JOURNAL OF COMBINATORICS
Volume 3, Number 4, 683-693, 2012

Proper connection with many colors

AYDIN GEREK, SHINYA FUJITA* AND COLTON MAGNANT'

We say an edge-colored graph is properly connected if, between
every pair of vertices, there exists a properly colored path. For a
graph G, define the proper connection number pc(G) to be the
minimum number of colors k such that there exists a k-coloring of
E(G) which is properly connected. In this work, we study condi-
tions on G which force upper bounds on pc(G).
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1. Introduction

In this work, we consider only edge-colorings of graphs. Since Vizing’s fun-
damental result [9], proper edge colorings of graphs, colorings such that no
two adjacent edges have the same color, have become an essential topic for
every beginning graph theorist. Proper edge colorings have many applica-
tions in signal transmission [7], bandwidth allocation [3] and many other
areas [5, 6, 8]. See [1] for a survey of the case where two colors (where the
term ‘alternating’ can be used in place of ‘proper’) are used.

Since many of these applications depend only on properly colored sub-
structures of the graph, not necessarily properly coloring the entire graph,
it is natural to restrict our attention to subgraphs. If a graph is properly
colored, then every subgraph is properly colored. We relax this condition by
requiring only some of the subgraphs to be properly colored. In particular,
we say that a colored graph is properly connected if, between every pair of
vertices, there exists a properly colored path. As defined in [2], the proper
connection number of a graph pe(G) is the minimum number of colors k
such that there exists a k coloring of G which is properly connected.

As a specific application of proper connectivity to network security, sup-
pose a network administrator would like to create a more secure network.
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Figure 1: A 2-connected graph with pc(G) = 3 (from [2]).

In order to access one computer from another in a network, one must follow
a predetermined path, otherwise the system will lock down. Furthermore,
on each consecutive pair of connections along these paths, different types of
security measures are used. Thus, in order to hack this network, one would
have to break different types of security at each step. With colors on edges
representing types of security, the proper connection number of a graph is
the minimum number of security types needed for such a system.

In [2], the authors consider many conditions on G which force pc(G) to
be small. In particular, most results contained in [2] concern graphs G for
which pe(G) < 3. Since a connected graph can have arbitrarily high proper
connection number, consider a star, it was natural to focus on 2-connected
graphs. Thus, the example in Figure 1 demonstrates a 2-connected graph
with proper connection number 3, thereby making results of [2] best possible.
Using structures similar to this example, it is easy to demonstrate an infinite
class of 2-connected graphs with proper connection number 3. In this work,
we prove more general versions of these results, namely, upper bounds on
pc(G) which are larger than 3.

Our first result uses a forbidden (induced) subgraph condition to get
an upper bound on the proper connection number. Since we clearly have
pc(Kys) = s, this result is also a classification of the forbidden subgraphs
which provide upper bounds on the proper connection number. For this
result, given a graph H, a graph G is said to be H-free if it contains no
induced copy of H.

Theorem 1. For s > 2, any connected K s-free graph G has pc(G) < s—1.

We present the proof of Theorem 1 in Section 2. This result is sharp by
considering any subdivision of a star K s_1. The central vertex of this sub-
divided star must have s —1 different colors on its incident edges. Theorem 1
immediately implies the following corollary, which is also sharp by simply
considering a star. Here a(G) is used to denote the independence number
of G.
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Corollary 2. Any connected graph G has pc(G) < a(G).
In [2], the following result concerning the minimum degree was proven.

Theorem 3 ([2]). If G is connected of order n > 68 and minimum degree
d(G) > n/4, then pc(G) < 2.

We extend this result to weaker minimum degree conditions in the fol-
lowing result.

Theorem 4. Suppose that a connected graph G has order n > t> and min-
imum degree 6(G) > n/t for somet > 5. Then pc(G) <t — 2.

We present the proof of Theorem 4 in Section 3. This result is sharp
infinitely often by the following example. Let G = U!_, K, /¢ where t[n and
choose a single vertex from each clique. Between these chosen vertices, we
add edges to induce a star (using ¢t — 1 edges). Notice that §(G) = n/t —1
and this graph requires ¢t — 1 colors in any properly connected coloring.

We also prove a similar result for bipartite graphs.

Theorem 5. Suppose that a connected and bipartite graph G has order n >
2t2 and minimum degree 5(G) > n/2t for some t > 4. Then pc(G) <t — 2.

This result is also sharp by a construction similar to the above. Consider
t copies of Ky, /(24) n/(2t) Where 2t[n. In each copy, select a vertex and connect
the selected vertices into a star on t — 1 edges. This graph clearly requires
t — 1 colors to be properly connected. Although the proof of Theorem 5
is similar, in nature, to the proof of Theorem 4, we present the proof in
Section 4.

For notation, given a graph G and a subset A C V(G), let G[A] denote
the subgraph of GG induced on A. Given a colored graph G and a vertex
v € G, let dZ(v) denote the number of distinct colors used on edges incident
to v. If the graph G is understood, we will simply write d°(v). The edge
chromatic number of a graph G is denoted Xx'(G). A vertex v € V(G) is
called simplicial if G[N(v)] is complete. All other notation can be found
in [4].

2. Forbidden induced stars
In order to prove Theorem 1, we will actually prove the following slightly

stronger result.

Theorem 6. For s > 2, any connected K s-free graph G has a coloring
with s — 1 colors so that G is properly connected and, for every verter v, we

have d°(v) < a(N(v)).
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Proof. This result is proven by induction on n + s. If G is complete, then
pc(G) = 1 so we may assume G is not complete and therefore s > 3. Sup-
pose the result holds when |G| < n and for all graphs which are K ,_i-free.
Consider a connected, K s-free graph G of order n which contains an in-
duced K1 1.

First suppose x(G) = 1, let v be a cut vertex and let Hy, Hy,..., H;
be the set of components of G \ v. Let a; = a(N(v) N H;) for all i. Apply
induction on H] = H; U v for each i to obtain an s — 1 coloring of H]
which is properly connected and with df;, (u ) < a(Ng:(u)) for all u € H]. In
order to combine these colorings, we permute the colors used in Hj so that
the edges from v to H; have colors 1,2, . 1- Similarly, we permute the
colors used in HJ so that the edges 1n01dent to v have colors from the set

{(ZJ 1a3)+1 (Z a])+2 Z] 165(= Zj 1aj—|—al)} (recall that the

edges incident to v have at most a; colors). This uses a total of Zle a; =
a(N(v)) < s—1 colors on edges incident to v and clearly produces a properly
connected coloring of G, thereby proving our desired result in this case. Thus,
G is properly connected, so we may assume k(G) > 2.

Let v be a vertex with a(N(v)) = s — 1 and suppose first that G[N (v)]
contains no edges; namely, v is not in a triangle and so a(N(v)) = d(v). Let
H = G\ v and apply induction on n+s in H (note that H is connected since
G was 2-connected). This produces a coloring of H which uses at most s — 1
colors such that, for each u € H, we have df;(u) < a(Ng(u)). Notice that,
for every vertex w € N(v), we have a(Ng(w)) = a(Ng(w)) —1 < s—2. This
means, on the edges incident to each vertex w, there is at least one color
which is not used. Color the edge vw with one such unused color for all
w € N(v). Certainly this provides a coloring of G in which d°(u) < a(N(u))
for all u € G. Furthermore, H is properly connected so let u be any vertex
of H and we will produce a proper path to v. There is a properly colored
path P from u to w for any vertex w € N(v) and, since the edge wv has a
color which was previously unused at w, the path uPwv is a properly colored
(u,v)-path. Hence, we may assume G[N (v)] contains an edge.

Let e = uw be an edge in G[N(v)] and again let H = G \ v and apply
induction on H to produce a coloring satisfying the desired properties with
at most s — 1 colors. Without loss of generality, suppose e receives color 1.
For every vertex © € N(v), let ¢, be the largest numbered color which is
already present on an edge incident to x (thus, ¢, # 1 as long as x has an
edge of another color in H). This is the color that we would like to use on
the edge vzx.

We will first consider the case where u (or similarly w) is simplicial in
G, and hence v is adjacent to all of N[u] = N(u)U {u}. Since (N (u)) = 1,
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u is incident to the edge e of color 1 and by induction df;(u) < a(N(u)),
this means that all edges incident to u have color 1. In this case, we know
¢y = 1 and redefine ¢, =1 for all x € Ny(u) (leaving ¢, as defined earlier
for all other vertices y € N(v)). Now color all edges zv with the color ¢, for
all z € N(v). Since every vertex of H has a proper path P to u on which
the edge incident to w has color 1, every vertex must also be connected to v
by a proper path (P \ {u})U{v}, so G is properly connected. Furthermore,
it is easy to check that we have d(y) = df;(y) < a(Ng(y)) for all y € H
and d°(v) < s—1=a(N(v)).

Finally, we may assume that u and w are not simplicial in G. If the only
color used in H at u (or similarly w) is color 1, then set ¢, = 2 (leaving ¢,
as originally defined for all other vertices ). Otherwise, we leave all values
¢, as originally defined. Then we color all edges va with the color ¢, for all
x € N(v). Since we assumed (N (u)) > 2 and (N (w)) > 2 and for all other
vertices in N (v), the color ¢, is already used on an edge at x, this coloring of
G satisfies d°(y) < a(N(y)) for all y € G. It remains only to show that the
coloring is properly connected. By induction, H is properly connected so let
y € H\ N(v) and we will produce a proper path to v. Since H is properly
connected, there exists a proper path from y to u. Note that we may assume
this path does not contain w since otherwise we could consider the subpath
from y to w and apply the same argument. If the last edge (incident to u)
on this path does not have color ¢,, we may take the edge uv to complete
a proper path to v so suppose this edge has color ¢,. Then, since ¢, # 1
which is the color of e, we may take the edge e to w and then the edge wwv
to complete the proper path to v. This shows that G is properly connected
and completes the proof. ]

3. Minimum degree

In order to prove Theorem 4, we will use the following result from [2]. For
this result, we define what it means to be 2-strongly properly connected.
Given a proper path P with an inherent orientation, we say start(P) is
the color of the first edge of P and end(P) is the color of the last edge
of P. A colored graph G is 2-strongly properly connected (or 2-strong) if,
between any pair of vertices, there exist at least 2 different (not necessarily
disjoint) properly colored paths P and @ such that start(P) # start(Q) and
end(P) # end(Q). This notion can be easily extended to k-strong.

Theorem 7 ([2]). If G is 2-connected, then pc(G) < 3 and there exists a
3-coloring of G that makes it 2-strong.
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In order to prove our main minimum degree result, we first prove this
lemma which gets within 3 of the desired result by using the edge chromatic
number of the set of bridges.

Lemma 1. Let t > 2, suppose G is connected of order n > t> and let B
be the subgraph of G containing only the edges that are bridges in G. If
5(G) > n/t, then |E(B)| <t —2 and pc(G) < X'(B) +3 <t +1.

Proof. Let G be connected of order n > t? with §(G) > n/t. We first show
|E(B)| <t-—2.

Let /4 = {H | H is a component of G \ E(B) such that there exists
a vertex v € H with v N V(B) = 0}. Note that for any component H of
G \ E(B), we have |H| > 6(G) +1 > % > t. We first show that every
component of G\ F(B) is in J#4. Thus, suppose for a contradiction that
there exists a component M of G\ E(B) such that every vertex of M is an
end vertex of an edge in E(B).

If we contract each component of G \ E(B) to a single vertex, what
remains of G is a tree T" on the edges of B. As with any tree, the number
of leaves in T is at least A(T'). In this case, a leaf of T' corresponds to a
component in which only a single vertex is incident to an edge of B. Thus,
if there exists a component of G \ E(B) which contains vertices which are
incident to s edges of B, then there must be at least s components in J2.

Since the components corresponding to leaves of T' must be in 77, it is
easy to see that 1 < |M| <t — 1. Similarly, we also get

t—1>|E(M,G — M)|

= da-_m(v)

veEM
> Y [da(v) — (1M] - 1)]
veM
[M]n
> 2 | - ).
This means n < t(t_Hl]'\ﬁ(l'M'_l)). By convexity, this quantity is maxi-

mized when either m = 1 or m = t — 1, both cases yielding a value of n < t.
This contradicts the assumption that n > t?, meaning that all components
of G\ E(B) are in J#. Since we have |H| > n/t for each H € ., we know
T must have fewer than ¢ vertices, which means it has fewer than t —1 edges.
This gives us |E(B)| <t —2.

Now consider the standard block-decomposition of G \ E(B) into edge-
disjoint maximal 2-connected blocks. By Theorem 7, each 2-connected block
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can be colored with 3 colors so that the block is 2-strong. Color the edges
of each block as such using the same three colors, suppose colors {1,2,3},
on all blocks.

We now show that it suffices to properly color the edges of B with x/(B)
colors {4,5,...,x(B) + 3}. Suppose we have such a coloring and let v and
v be two vertices of G. Note that, since each block is 2-strong, we can easily
see that each component of G \ E(B) is also 2-strong. Thus, if v and v
are in the same component, then, regardless of the number of cut vertices
between u and v, there is clearly a proper path connecting u and v, so
suppose v and v are in different components of G\ E(B). Again, since each
component is 2-strong, it follows almost immediately that this coloring is
properly connected. !

In order to complete the proof of Theorem 4, we state one more result.
Theorem 8 ([2]). If G is 2-connected and diam(G) = 2, then pc(G) = 2.
We may now prove our main minimum degree result.

Proof of Theorem /j. Let G be a graph with §(G) > n/t and let B be the
subgraph of G containing only the edges that are bridges in G. If x/(B) <
t — 5, then by Lemma 1, we have the desired result so we may assume
X' (B) > t — 4. Since B induces a forest in G with at most ¢ — 2 edges by
Lemma 1), this means that B contains a star S and B\ E(S) contains at
most two edges. Let s be the vertex at the center of this star.

Claim 1. There exists at most one edge e in B\ E(S).

Proof. If |E(B)| < t — 2, since |E(S)| > t — 4, there is clearly at most one
edge in B\ S. Thus, we may assume |E(B)| =t—2. Let C1,Cy,...,Cy where
¢ =t —1 be the set of components of G\ E(B). Call a component C; bad if
|Ci| > 20(G) —t + 3.

Fact 1. If |E(B)| =1t — 2, then there is no bad component.

This fact is proven simply by observing that every component of G \
E(B), even one which is not bad, has order at least n/t + 1 by Lemma 1
and the fact that £ =t — 1.

If diam(C;) > 3, since |[E(B)| = t—2, we get |Ci| > 26(G)+2—(t—2) >
2n/t —t+4 so C; is bad, contradicting Fact 1. Also, if a component C; is not
2-connected, then |C;| > 25+1 > 2n/t —t+3 since t > 5, so again C; is bad,
a contradiction to Fact 1. Thus, every component of G\ E(B) is 2-connected
and has diameter at most 2. By Theorem 8, there exists a 2-coloring of each
component so that C; is properly connected for all ¢. Color each component
as such with colors 1 and 2.
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If X'(B) = t—4, we may properly color E(B) with colors 3,4, ...,t—2 and
easily produce a properly connected coloring of G so we know E(S) >t —3
and there is at most one edge e in B\ S. Octaim 1

We now provide a properly connected coloring of the entire graph using
at most t — 2 colors. By Theorem 7, each block can be colored with 3 colors
so that the blocks are 2-strong. Since each component C; is bridgeless, such
a coloring of the blocks also makes each component 2-strong. Color each
component C; with colors {1,2,3} so that each is 2-strong.

Let m = |E(S)| and note that m < t — 2. Color E(S) properly with
m colors t —m — 1,t —m,...,t — 2. Since each component is 2-strong, the
subgraph consisting of S and all components containing a vertex of S is
easily shown to be properly connected. We now observe an easy fact which
is a corollary of Theorem 7.

Fact 2. Let C be a component of G\ E(B) such that |V(B)NV(C)| =1
where e is the edge of B incident to a vertex of C. Then, for any coloring
of e (say, c(e) = 1), eUC can be properly connected with at most 3 colors
and with c(e) = 1.

Thus, if m = |B|, the result follows immediately from Fact 2 so we may
suppose there exists an edge e € B\ E(S). If we let C, be the component
which is disconnected from S by the removal of e, then C, U e is properly
connected regardless of the color assigned to e by Fact 2.

We will assume e has an end u in the component Cs which also contains
s. The case where u is in another component follows similarly. Since Cj is
2-strong, there exist two distinct properly colored paths P and P» from s
to w in Cy such that start(P;) # start(Ps) and end(P;) # end(Ps). Color
e with the remaining color in {1,2,3} \ {end(Py), end(P,)}. This allows for
proper connection between any pair of vertices in GG, thereby completing the
proof. O

If we suppose pc(G) > 4, then by Theorem 7, we have x(G) = 1. In fact,
we can say a bit more. By the proof of Theorem 4, we obtain the following
corollary.

Corollary 9. Ifpc(G) =t > 5, then the number of bridges in G is at least t.
4. Bipartite graphs

For the proof of Theorem 5, we first recall a result from [2] and then prove
a lemma similar to Lemma 1.
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Theorem 10 ([2]). If G is bipartite and 2-connected, then pc(G) = 2 and
there exists a 2-coloring of G which is 2-strong.

Lemma 2. Lett > 4, G be a connected and bipartite graph of order n > 2t>
and let B be the subgraph of G containing only the edges that are bridges in
G. If 6(G) > & then |E(B)| <t —2 and pc(G) < x'(B) +2 < t.

Proof. Let G be as given in the statement. If G is 2-connected, then pc(G) =
2 by Theorem 10 so suppose k'(G) = 1. Let B be the subgraph of G con-
taining only the edges that are bridges of G. As in the proof of Lemma 1,
we first prove that |E(B)| <t — 2.

Suppose |E(B)| >t — 1. Let J# be the set of components of G\ E(B)
that contain at least one vertex in each partite set which is not incident to an
edge of B. Each component in 7 has order at least 26(G) > 25; = %. This
means that || < t so, since there are at least ¢ components of G \ E(B),
there must exist a component C' in which every vertex in at least one partite
set is incident to an edge of B. Let k be the number of edges of B with one
end in C. Using the same contraction argument as in Lemma 1, we know
|77| > k. If k > t, the proof is complete. Now, suppose it is not.

There are at most ¢ — 1 vertices in C incident to edges of B but every
vertex of at least one partite set (call it C) of C' must be incident to at least
one edge of B. This means that |C1| < ¢t — 1. Since 6(G) > & > t, there
are not enough vertices in C] for each vertex of the opposite set Cs to have
all of their edges inside C. This means that every vertex of Co must also be
incident to an edge of B. If we let ¢ = |C1| <t —1and cg = |Co| <t — 1,
we get

|%| > (5(G) — 62)01 + ((5(G) — 61)02 >t

since n > 2t? and C # (). This shows that |E(B)| <t — 2.

Now color the blocks of G with 2 colors so that they are each 2-strong.
Such a coloring exists by Theorem 10. This naturally implies that the com-
ponents of G\ E(B) are 2-strong. Now properly color B using the set of colors
{3,4,...,X'(B) + 2}. This produces a coloring of E(G) using 2+ x/'(B) <
2+ |E(B)| <2+t —2 =1 colors. Finally, using the same argument as in
Lemma 1, we see that this coloring is properly connected. O

Proof of Theorem 5. Suppose G is connected and bipartite of order n > 2t2.
By Lemma 2, if x/(B) <t — 4, we have pc(G) <t — 2 as desired so we may
assume x'(B) >t — 3. Since |E(B)| < t — 2, this means that B is a large
star S with at most one edge e outside the star. We now observe an easy
fact that follows from Theorem 10.
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Fact 3. Let C be a component of G\ E(B) such that [V(B)NV(C)| =1
where e is the edge of B incident to a vertex of C'. Then, for any coloring

of e (say, c(e) = 1), eUC can be properly connected with at most 2 colors
and with c(e) = 1.

Fact 3 eliminates the case where the edges of B form a star so we may
assume B contains a star S and B\ E(S) contains a single edge e with
one end in a component which does not contain the center of the star. At
this point, using exactly the same argument as at the end of the proof of
Theorem 4, the desired result holds. O
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