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A lower bound for the Graver complexity of the
incidence matrix of a complete bipartite graph

Taisei Kudo and Akimichi Takemura
∗

We give an exponential lower bound for the Graver complexity of
the incidence matrix of a complete bipartite graph of arbitrary size.
Our result is a generalization of the result by Berstein and Onn [2]
for the complete bipartite graph K3,r, r ≥ 3.
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1. Introduction and the main result

The Graver complexity of an integer matrix is currently actively investi-
gated for its importance to integer programming, algebraic statistics and
other applications [2, 4, 5, 1]. In particular, from the universality of the
three-way transportation program to general integer programs [3, 6], the
Graver complexity of the incidence matrix of the complete bipartite graph
K3,r is particularly important. Berstein and Onn [2] proved that the Graver
complexity g(r) for the incidence matrix of K3,r, r ≥ 3 is bounded below as
g(r) = Ω(2r), where g(r) ≥ 17 · 2r−3 − 7. It is a natural question to gener-
alize this result to the complete bipartite graph Kt,r of arbitrary size t, r.
We prove that the Graver complexity for Kt,r is Ω((t − 1)r), where t ≥ 4
is fixed and r diverges to infinity. For proving our result, we employ double
induction on r and t starting from the result of [2].

Let At,r denote the incidence matrix of the complete bipartite graph
Kt,r and let g(At,r) denote its Graver complexity. Here we state our main
theorem. Relevant notations and definitions will be given in the next section.

Theorem 1.1. The Graver complexity of At,r for any 4 ≤ t ≤ r is bounded
from below as

g(At,r) ≥ (t− 1)r−t

(
bt +

1

t− 2

)
− 1

t− 2
,
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where

bt = (t− 2)!

(
15 +

t−4∑
i=1

i+ 4

(i+ 2)!

)
.

We give a proof of this theorem in Section 3 after giving necessary defi-
nitions and reviewing relevant known results in Section 2. We conclude the
paper with some discussion in Section 4.

2. Preliminaries

In this section, we summarize our notation and review relevant known results
on the Graver complexity following [2].

The integer kernel of an s× t integer matrix A is denoted by kerZ(A) =
{x ∈ Z

t | Ax = 0}. Define a partial order � on Z
t, which extends the

coordinate-wise order ≤ on Z
t
+, as follows: For two vectors u, v ∈ Z

t, u � v
if |ui| ≤ |vi| and uivi ≥ 0 for i = 1, . . . , t. The Graver basis G(A) of A is the
finite set of �-minimal elements in the set kerZ(A) \ {0}.

For any fixed positive integer h, write an ht-dimensional integer vector
x ∈ Z

ht as x = (x1, . . . , xh) with each block xi belonging to Z
t. The type

of x = (x1, . . . , xh) is the number type(x) := #({i | xi �= 0}) of nonzero
blocks of x. The h-th Lawrence lifting of an s × t matrix A is the following
(t+ hs)× ht matrix, with It denoting the t× t identity matrix:

(1) A(h) :=

⎛
⎜⎜⎜⎜⎝

A 0 0 . . . 0
0 A 0 . . . 0
...

...
. . .

...
...

0 0 0 . . . A
It It It . . . It

⎞
⎟⎟⎟⎟⎠ .

The Graver complexity of A is defined as

(2) g(A) = sup

(
{0} ∪

{
type(x)

∣∣∣∣∣x ∈
⋃
h≥1

G
(
A(h)

)})
.

Let G(G(A)) denote the Graver basis of a matrix whose columns are the
elements of G(A) ordered arbitrarily. The following result shows that the
Graver complexity of A is determined by G(G(A)).

Proposition 2.1. [7] The Graver complexity of A satisfies

g(A) = max{‖x‖1 : x ∈ G(G(A))},

where ‖ · ‖1 denotes the 1-norm of a vector.
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A circuit of an integer matrix A is a nonzero integer vector x ∈ kerZ(A),
that has inclusion-minimal support with respect to kerZ(A) and whose non-
zero entries are relatively prime. Let C(A) denote the set of circuits of a
matrix A. Then C(A) ⊆ G(A) (cf. [8]). An integer relation h = (h1, . . . , hk)
on integer vectors v1, . . . , vk ∈ Z

t

0 = h1v
1 + · · ·+ hkv

k

is primitive if h1, . . . , hk are relatively prime positive integers and no k − 1
of the {vi}ki=1 satisfy any nontrivial linear relation. By C(A) ⊆ G(A) and
Proposition 2.1, we have the following result.

Proposition 2.2. [2] Suppose that h is a primitive relation on some set
of circuits {xi}ki=1 of an integer matrix A. Then the Graver complexity of A

satisfies g(A) ≥
∑k

i=1 hi.

In this paper, we consider the Graver complexity of the incidence matrix
At,r for the complete bipartite graph Kt,r. Let 1t = (1, 1, . . . , 1) denote the

1× t matrix consisting of 1’s. Then the r-th Lawrence lifting At,r = 1
(r)
t of

1t is the incidence matrix of Kt,r. In algebraic statistics, At,r is the design
matrix specifying the row sums and the column sums of a two-way contin-

gency table. Another Lawrence lifting (1
(r)
t )(h) of 1

(r)
t is the design matrix

for no-three-factor interaction model for t × r × h three-way contingency
tables [1, 5]. It is also the coefficient matrix for the three-way transporta-

tion program. The Graver complexity g(At,r) = g(1
(r)
t ) gives the bound of

complexity of the Graver basis for the toric ideal associated with the no-
three-factor interaction model for t× r× h three-way contingency tables as
h → ∞.

We employ below the following notation, where t, r are positive integers.
Let

(3) V := {v1, . . . , vt}, U := {u1, . . . , ur}.

Then V ⊕ U and V × U denote the set of vertices and the set of edges of
the complete bipartite graph Kt,r, respectively. They index the rows and the
columns of the incidence matrix At,r of Kt,r. Here we explain interpretations
of a circuit of At,r referring to [2]. We interpret each vector x ∈ Z

V×U

as:

1. an integer valued function on the set of edges V × U ;
2. a t× r matrix with its rows and columns indexed by V and U.
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Table 1: Circuits for A3,4 in a 3× 4 matrix form

u1 u2 u3 u4

0 0 −1 1 v1
x1 = (v1, u4, v3, u2, v2, u3) = 0 −1 1 0 v2

0 1 0 −1 v3
−1 1 0 0 v1

x2 = (v1, u2, v3, u3, v2, u1) = 1 0 −1 0 v2
0 −1 1 0 v3
0 −1 0 1 v1

x3 = (v1, u4, v2, u1, v3, u2) = 1 0 0 −1 v2
−1 1 0 0 v3
−1 0 0 1 v1

x4 = (v1, u4, v2, u2, v3, u1) = 0 1 0 −1 v2
1 −1 0 0 v3
1 0 −1 0 v1

x5 = (v1, u1, v2, u2, v3, u3) = −1 1 0 0 v2
0 −1 1 0 v3
0 −1 1 0 v1

x6 = (v1, u3, v2, u4, v3, u2) = 0 0 −1 1 v2
0 1 0 −1 v3
0 1 0 −1 v1

x7 = (v1, u2, v2, u3, v3, u4) = 0 −1 1 0 v2
0 0 −1 1 v3

With these interpretations, x is in C(At,r) if and only if:

1. as a function on V × U with the following properties: its support is a
circuit of Kt,r, along which its values ±1 alternate. It can be expressed
by the sequence (vi1 , ui1 , vi2 , ui2 , . . . , vil , uil) of vertices of the circuit
of Kt,r on which it is supported, with the convention that its value is
+1 on the first edge (vi1 , ui1).

2. as a nonzero matrix with the following properties: its elements are
0,±1, its row sums and columns sums are zeros, and it has an inclusion-
minimal support with respect to these properties.

The following example is the base case for our inductive argument for
the lower bound of the Graver complexity.

Example 2.1. [2] Let t = 3 and r = 4. Consider seven circuits {xi}7i=1 in
Table 1 (written in a 3 × 4 matrix form) of A3,4 = (1, 1, 1)(4). They satisfy
a primitive relation

x1 + 2x2 + 3x3 + 3x4 + 5x5 + 6x6 + 7x7 = 0.
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Therefore, from Proposition 2.2

g(A3,4) ≥ 1 + 2 + 3 + 3 + 5 + 6 + 7 = 27.

3. Proof of the main theorem

In this section, we give a proof of our main theorem. Our proof is based

on recursive construction of primitive relations for circuits of At,r. We need

recursions for t and r, separately. In Lemma 3.1, we give a recursion for t,

and in Lemma 3.2 we give a recursion for r.

Lemma 3.1. Let t ≥ 4. Suppose that there are circuits {xi}ki=1 of At,t+1 =

1
(t+1)
t admitting a primitive relation h, where the k-th circuit and the k-th

coefficient are

xk = (v1, u2, v2, u3, . . . , vt, ut+1),

hk = 1.

Then there are circuits {x̄i}k+t
i=1 of At+1,t+1 = 1

(t+1)
t+1 admitting a primitive

relation h̄, where the (k + t)-th circuit and the (k + t)-th coefficient are

x̄k+t = (v1, u1, v2, u2, . . . , vt+1, ut+1),

h̄k+t = 1.

Proof. Using the natural embedding ofKt,t+1 intoKt+1,t+1, we can interpret

circuits of the former also as circuits of the latter. Put

yi = xi, ∀i = 1, . . . , k − 1,

and define

yk+j−1 = (v1, uj , vt+1, uj+1), ∀j = 1, . . . , t,

yk+t = (v1, u2, v2, u3, . . . , vt, ut+1, vt+1, u1).

Table 2 displays {yk+j−1}t+1
j=1 as matrices, where

p = (1, 0, . . . , 0,−1)� ∈ Z
t+1.

Blank entries are zeros. Note that these circuits satisfy
∑t+1

j=1 y
k+j−1 = xk.
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Table 2: Circuits for recursion on t

u1 u2 u3 . . . ut ut+1

yk = (v1, u1, vt+1, u2) = p −p
yk+1 = (v1, u2, vt+1, u3) = p −p

...
. . .

. . .

yk+t−1 = (v1, ut, vt+1, ut+1) = p −p
yk+t−1 = (v1, ut, vt+1, ut+1) = p −p

−1 1
−1 1

yk+t = (v1, u2, v2, u3, . . . , vt, ut+1, vt+1, u1) =
. . .

. . .

−1 1
−1 1

1 −1

Suppose that h̄ ∈ Z
k+t satisfies

h̄i = hi, ∀i = 1, . . . , k − 1,

h̄k+j−1 = hk, ∀j = 1, . . . , t+ 1.

Then

k+t∑
i=1

h̄iy
i =

k−1∑
i=1

hiy
i +

t+1∑
j=1

hky
k+j−1 =

k−1∑
i=1

hix
i + hkx

k = 0.

Therefore, h̄ is an integer relation of circuits {yi}k+t
i=1 .

Next, we show that h̄ is primitive. Suppose that h′ ∈ Z
k+t is a nontrivial

relation on the {yi}k+t
i=1 . Without loss of generality, we may assume that the

{h′i}k+t
i=1 are relatively prime integers, at least one of which is positive. We

look at the row of vt+1. Then it follows that

h′k = h′k+1 = · · · = h′k+t.

Therefore,

0 =

k+t∑
i=1

h′iy
i =

k−1∑
i=1

h′iy
i + h′k

t+1∑
j=1

yk+j−1 =

k−1∑
i=1

h′ix
i + h′kx

k.
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This is an integer relation on {xi}ki=1, and because h is primitive,

h′i = hi, ∀i = 1, . . . , k.

Therefore, h′ = h̄ and h̄ is primitive.
Now apply to {yi}k+t

i=1 a permutation of columns so that yk+t becomes
(v1, u1, v2, u2, . . . , vt+1, ut+1). For i = 1, . . . , k + t, let x̄i be the circuit of
At+1,t+1 which is the image of yi under this permutation. Then {x̄i}k+t

i=1 also

satisfy the primitive relation
∑k+t

i=1 h̄ix̄
i = 0 with the same coefficients h̄.

This completes the proof.

Lemma 3.2. Let r ≥ t ≥ 4. Suppose that there are circuits {xi}ki=1 of

At,r = 1
(r)
t admitting a primitive relation h, where the k-th circuit and the

k-th coefficient are

xk = (v1, ur−t+1, v2, ur−t+2, . . . , vt, ur),

hk = 1.

Then there are circuits {x̄i}k+t−1
i=1 of At,r+1 = 1

(r+1)
t admitting primitive

relation h̄, where the (k + t− 1)-th circuit is

x̄k+t−1 = (v1, ur−t+2, v2, ur−t+3, . . . , vt, ur+1)

and the elements of h̄ are

h̄i = (t− 1)hi, ∀i = 1, . . . , k − 1, h̄k = h̄k+1 = · · · = h̄k+t−1 = hk = 1.

Proof. Using the natural embedding of Kt,r into Kt,r+1, we can interpret
circuits of the former also as circuits of the latter. Put

yi = xi, ∀i = 1, . . . , k − 1,

and for all j = 1, . . . , t, let yk+j−1 denote vectors obtained by changing
vertex ur−j+1 of xk to ur+1. Table 3 displays these circuits as matrices.
Here for each i = 1, . . . , t, qi ∈ Z

t denotes a vector satisfying

qii = 1, qii+1 = −1,

and the rest are zeros. Here we identify t+ 1 with 1.
Notice that

t∑
j=1

yk+j−1 = (t− 1)xk.
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Table 3: Circuits for recursion on r

. . . ur−t+1 ur−t+2 ur−t+3 . . . ur ur+1

yk = (v1, ur+1, v2, ur−t+2, . . . , vt−1, ur−1, vt, ur) = . . . 0 q2 q3 . . . qt q1

yk+1 = (v1, ur−t+1, v2, ur+1, . . . , vt−1, ur−1, vt, ur) = . . . q1 0 q3 . . . qt q2

.

.

.
.
.
.

yk+t−2 = (v1, ur−t+1, v2, ur−t+2, . . . , vt−1, ur+1, vt, ur) = . . . q1 q2 q3 . . . qt qt−1

yk+t−1 = (v1, ur−t+1, v2, ur−t+2, . . . , vt−1, ur−1, vt, ur+1) = . . . q1 q2 q3 . . . 0 qt

Define

h̄i = (t− 1)hi, ∀i = 1, . . . , k − 1,

h̄k+j−1 = hk = 1, ∀j = 1, . . . , t+ 1.

Then

k+t−1∑
i=1

h̄iy
i =

k−1∑
i=1

(t− 1)hiy
i +

t∑
j=1

hky
k+j−1 =

k−1∑
i=1

hix
i + hkx

k = 0.

Therefore, h̄ is an integer relation on circuits {yi}k+t−1
i=1 .

Next we show that h̄ is primitive. Suppose that h′ ∈ Z
k+t−1 is a non-

trivial relation on the {yi}k+t−1
i=1 . Without loss of generality, we may assume

that {h′i}k+t−1
i=1 are relatively prime integers, at least one of which is positive.

Consider the column of ur+1. Then

h′k = h′k+1 = · · · = h′k+t−1.

Therefore,

0 =

k+t−1∑
i=1

h′iy
i =

k−1∑
i=1

h′iy
i + h′k

t∑
j=1

yk+j−1 =

k−1∑
i=1

h′ix
i + (t− 1)h′kx

k.

This is an integer relation on {xi}ki=1. Therefore, there exists α ∈ Z such
that

h′i = αhi, ∀i = 1, . . . , k − 1,(4)

(t− 1)h′k = αhk = α.(5)

Since hi > 0 for all i and there is an i such that h′i > 0, equations (4) and
(5) imply α > 0. Therefore, (4) and (5) imply that h′i > 0 for all i. Hence, h̄
is primitive.
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‖h(3×4)‖1 → ‖h(3×5)‖1 → ‖h(3×6)‖1 → · · ·
↓

‖h(4×4)‖1 → ‖h(4×5)‖1 → ‖h(4×6)‖1 → · · ·
↓

‖h(5×5)‖1 → ‖h(5×6)‖1 → · · ·
↓
...

Figure 1: Induction on t, r.

Now apply to {yi}k+t−1
i=1 a permutation of columns so that yk+t−1 be-

comes (v1, ur−t+2, v2, ur−t+3, . . . , vt, ur+1). For i = 1, . . . , k+ t− 1, let x̄i be
the circuit of At,r+1 which is the image of yi under this permutation. Then

{x̄i}k+t−1
i=1 also satisfy the primitive relation

∑k+t−1
i=1 h̄ix̄

i = 0 with the same
coefficients h̄. This completes the proof.

We are now ready to prove Theorem 1.1. In the proof, we use the follow-
ing notation. Let A ({xi}ki=1) = {x̄i}k+t

i=1 and B(h) = h̄ = (h̄1, . . . , h̄k+t−1, 1)
denote circuits of At+1,t+1 and the primitive relation which are obtained by
the operation of Lemma 3.1 to circuits {xi}ki=1 of At,t+1 and the primitive
relation h. Note that ‖B(h)‖1 = ‖h‖1 + t. Furthermore, let A ′({xi}ki=1) =
{x̄i}k+t−1

i=1 and B′(h) = h̄ = (h̄1, . . . , h̄k+t−2, 1) denote circuits of At,r+1 and
the primitive relation which are obtained by the operation of Lemma 3.2 to
circuits {xi}ki=1 of At,r and the primitive relation h. Note that ‖B′(h)‖1 =
(t− 1)(‖h‖1 − 1) + t.

Our proof uses induction on t, r. We will construct a primitive relation
h(t×r) on circuits X(t×r) of At,r by induction. Therefore, we obtain g(At,r) ≥
‖h(t×r)‖1. Our induction is illustrated in Figure 1. There, a down arrow
corresponds to the operation of Lemma 3.1, and a right arrow corresponds
to the operation of Lemma 3.2.

Proof of Theorem 1.1. By induction on t, we will prove that for all t ≥ 4

there exist k(t) = t2 − 2t+2 circuits X(t×t) = {xi(t×t)}
k(t)
i=1 ⊂ C(At,t) and the

primitive relation h(t×t) such that

x
k(t)
(t×t) = (v1, u1, v2, u2, . . . , vt, ut),

k(t)∑
i=1

h
(t×t)
i xi = 0,

h
(t×t)
k(t) = 1,
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‖h(t×t)‖1 = (t− 2)!

(
15 +

t−4∑
i=1

i+ 4

(i+ 2)!

)
.

Exchange x1 and x7 of circuits of Example 2.1 and apply to the circuits
a permutation of vertices so that

x7 = (v1, u2, v2, u3, v3, u4).

Let X(3×4) = {xi(3×4)}7i=1 be the image of {xi}7i=1 under this permutation.

The primitive relation h(3×4) on these circuits satisfy

h(3×4) = (7, 2, 3, 3, 5, 6, 1).

Notice that h
(3×4)
7 = 1 holds.

Let X(4×4) = A (X(3×4)) and h(4×4) = B(h(3×4)) denote the image

of X(3×4) and h(3×4) under the operation of Lemma 3.1. Then we have

h(4×4) = (7, 2, 3, 3, 5, 6, 1, 1, 1, 1) ∈ Z
10 and

x10(4×4) = (v1, u1, v2, u2, v3, u3, v4, u4),

h
(4×4)
10 = 1,

‖h(4×4)‖1 = ‖h(3×4)‖1 + 3 = 30.

Therefore, we have verified the initial condition at t = 4 for the induction.
Suppose now that the result holds for t ≥ 4. Let X(t×(t+1)) = A ′(X(t×t))

and h(t×(t+1)) = B′(h(t×t)) denote the image of X(t×t) and h(t×t) ∈ Z
k(t)

under the operation of Lemma 3.2.

x
k(t)+t−1
(t×(t+1)) = (v1, u2, v2, u3, . . . , vt, ut+1),

h
(t×(t+1))
k(t)+t−1 = 1,

‖h(t×(t+1))‖1 = (t− 1)(‖h(t×t)‖1 − 1) + t

follows from Lemma 3.2. Now let X((t+1)×(t+1)) = A (X(t×(t+1))) and

h((t+1)×(t+1)) = B(h(t×(t+1))) denote the image of X(t×(t+1)) and h(t×(t+1))

under the operation of Lemma 3.1. Then

x
k(t)+2t−1
((t+1)×(t+1)) = (v1, u1, v2, u2, . . . , vt+1, ut+1),

h
((t+1)×(t+1))
k(t)+2t−1 = 1,
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‖h((t+1)×(t+1))‖1 = (t− 1)(‖h(t×t)‖1 − 1) + 2t

= (t− 1)!

(
15 +

t−4∑
i=1

i+ 4

(i+ 2)!

)
+ t+ 1

= ((t+ 1)− 2)!

⎛
⎝15 +

(t+1)−4∑
i=1

i+ 4

(i+ 2)!

⎞
⎠

follows from Lemma 3.1. Here k(t+ 1) = k(t) + 2t− 1 and k(4) = 10 imply

k(t) = t2 − 2t + 2. Therefore, the result holds for t + 1. Henceforth, let

bt = ‖h(t×t)‖1.
We fix t ≥ 4 arbitrarily. We prove by induction on r that, for all r ≥ t,

there are circuits X(t×r) = {xi(t×r)}
k(t)
i=1 ⊂ C(At,r) and the primitive relation

h(t×r) such that

x
k(t)
(t×r) = (v1, ur−t+1, v2, ur−t+2, . . . , vt, ur),

k(t)∑
i=1

h
(t×r)
i xi(t×r) = 0,

h
(t×r)
k(t) = 1,

‖h(t×r)‖1 = (t− 1)r−t

(
bt +

1

t− 2

)
− 1

t− 2
.

The initial condition of the induction, at r = t, follows from ‖h(t×t)‖1 = bt.

Suppose now that the result holds for some r ≥ t. Let X(t×(r+1)) =

A ′(X(t×r)) and h(t×(r+1)) = B′(h(t×r)) denote the image of X(t×r) and

h(t×r) under the operation of Lemma 3.2. Then

x
k(t)+t−1
(t×(r+1)) = (v1, ur−t+2, v2, ur−t+3, . . . , vt, ur+1),

h
(t×(r+1))
k(t)+t−1 = 1,

‖h(t×(r+1))‖1 = (t− 1)(‖h(t×r)‖1 − 1) + t

= (t− 1)

(
(t− 1)r−t

(
bt +

1

t− 2

)
− 1

t− 2
− 1

)
+ t

= (t− 1)r+1−t

(
bt +

1

t− 2

)
− 1

t− 2
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Table 4: Circuits of A4,4

u1 u2 u3 u4

0 1 0 −1 v1
x̄7 = (v1, u2, v4, u1, v3, u4) = 0 0 0 0 v2

−1 0 0 1 v3
1 −1 0 0 v4
0 0 0 0 v1

x̄8 = (v2, u3, v4, u2) = 0 −1 1 0 v2
0 0 0 0 v3
0 1 −1 0 v4
0 0 0 0 v1

x̄9 = (v3, u4, v4, u3) = 0 0 0 0 v2
0 0 −1 1 v3
0 0 1 −1 v4
0 1 0 −1 v1

x̄10 = (v1, u2, v2, u3, v3, u1, v4, u4) = 0 −1 1 0 v2
1 0 −1 0 v3
−1 0 0 1 v4

follows from Lemma 3.2. Therefore, the result holds for r + 1 and

g(At,r) ≥ (t− 1)r−t

(
bt +

1

t− 2

)
− 1

t− 2

follows from Lemma 2.2.

4. Discussion

In this paper, we provided a lower bound in Theorem 1.1 by the induction

on t, r. Here we discuss some ideas for improving our lower bound.

Look at Figure 1 again. On the step ‖h(3×4)‖1 → ‖h(4×4)‖1, we can

construct a larger primitive relation than the relation constructed in the

proof.

Example 4.1. Let {xi}7i=1 denote the circuits in Example 2.1. Using the

natural embedding of K3,4 into K4,4, let

x̄i = xi, ∀i = 1, . . . , 6,

and for i = 7, . . . , 10, we define x̄i as shown in Table 4. Then {x̄i}10i=1 are cir-

cuits of kerZ(1
(4)
4 ) and h̄ = (2, 4, 6, 6, 10, 12, 7, 7, 7, 7) is its primitive relation.
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Then, by Proposition 2.2,

(6) g(1
(4)
4 ) ≥ 2 + 4 + 6 + 6 + 10 + 12 + 7 + 7 + 7 + 7 = 68.

Equation (6) is sharper than the evaluation in Theorem 1.1.

We could start induction from circuits and its primitive relation in Ex-

ample 4.1. Then we obtain a sharper evaluation for some small t, r. However,

it unfortunately turns out that, if we start from Example 4.1 then on the step

‖h(8×r)‖1 → ‖h(8×(r+1))‖1, we cannot obtain an exponential lower bound.

Therefore, we did not use Example 4.1 in the proof of Theorem 1.1. How-

ever, this example suggests that there may be some other better initial set

of circuits for our induction.
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