log n.

It then follows that

| log d− log d′| ≤ log

(
1 +

2 log n

log4 n− log n

)
= O(log−2 n),

completing the proof of Lemma 2.4.

2.7. Sketch of the proof of Theorem 2.2

Our key lemma here is to show that the least singular value of Xn + Fn +

z
√
nIn, for any fixed complex number z, is at least n−O(1) with probability

1−O(n−100).
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Theorem 2.8. Assume that F is a deterministic complex matrix of size
n × n such that |fij | ≤ nγ for some constant γ. Then for any B > 0 there
exists A > 0 depending on B and γ such that

P
(
σn(Xn + F ) < n−A

)
≤ O(n−B).

This theorem is an analog of the Bernoulli counterpart X ′
n + F whose

proof can be found in either [33] or in other papers of the second author
with Tao such as [29, 31, 32]. Unfortunately, these proofs do not seem to
cover Theorem 3.1 in any trivial way. Henceforth, a large part of this note
will be devoted to prove it, starting from Section 3.

We next invoke the following two linear algebra results.

Lemma 2.9 (Cauchy’s interlacing law). [32, Lemma A.1] Let A be a matrix
of size n × n and A′ be the submatrix formed by the first n − k rows of A.
Let σ1(A) ≥ · · · ≥ σn(A) ≥ 0 be the singular values of A, and similarly for
A′. Then we have

σi(A) ≥ σi(A
′) ≥ σi+k(A)

for every 1 ≤ i ≤ n− k.

Lemma 2.10 (Negative second moment). [32, Lemma A.4] Let 1 ≤ n′ ≤ n,
and let A′ be a full rank matrix of size n′ by n with singular values σ1(A

′) ≥
· · · ≥ σn(A

′) ≥ 0 and rows r1, . . . , rn′ ∈ Cn. For each 1 ≤ i ≤ n′, let Wi be
the subspace generated by the n′− 1 rows r1, . . . , ri−1, ri+1, . . . , rn′ . Then we
have

n′∑
i=1

σ−2
i (A′) =

n′∑
i=1

dist−2(ri,Wi).

We now prove Theorem 2.2. By Theorem 2.8, we can assume that x1 +
f , . . . ,xn+f spans the whole spaceRn with probability at least 1−O(n−100),
and so in particular, all the Vi have full rank. Applying Lemma 2.10 for the
matrix A′ generated by the first k rows x1+ f , . . . ,xk + f with any k > m =
n− log8 n, we obtain the following with probability at least 1−O(n−100)

dist−2(xk + f , Vk−1) <

k∑
i=1

σ−2
i (A′) = O(nO(1)),

where in the RHS estimate we applied Lemma 2.9 and then Theorem 2.8.
Thus, for any k > m

(2) O(n−O(1)) = dist(xk + f , Vk−1) ≤ ‖xk + f‖ = O(
√
n).
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Similarly, by applying the known variant of Theorem 2.8 for (X ′
n+Fn)−

z
√
nIn and by Lemmas 2.9 and 2.10 we also have

(3) O(n−O(1)) = dist(x′
k + f , V ′

k−1) = O(
√
n).

Owing to the estimates (2) and (3), we infer that

P

(
1

n
(| logS2|+ | logS′

2|) = O(log9 n/n)

)
= 1−O(n−100),

proving Lemma 2.2.

3. The least singular value bound

For the reader’s convenience, we restate Theorem 2.8 below.

Theorem 3.1. Assume that F is a deterministic complex matrix such that
|fij | ≤ nγ for some constant γ. Then for any B > 0 there exists A > 0
depending on B and γ such that

P
(
σn(Xn + F ) < n−A

)
≤ O(n−B).

We refer the reader to [17] for a simple discrete version of Theorem 3.1.
This section is devoted to provide an overview of our approach to prove
Theorem 3.1; more details of the proofs will be discussed in subsequent
sections.

We use the shorthandX for the matrixXn+F . To prove Theorem 3.1, we
assume that there exist vectors a and b in Cn such that ‖a‖ = 1, ‖b‖ < n−A

and

Xa = b.

We next consider two cases.

Case 1. X is non-singular. Let C(X) = (cij(X)), 1 ≤ i, j ≤ n, be the
matrix of the cofactors of X. We then have

C(X)b = det(X) · a.

Thus,

‖C(X)b‖ = | det(X)|.
By paying a factor of n in probability, without loss of generality we can

assume that

|c11(X)b1 + · · ·+ c1n(X)bn| ≥ | det(X)|/n1/2.
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Note that ‖b‖ ≤ n−A, thus by Cauchy-Schwarz inequality

(4)

n∑
i=1

|c1i(X)|2 ≥ n2A−1 det(X)2.

We next express det(X) as a linear form of its first row r1(X) = (x1 +
f11, . . . , xn + f1n)

det(Q) = x1c11(X) + · · ·+ xnc1n(X) + f11c11(X) + · · ·+ f1nc1n(X).

Thus, with c :=
√∑

i c1i(X)2 (which is �= 0 as (c11, . . . , c1n) �= 0), (4)
can be rewritten as∣∣∣x1 c11(X)

c
+ · · ·+ xn

c1n(X)

c
+

1

c
(f11c11(X) + · · ·+ f1nc1n(Q))

∣∣∣ ≤ n−A+1/2.

Roughly speaking, our approach to prove Theorem 3.1 consists of two
main steps.

• Step 1. Condition on X ′, the matrix of the last n− 1 rows of X, if

sup
v

Px1,...,xn

(∣∣∣∣∣
n∑

i=1

xi
c1i(Xn)

c
− v

∣∣∣∣∣ ≤ n−A

)
≥ n−B,

then there is a strong structure among the cofactors c1i.
• Step 2. The probability, with respect to X ′, that there is a strong
additive structure among the c1i is negligible.

We pause to discuss the structure mentioned in the inverse step. A set
Q ⊂ C is a GAP of rank r if it can be expressed as in the form

Q = {g0 + k1g1 + · · ·+ krgr|ki ∈ Z,Ki ≤ ki ≤ K ′
i for all 1 ≤ i ≤ r}

for some (g0, . . . , gr) ∈ Cr+1 and (K1, . . . ,Kr), (K
′
1, . . . ,K

′
r) ∈ Zr.

It is convenient to think of Q as the image of an integer box B :=
{(k1, . . . , kr) ∈ Zr|Ki ≤ ki ≤ K ′

i} under the linear map Φ : (k1, . . . , kr) 
→
g0 + k1g1 + · · ·+ krgr.

The numbers gi are the generators of Q, the numbers K ′
i and Ki are the

dimensions of Q, and vol(Q) := |B| is the size of B. We say that Q is proper
if this map is one to one, or equivalently if |Q| = vol(Q). For non-proper
GAPs, we of course have |Q| < vol(Q). If −Ki = K ′

i for all i ≥ 1 and g0 = 0,
we say that Q is symmetric.

We are now ready to state our steps in details.
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Theorem 3.2 (Step 1). Let 0 < α < 1/2 be a given constant. Assume that

ρ∗n−A({v1, . . . , vn}) := sup
v

Px1,...,xn

(
|

n∑
i=1

xivi − v| ≤ n−A
)
≥ n−B

for some sufficiently large A, where vi = c1i(X)/c. Then there exists a vector
u = (u1, . . . , un) and a real number β of the form n−A+k(5B+5+γ) where
0 ≤ k ≤ A/(10B + 10 + 2γ), k ∈ Z such that the following holds.

• ‖u‖ � 1 and |〈u, ri(X)〉| ≤ βn5B+4+γ for n− 1 rows ri of X.
• There exists a generalized arithmetic progression Q∗ of rank Oα,B(1)
and size |Q∗| = max(1, Oα,B((ρ

∗
βn5B+4+γ ({u1, . . . , un}))−1/nα/2)) which

contains at least n− n1/2+α complex numbers ui.
• All the components of ui and of the generators of Q∗ are rational
numbers of the form p/q, where |p|, |q| ≤ nA+1.

Roughly speaking, the quantity (ρ∗βn5B+4+γ ({u1, . . . , un}))−1 appearing
in the bound of |Q∗| guarantees that the containment is economical.

In the second step of the approach, we show that the probability for Q′

having the above properties is negligible.

Theorem 3.3 (Step 2). With respect to X ′, the probability that there exists
a vector u and a number β as in Theorem 3.2 is exp(−Ω(n)).

We remark here that the choice of α being near 1/2 would optimize the
probability bound in Theorem 3.3. However, we prefer to keep α abstract to
demonstrate the flexibility of our approach.

We now study the remaining case.

Case 2. X is singular. We show that the probability of this event is bounded
by O(n−B) for any B > 0, where the implied constant depends on B. The
approach is identical (if not easier) to that of Case 1.

First of all, by paying a factor of n in probability and without loss of
generality, it suffices to consider the event that x1+f1 belongs to the subspace
generated by x2 + f2, . . . ,xn + fn. We show

Theorem 3.4. Assume that Xn is a random matrix whose rows x1, . . . ,xn

are independent random vectors sampled uniformly from S. Then for any
B > 0

P(x1 + f1 belongs to the subspace Hgenerated by x2 + f2, . . . ,xn + fn)

= O(n−B),
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where the implied constant depends on B.

Condition on x2, . . . ,xn, let v = (v1, . . . , vn) be a unit vector which is
orthogonal to H. Then the probability that x1+ f1 = (x1+f11, . . . , xn+f1n)
belongs toH is bounded by Px1,...,xn

(x1v1+· · ·+xnvn+(f11v1+· · ·+f1nvn) =
0), and so crudely by

P(x1 + f1 ∈ H) ≤ sup
v

Px1,...,xn
(|x1v1 + · · ·+ xnvn − v| ≤ n−A).

We again apply Theorem 3.2 to obtain a structural vector u and then
use Theorem 3.3 to conclude that the probability for the existence of such
u is negligible, completing the proof of Theorem 3.4.

The rest of the paper is organized as follows. In Section 4, we introduce
our key lemmas. Theorems 3.2 and 3.3 will be proven in Sections 5 and 6
respectively.

4. The main tools for proving Theorem 3.2

We need to study the concentration of
∑

i xivi in a small ball, where x =
(x1, . . . , xn) is sampled uniformly from the set S of all (−1, 1) vectors of
row-sum either s−1 or s+1. As customary, we first study a similar problem
for x′, a random vector whose components are i.i.d. copy of the Bernoulli
variable x defined in (1).

Let V = {v1, . . . , vn} be a multiset in Rd, where d is a fixed integer. For
β > 0, we define the small ball probability as

ρβ(V ) := sup
v∈Rd

Px′
(
v1x

′
1 + · · ·+ vnx

′
n ∈ B(v, β)

)
,

where by B(v, β) we denote the closed disk of radius β centered at v in Rd.
A well-known result of Erdős [6] and Littlewood-Offord [16] asserts that

if vi are real numbers of magnitude |vi| ≥ β, then

ρβ(V ) = O(n−1/2).

This remarkable inequality has generated an impressive way of research.
We refer the reader to [12, 15, 20, 29] and the references therein for further
discussion regarding these developments.

In the reverse direction, we would like to find the underlying reason as
to why the small ball probability is large (say, polynomial in n).

Typical examples of V , where ρβ is large, involve generalized arithmetic
progressions introduced in the previous section.
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Example 4.1. Let Q = {
∑r

i=1 kigi|−Ki ≤ ki ≤ Ki} be a proper symmetric
GAP of rank r = O(1) and size N = nO(1) in Rd. Assume that for each vi
there exists qi ∈ Q such that ‖vi − q‖ ≤ δ. Then, because the random sum∑

i qix
′
i takes value in the GAP nQ := {

∑r
i=1 kigi| − nKi ≤ ki ≤ nKi}, and

because |nQ| ≤ nrN = nO(1), the pigeon-hole principle implies that
∑

i qixi
takes some value in nQ with probability n−O(1). Thus, we have

(5) ρnδ(V ) = n−O(1).

The above example shows that if vi are close to a GAP of rank O(1) and
size nO(1) in Rd, then V has large small ball probability. It was shown by
Tao and the second author in [29, 31–33] and by the current authors in [20]
that these are essentially the only examples of large small ball probability.
We present here a somewhat optimal version.

We say that a vector v is δ-close to a vector q if ‖v − q‖ ≤ δ. We say
that v is δ-close to a set Q if there exists q ∈ Q such that v is δ-close to q.

Theorem 4.2 (Continuous Inverse Littlewood-Offord theorem for Bernoulli
distribution). [20, Theorem 2.9] Let 0 < α < 1/2; 0 < C be constants. Let
β > 0 be a parameter that may depend on n. Suppose that V = {v1, . . . , vn}
is a multi-subset of Rd such that

∑n
i=1 ‖vi‖2 = 1 and that V has large small

ball probability

ρ := ρβ(V ) ≥ n−C ,

where in the definition of ρβ we assume x′1, . . . , x
′
n to be i.i.d. copies of the

Bernoulli random variable x defined in (1). Then for any number nα ≤ n′ ≤
n, there exists a proper symmetric GAP Q = {

∑r
i=1 kigi : |ki| ≤ Ki} such

that the following holds.

• (Full dimension) There exists
√

n′

logn � k �
√
n′ such that the dilate

P := (β/k)−1 ·Q contains the discrete hypercube {0, 1}d. Furthermore,
P is an integral set, P ⊂ Zd.

• (Approximation) At least n− n′ elements of V (counting multiplicity)
are O(βk )-close to Q.

• (Small rank and cardinality) Q has constant rank d ≤ r = O(1), and
small cardinality

|Q| = max
(
1, Oα,d,C(ρ

−1n′(−r+d)/2)
)
.

• (Small generators) There is a non-zero integer p = O(
√
n′) such that

all steps gi of Q have the form gi = (gi1, . . . , gid), where gij = β · pij

p

with pij ∈ Z and pij = O(β−1
√
n′).
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We note that [20, Theorem 2.9] was originally stated for more general
distribution of the x′i. Another slight difference is that we require P to be
a subset of Zd here. However, this additional fact is not new as it has been
explicitly verified in the proof of Theorem 2.9 (see the last part of [20,
Section 6]).

Remark 4.3. As noticed in [20, Corollary 2.10], the above theorem im-
plies that if we use a coarser structure (which O(β)-approximates the vi
rather than O(β/k)-approximates as stated in Theorem 4.2), then we can
obtain a bound of at most max(O(ρ−1/

√
n′), 1) in the size of Q. As it turned

out, the saving factor 1/
√
n′ here plays a crucial role in any applications of

Theorem 4.2 in the literature.

From now on we will be mainly working with R2 (equivalently, C). Our
method naturally extends to Rd for any fixed d, but we do not attempt
to do so here. To prove Theorem 3.2, we need to modify our notion of
concentration probability as follows. Let V = {v1, . . . , vn} be a multiset in
R2. For any β > 0, we define

ρ∗β(V ) := sup
v∈R2

Px

(
v1x1 + · · ·+ vnxn ∈ B(v, β)

)
,

where the probability is taken uniformly over all (−1, 1) vectors x = (x1, . . . ,
xn) of given entry sum s̄, where |s̄| ≤ (1− ε)n. (In later application, we will
set s̄ to be either s− 1 or s+ 1.)

By definition, ρ∗ is invariant under translation. One observes that for
any β and V we have

(6) ρβ(V ) = Ω(ρ∗β(V )/
√
n).

This relation suggests that if ρ∗ := ρ∗β(V ) is large, then Theorem 4.2
(more precisely, Remark 4.3) implies that all the vi can be approximated by
a GAP Q of size O((ρ∗)−1√n/

√
n′). This bound, unfortunately, falls short

for any application as the saving factor
√
n/

√
n′ here is greater than 1 (we

refer the reader to Remark 6.5 of Section 6 for more explanation).
The above discussion shows that a sole application of (6) is not enough

to obtain a useful inverse result regarding ρ∗. In the following result, by
using the extra translation invariance property of ρ∗, we provide a more
economical inverse result.

Theorem 4.4 (Inverse Littlewood-Offord result with respect to ρ∗). Sup-
pose that V = {v1, . . . , vn} is a multi-subset of R2 such that

∑n
i=1 ‖vi‖2 = 1

and that

ρ∗ := ρ∗β(V ) ≥ n−C
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for some β = O(n−21C−12). Then for any number nα ≤ n′ ≤ n there exists

a proper GAP Q∗ = {g0 +
∑r

i=1 kigi : |ki| ≤ Ki} such that

• At least n− n′ elements of V are βn5C+3-close to Q∗.
• Q∗ has small rank r = O(1), and small cardinality

|Q| = max
(
1, Oα,C((ρ

∗)−1√n/n′)
)
.

• There is a non-zero integer p = O(
√
n′) such that all steps gi =

(gi1, gi2), 0 ≤ i ≤ r of Q∗ have the form gij = β · pij

p with pij ∈ Z

and pij = O(β−1
√
n′).

Note that the approximation in this case is not as fine as in Theo-

rem 4.2(or as in Remark 4.3) and the structure Q∗ is not necessarily sym-

metric. On the other hand, the size of Q∗ is bounded by O((ρ∗)−1√n/n′),
which is considerably smaller than O((ρ∗)−1√n/

√
n′) obtained by (6).

Before proving Theorem 4.4, let us provide a useful fact whose proof is

simple and hence omitted.

Fact 4.5. Assume that P = {k1g1 + · · ·+ krgr| −Ki ≤ ki ≤ Ki} is a proper

symmetric GAP which contains w1, . . . , wr, where each wi can be written as

ki1g1 + · · ·+ kirgr, kij ∈ Z, |kij | ≤ Ki.

(i) Assume that the vectors ki = (ki1, . . . , kir), 1 ≤ i ≤ r, have full rank in

Rr. Then we can express each generator gi as gi = yi1w1+ · · ·+yirwr,

where yij are rational numbers of the form p/q with |p|, |q| = Or(|P |r).
(ii) Assume that kr belongs to the space spanned by k1, . . . ,kr−1, then we

can write kr as kr = y1k1 + · · · + yr−1kr−1, where yi are rational

numbers of the form p/q with |p|, |q| = Or(|P |r).

We now proceed to justify the main result of this section.

Proof of Theorem 4.4. Define a new set U ⊂ R3 as

U = {u1, . . . , un} :=

{
1

2
·
(
v1,

1√
n

)
, . . . ,

1

2
·
(
vn,

1√
n

)}
.

By definition, we have
∑

i ‖ui‖2 = 1 and ρ∗β(V ) = ρ∗β/2(U). Thus, by (6)

ρβ/2(U) = Ω(ρ∗β/2(U)/
√
n) = Ω(ρ∗β(V )/

√
n) = Ω(n−C−1/2).
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We apply Theorem 4.2 to U to obtain two GAPs Q and P = (β/2)−1k ·Q
respectively. First, observe that if the rank r of Q (and P ) is at least 5, then

|Q| = O((ρ∗)−1√n/n′(r−3)/2) = O((ρ∗)−1√n/n′),

and so we are done by letting Q∗ be the GAP generated by the first two
coordinates of the generators of Q. Note that g0 = 0 because Q is homoge-
neous. Also, we obtained a very good approximation (of order O(β/k)) in
this case.

Next, we observe that r cannot be 3. Assume otherwise that P =
{
∑3

i=1 kigi : |ki| ≤ Ki}, where gi = (gi1, gi2, gi3) ∈ Z3 are the generators
of P . Because P ⊂ Z3 and it contains (1, 0, 0), (0, 1, 0) and (0, 0, 1), by
Fact 4.5 (i) the generators gi must have the form (gi1, gi2, gi3) where |gij |
are bounded by O(|P |3). But P has size O(ρ−1

β/2(U)) = O(nC+1/2), thus

|gij | = O(n3C+3/2). As a consequence, all of the elements of P must have
norm at most O(n4C+2). However, this is impossible because as one of the
elements of P is O(1)-close to an element of (β/2k)−1 · U , its second coor-

dinate must be of order at least β−1k√
n
, which is greater than n4C+2 by the

assumption of β of being sufficiently small.
We now consider the case r = 4, P = {

∑4
i=1 kigi : |ki| ≤ Ki}, where

gi = (gi1, gi2, gi3) ∈ Z3. Let (w1, l), . . . , (wn−n′ , l) be the elements of P which
are O(1)-close to n−n′ elements of the dilated set (β/2k)−1 ·U . Apparently,
l = Θ(β−1k/

√
n). We next consider two cases.

Case 1. If all ‖wi‖ are smaller that n4C+2, then we would be done because in
this case the order of all ‖ui‖ is at most O((β/2k)n4C+2), which is bounded
by βn4C+2.

Case 2. Assume otherwise that, say ‖w1‖ ≥ n4C+2. Consider the following
elements of P , b1 := (1, 0, 0),b2 := (0, 1, 0),b3 := (0, 0, 1) and b4 := (w1, l).
Because ‖w1‖ is greater than n4C+2, one checks that the condition of Fact 4.5
(ii) does not hold for b1,b2,b3 and b4. We thus apply Fact 4.5 (i) to conclude
that each gi can be expressed as in the form ci1b1 + ci2b2 + ci3b3 + ci4b4,
where cij = p/q and |p|, |q| = O(n4C+2).

Next, consider any b = (wi0 , l) from the set {(w1, l), . . . , (wn−n′ , l)}.
There exist k1, k2, k3, k4 ∈ Z, |ki| ≤ Ki, such that b = k1g1 + k2g2 + k3g3 +
k4g4, and so

b = (k1c11 + k2c21 + k3c31 + k4c41)b1 + (k1c12 + x2k22 + x3c32 + k4c42)b2

+ (k1c13 + k2c23 + k3c33 + k4c43)b3 + (k1c14 + k2c24 + k3c34 + k4c44)b4.
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Notice that l = Θ(β−1k/
√
n) ≥ n21C+11, meanwhile |k1c13 + k2c23 +

k3c33+k4c43| = O(n5C+5/2) and |k1c14+k2c24+k3c34+k4c44| = Θ(n−16C−8)

as cij are rational numbers whose denominators are bounded by O(n4C+4)

and k1c14 + k2c24 + k3c34 + k4c44 cannot be zero. We conclude that the

coefficients of b3 and b4 must be 0 and 1 respectively,

It thus follows that, by considering the first two coordinates of b1 and

b2,

‖wi0 − w1‖2 =
(
(k1c11 + k2c21 + k3c31 + k4c41)

2

+ (k1c12 + k2c22 + k3c32 + k4c42)
2
)1/2

= O(n5C+5/2) < n5C+3.

Combining Cases 1 and 2, we infer that if r = 4, then all but n′ ele-
ments of V are βn5C+3-close to a common point. To complete the proof,

we just simply set g0 = βn5C+3 · p be this approximated point where p is a

complex number of integral coordinates and |p| ≤ β−1n−5C−3. We set other

generators to be zero.

We now deduce an important corollary of Theorem 4.4 which, similarly

to the result of Erdős and Littlewood-Offord, states that as long as the multi-

set V is not too degenerated (for a given β), its concentration probability

ρ∗ must be small.

Corollary 4.6. Let 0 < α < 1/2 be a positive constant and let n′ be a

number satisfying n1/2+α < n′ < n. Assume that β ≤ n−24 and V is a

multi-set in R2 so that any of its n − n′ elements cannot be βn6-close to a

common point. Then we have

ρ∗β(V ) = O(
√
n/n′).

Proof of Corollary 4.6. Assume otherwise that ρ∗β(V ) ≥ C
√
n/n′ for some

large constant C to be chosen. So

ρ∗(V ) ≥ Cn−1/2.

We next apply Theorem 4.4 to V to obtain a GAP Q∗ which is βn11/2

to all but n − n′ elements of V . Notice that because there are no more

than n − n′ − 1 elements of V that are βn6-close to one common point,

Q∗ must have size at least 2. On the other hand, from the conclusion of
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Theorem 4.4, assuming that C is sufficiently large depending on α, the size
of Q∗ is bounded by

|Q∗| = max(1, Oα((ρ
∗)−1√n/n′) = max

(
1, Oα

(
1

C

))
= 1.

This contradiction completes the proof of our corollary.

5. Proof of Theorem 3.2

We will invoke Theorem 4.4. Define a radius sequence (βk)
∞
0 where β0 :=

n−A and

βi+1 = n5B+5+γβi.

Let V be the multi-set of v1, . . . , vn. Then the assumption of Theorem 3.2
becomes

ρβ0

∗(V ) ≥ n−B

with either s̄ = s− 1 or s̄ = s+ 1.
Next, because the increasing sequence ρ∗βi

(V ) is bounded from above
by 1, by pigeonhole principle there exists 0 ≤ k0 ≤ 2B/α such that

ρ∗βk0+1
(V ) ≤ nα/2ρ∗βk0

(V ).

As A was chosen to be sufficiently large, one has βk0
≤ n−A/2. We next

apply Theorem 4.4 to V with n′ = n1/2+α and β = βk0
to obtain a GAP

Q∗ = {g0 +
∑r

i=1 kigi, |ki| ≤ Ki} for which the following holds.

• Q∗ has small rank r = O(1), and small cardinality

|Q∗| = max
(
1, Oα,B

(
(ρ∗βk0

(V ))−1/nα
))

.

• There are n0 := n − n1/2+α elements vi1 , . . . , vin0
of V which are

O(βk0
n5B+3)-close to n− n1/2+α elements u1, . . . , un0

of Q∗.

• There is a non-zero integer p = O(
√
n1/2+α) such that all steps gi =

(gi1, gi2), 0 ≤ i ≤ r of Q∗ have the form gij = β−1
k0

pij/p with pij ∈ Z

and pij = O(β−1
k0

√
n1/2+α). In particular, all the components of the

elements of Q∗ have the form p/q where |p|, |q| ≤ nA+1.

Next, for each v of the remaining n1/2+α exceptional elements of V
(which are not close to any element of Q∗), we trivially approximate it by a
complex number v whose components are rational numbers of the form p/q
with |q| ≤ nA+1 such that |u− v| ≤ βk0

n5B+3.
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By the approximation, we infer that

‖u− v‖ =

(∑
i

|ui − vi|2
)1/2

≤ βk0
n5B+7/2.

Taking into account that |fij | ≤ nγ , we thus have

ρ∗βk0
(V ) ≤ ρ∗βk0+βk0n

5B+7/2+γ (U) ≤ ρ∗βk0n
5B+4+γ (U)

≤ ρ∗βk0+βk0n
5B+4+γ (V ) ≤ ρ∗βk0n

5B+5+γ (V ) = ρ∗βk0+1
(V ),

where U is the multi-set {u1, . . . , un}.
From the estimate above, as ρ∗βk0+1

(V ) ≤ nα/2ρ∗βk0
(V ), it is implied that

ρ∗βk0n
5B+4+γ (U) ≤ nα/2ρ∗βk0

(V ).

So the size of Q∗ is bounded by

|Q∗| = max
(
1, O

(
(ρ∗βk0n

5B+4+γ (U))−1/nα/2
))

.

In summary, we have obtained a vector u = (u1, . . . , un) which satisfies
the following properties.

• ‖u‖ � 1, and because 〈v, ri(X)〉 = 0 for any row ri of X of index
i ≥ 2, we also have |〈u, ri(X)〉| ≤ βk0

n5B+4+γ .
• There exists a generalized arithmetic progression Q∗ of rank OB,α(1)
and size |Q∗| = max(1, O((ρ∗βk0n

5B+4+γ (U))−1/nα/2)) that contains at

least n− n1/2+α complex numbers ui.
• All the components of ui and of the generators of Q∗ are rational
numbers of the form p/q, where |p|, |q| ≤ nA+1.

This completes the proof of Theorem 3.2.

6. Proof of Theorem 3.3

By applying Theorem 3.2, we obtain a structural vector u which satisfies all
the described properties. Because the number of β is bounded by a constant,
it is enough to verify Theorem 3.3 for one such β. By paying a factor of n in
probability, we assume that |〈u, ri(X)〉| ≤ βn5B+4+γ for the last n− 1 rows
of X.

Set β′ := βn5B+4+γ . We will consider two cases depending on the struc-
ture of u.
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6.1. Degenerate u

We first consider the probability Pmajor of the event |〈ri,u〉| ≤ β′, 2 ≤ i ≤ n,
for which there are n0 := n−n1/2+α complex numbers ui which can be β′n4-
approximated by a common point u′0 ∈ β′n4 · Z2.

By paying a factor
(
n
n0

)
in probability, we may assume that this point

approximates the first n0 complex numbers u1, . . . , un0
. Thus, by approx-

imating the remaining ui by u′i ∈ β′n4 · Z2 such that |ui − u′i| ≤ β′n4,
the events |〈ri,u〉| ≤ β′ belongs to the event |〈ri,u′〉| ≤ β′n5, where u′ =
(u′1, . . . , u

′
1, u

′
n0+1, . . . , u

′
n) and ‖u′‖ � 1.

Let X(n−1)×n be the matrix generated by the last n− 1 rows of X, and
let X ′ be the n− 1 by n− n0 matrix obtained from X(n−1)×n by joining its
first n0 columns,

X ′ =
[
c1(X(n−1)×n) + · · ·+ cn0

(X(n−1)×n),

cn0+1(X(n−1)×n), . . . , cn(X(n−1)×n)
]
.

By definition, the row vectors of X ′ satisfy |〈ri(X ′),u′
tr〉| ≤ β′n5 where

u′
tr := (u′1, u

′
n0+1, . . . , u

′
n). It also follows from definition that the i-th row of

X ′ has the form ri(X
′) = x′+f ′, where f ′ = (fi1+· · ·+fin0

, fi(n0+1), . . . , fin)
and x′ = (x1 + · · ·+ xn0

, xn0+1, . . . , xn) := (x′1, . . . , x
′
n−n0

).

As x is sampled uniformly from S, the set of all (−1, 1) vectors of entry-
sum either s− 1 or s+ 1, x′ is a random vector chosen from type 1 or type
2 defined below.

Type 1 (row-sum s+ 1).

P(x′1 = k) =

(
n0

(n0+k)/2

)(
n−n0

(n−n0+s+1−k)/2

)
(

n
n/2+(s−1)/2

)
+
(

n
n/2+(s+1)/2

)
for all k such that k + n0 is even; and (x′2, . . . , x

′
n−n0

) are chosen uniformly
from all (−1, 1) vectors of row-sum s+ 1− x′1.

Type 2 (row-sum s− 1).

P(x′1 = k) =

(
n0

(n0+k)/2

)(
n−n0

(n−n0+s−1−k)/2

)
(

n
n/2+(s−1)/2

)
+
(

n
n/2+(s+1)/2

)
for all k such that k + n0 is even; and (x′2, . . . , x

′
n−n0

) are chosen uniformly
from all (−1, 1) vectors of row-sum s− 1− x′1.
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It is clear that

P(x′ ∈ type 1) =

(
n

n/2+(s+1)/2

)
(

n
n/2+(s−1)/2

)
+
(

n
n/2+(s+1)/2

)
and

P(x′ ∈ type 2) =

(
n

n/2+(s−1)/2

)
(

n
n/2+(s−1)/2

)
+
(

n
n/2+(s+1)/2

) .
Observe that as |s| ≤ (1 − ε)n, these two probabilities are comparable,

each of which can be bounded crudely from below by (1− ε)/4.
We next apply the following result.

Claim 6.2. Let ε < 1/4 be a fixed constant. Let u′
tr = (u′1, u

′
n0+1, . . . , u

′
n) be

a vector in which the components of each complex u′i is of the form β′n4 ·Z
and such that n0|u′1|2 + |u′n0+1|2 + · · ·+ |u′n|2 � 1. Then, as n is sufficiently
large and f is a fixed vector, one has

Px′(|〈x′ + f ′,u′
tr〉| ≤ β′n5) ≤ 1− (1− ε)/8.

Proof of Claim 6.2. We will consider two main cases below.
(i) We first assume that there exists 1 < i0 < j0 such that |u′i0 − u′j0 | ≥

β′n5. Without loss of generality, assume that i0 = n−1 and j0 = n. It follows
from the distribution of x′ that the event of having exactly one −1 among the
last two components of x′ happens with probability at least (1−ε)/4 asymp-
totically. Within this event, observe that for any tuple (x′1, . . . , x

′
n−n0−2),

either x = (x′1, . . . , x
′
n−n0−2,−1, 1) or x = (x′1, . . . , x

′
n−n0−2, 1,−1) does not

satisfy |〈x′,u′
tr〉+ 〈f ′,u′

tr〉| ≤ β′n5. Thus, we have

Px′(|〈x′,u′
tr〉+ 〈f ′,u′

tr〉| ≤ β′n5) ≤ 1− (1− ε)/8.

(ii) Assume otherwise that there exists u′ such that all |u′ − u′n0+1|, . . . ,
|u′−u′n| are bounded by β′n5. In this case, the inequality |〈x′,u′

tr〉+〈f ′,u′
tr〉| ≤

β′n5 implies that

(7) |x′1(u′1 − u′) + u′(x′1 + x′2 + · · ·+ x′n−n0
) + 〈f ′,u′

tr〉| ≤ β′n6.

We next consider the subcase |u′1−u′| ≥ β′n8. If x′1+x′2+ · · ·+x′n−n0
=

s + 1, then (7) implies that x′1 belongs to the interval
[
(−u′(s + 1) −

〈f ′,u′
tr〉)(β′n8)−1−1/n2, (−u′(s+1)−〈f ′,u′

tr〉)(β′n8)−1+1/n2
]
. However, be-

cause this interval has length 2/n2, and so this probability is clearly bounded
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by supk P(x′1 = k), which is clearly smaller than 1 − (1 − ε)/4. We argue
similarly for the case x′1 + x′2 + · · ·+ x′n−n0

= s− 1.
For the remaining subcase |u′1 − u′| ≤ β′n8, as A was chosen to be large

enough, we have |u′1 − u′| ≤ n−2. Next, because ‖u′
tr‖2 = n0|u′0|2 + (n −

n0)|u′|2 � 1, we infer that |u′| � 1/
√
n. It then follows that

(8) |u′(x′1 + · · ·+ x′n−n0
) + 〈f ′,u′

tr〉| ≤ β′n9.

However, as x′1 + · · · + x′n−n0
takes value s + 1 and s − 1 each with

probability at least (1− ε)/4, the equation (8) above holds with probability
at most 1− (1− ε)/4.

Now we estimate Pmajor. As the event |〈ri(X),u′〉| ≤ β′n5 is controlled
by |〈ri(X ′),u′

tr〉| ≤ β′n5, and by Claim 6.2 the later holds with probability
(7 + ε)/8, it follows that the probability that |〈ri(X),u′〉| ≤ β′n5 for all
2 ≤ i ≤ n is bounded by ((7 + ε)/8)n−1.

Additionally, an elementary computation implies that the number of
structural vectors u′ ∈ (β′n4 · Z2)n−n0+1 satisfying ‖u′‖ � 1 is bounded by

((β′n4)−1)n−n0+1 = O((nA)n
1/2+ε+1) = O(nOA(n1/2+ε)).

Putting together, we obtain the following bound for Pmajor

Pmajor=O(nOA(n1/2+ε))

(
n

n0

)(
n− 1

n− n0 − 1

)(
7 + ε

8

)n−1

=

(
7 + ε

8

)(1−o(1))n

.

Remark 6.3. In the treatment above the fact that x′ takes either type 1 or
type 2 with comparable probability is crucial. The assumption of just one
type would not be enough to estimate Pmajor unless we had an additional
assumption on u′, say u′1 + · · ·+ u′n is nearly zero.

6.4. Non-degenerate u

We consider the probability Pminor of the event that there exists a vector
u for which |〈ri(X),u〉| ≤ β′, 2 ≤ i and the following holds

• ‖u‖ � 1 and there does not exist any u which is β′n4-close to all but
n1/2+α complex numbers ui. Thus, it follows from Corollary 4.6 that

ρ∗β′(U) = O(n−α).

• There exists a generalized arithmetic progression Q∗ of rank OB,α(1)
and size |Q∗| = max

(
1, O(ρ∗β′(U)−1/nα/2)

)
= O(ρ∗β′(U)−1/nα/2) that
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contains at least n − n1/2+α complex numbers ui. (Here we used the
estimate ρ∗β′(U)−1 = Ω(nα) to eliminate the trivial constant 1 in the
size estimate of Q∗.)

• All the components of ui and of the generators of the generalized
arithmetic progression are rational numbers of the form p/q, where
|p|, |q| ≤ nA+1.

Let 0 < δ to be chosen (any δ < α/3 will suffice). We divide the interval
[n−B, Oα(n

−α/2)] into sub-intervals [n−(k+1)δ, n−kδ], where α/2δ ≤ k ≤ B/δ.
For each k, letGk be the collection of u’s such that ρ∗β′(U) ∈ [n−(k+1)δ, n−kδ],
and let Pk be the probability that |〈ri(X ′),u〉| ≤ β′ for all i and for one of
u from Gk.

We now bound the size of Gk. To do this, we first count the number
of GAPs which may contain most of the ui of vectors u from Gk, and
then count the number of u’s whose ui are chosen from the determined
structure. Recall that all components of the GAP generators are of the form
p/q, where |p|, |q| ≤ nA+1. Because each GAP has rank OB,α(1) and size
O((ρ∗)−1/nα/2) = O(nδ(k+1)/nα/2), the number of such GAPs is bounded
by

(n4A+4)OB,α(1)(nδ(k+1)/nα/2)OB,α(1) = O(nOB,α,δ(1)).

After choosing a Q∗ of size O(nδ(k+1)/nα/2), the number of ways to
choose n− n1/2+α complex numbers ui as Q

∗’s elements is

(
n

n1/2+α

)(
O(nδ(k+1)/nα/2)

n− n1/2+α

)
= O

(
nn1/2+α

(nδ(k+1)/nα/2)n−n1/2+α)
.

For the remaining n1/2+α exceptional elements, there are (n4A+4)n
1/2+α

=
O(nOA(n1/2+α)) ways to choose them. Putting these bounds together, we ob-
tain the following bound for the number of u of Gk

|Gk| = O
(
nOA,B,α,δ(n1/2+α)(nδ(k+1)/nα/2)n−n1/2+α)

.

Now, for a given u ∈ Gk the probability that |〈ri(X),u〉| ≤ β′ for all
2 ≤ i ≤ n is bounded by (ρ∗β′(u))n−1 ≤ (n−δk)n−1. Thus, we can estimate
Pk as

Pk ≤ |Gk|(n−δk)n−1

= O
(
nOA,B,α,δ(n1/2+α)(nδ)n/(nα/2)n−n1/2+α

)
= o(n−αn/6),

provided that δ was chosen to be smaller than α/3.
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Summing over k, we thus obtain

Pminor =
∑

k≤B/δ

Pk = o(n−αn/6).

Remark 6.5. One observes that the saving factor 1/nα/2 in the size of
Q∗ plays a key role in our analysis here. This explains the necessity of
Theorem 4.4.

7. Concentration of distance

We now give a proof of Lemma 2.5 basing on [26]. Let P = (pij) be the n by
n orthogonal projection matrix from Cn to V ⊥. Thus, P is Hermitian and
P 2 = P . We first normalize x′i by setting y′i := x′i − s/n and f ′

i := fi + s/n
for 1 ≤ i ≤ n. We then have Ey′i = 0,Var(y′i) = 1− (s/n)2 and

d′2 = ‖P (f + x′)‖2 = ‖P (f ′ + y′)‖2 =
∑
ij

pij(y
′
i + f ′

i)(y
′
j + f ′

j)

=
∑
ij

pijy
′
iy

′
j +

∑
ij

y′i(pijf
′
j + pjif

′
j) +

∑
ij

pijf
′
if

′
j

= Tr(P ) +
∑
i 	=j

pijy
′
iy

′
j +

∑
ij

y′i(pijf
′
j + pjif

′
j)

+
∑
ij

pjiy
′
if

′
j + d2f ′

:= (n− k) + d2f ′ + Y.

It is clear that EY = 0, thus

E(d2) = (n− k) + d2f ′ .

Note that

E|Y |2 = E|
∑
i 	=j

pijy
′
iy

′
j +

∑
ij

y′i(pijf
′
j + pjif

′
j)|2

= E|
∑
i 	=j

pijy
′
iy

′
j |2 +E|

∑
ij

y′i(pijf
′
j + pjif

′
j)|2

= (1− (s/n)2)
[∑

i 	=j

|pij |2 +
∑
i

|
∑
j

pijf ′
j +

∑
j

pjif
′
j |2

]
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≤
∑
i 	=j

|pij |2 + 4
∑
i

(�(
∑
j

pjif
′
j))

2

≤
∑
i 	=j

|pij |2 + 4
∑
i

|
∑
j

pjif
′
j |2

=
∑
i 	=j

|pij |2 + 4
∑
j1j2

∑
i

pj1ipj2if
′
j1f

′
j2

=
∑
i 	=j

|pij |2 + 4
∑
j1j2

pj1j2f
′
j1f

′
j2
=

∑
i 	=j

p2ij + 4d2f ′ .

Next, because
∑

i pii = (n− k), by Cauchy-Schwarz inequality

∑
i

p2ii ≥ (n− k)2/n.

Thus,

∑
i 	=j

|pij |2 =
∑
i,j

|pij |2 −
∑
i

p2ii ≤ (n− k)− (n− k)2/n ≤ min(k, n− k).

It is implied that

EY 2 ≤ min(k, n− k) + 4d2f ′ .

Consider the event d ≥
√

n− k + d2f ′ + 3. The probability of this event

is bounded from above by

P
(
d′2 ≥ n− k + d2f ′ + 6

√
n− k + d2f ′

)
= P

(
Y ≥ 6

√
n− k + d2f ′

)
≤ P

(
Y 2 ≥ 36(n− k + d2f ′)

)
≤ EY 2

36(n− k + d2f ′)
≤ 1

9
.

Similarly, consider the event d′ ≤
√

n− k + d2f ′ − 3. The probability of

this event is bounded from above by

P
(
d′2 ≤ n− k + d2f ′ − 6

√
n− k + d2f ′ + 9

)
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= P
(
Y ≤ −6

√
n− k + d2f ′ + 9

)
≤ P

(
Y 2 ≥ 36(n− k + d2f ′)− 108

√
n− k + d2f ′ + 81

)
≤ EY 2

36(n− k + d2f ′)− 108
√

n− k + d2f ′ + 81
≤ 1

4

provided that k ≤ n− 10.

Thus, the median M of d′ satisfies |M −
√

n− k + d2f ′ | ≤ 3.

Since the distance function is convex on {−1, 1}n with Lipschitz con-
stant 1. Talagrand’s concentration inequality [24] implies that for any t

P(|d′ −M | ≥ t) ≤ 4 exp(−t2/16).

Since |M −
√

n− k + d2f ′ | ≤ 3, Lemma 2.5 follows.
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