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An extremal problem for set families generated with
the union and symmetric difference operations

YUEJIAN PENG*, PAPA SISSOKHO AND CHENG ZHAO

Let G be a family of sets and let U™G be the family of sets obtained
by taking all unions of k sets of G with 1 < k < n. We define the
half-life of G with respect to the union operation, denoted by hy(G),
to be the smallest integer n such that some z € Uyecg A appears in
at least half of the sets in U™G. If no such n exists, then we define it
as 00. We also define the half-life of G with respect to the symmetric
difference operation in a similar fashion and denote it by ha(G). In
this paper, we establish several bounds for hy(G) and ha(G). As
a byproduct, we confirm Fréankl’s union-closed conjecture for some
special cases.
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1. Introduction

The symmetric difference of two sets A and B is AAB = (A\B) U (B\A).
Let G be a family of sets and for any positive integer n < |G|, define

(1) UG ={A;,U---UA; : 1<k<nand 4A;; € Gfor1<j<k}
and
(2) A"G ={A;A---AA;, - 1<k<nand A;, € G for 1 <j <k}

Definition 1. A family of sets F is union-closed (or A-closed) if it is closed
under union (or symmetric difference), i.e, for any A, B € F, we have AUB €

F (or AAB € F).

Let F be a union-closed family of sets. We call F non-trivial if it contains
a non-empty set. A generating set of F is a subfamily of sets G C F such that
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F is obtained by taking all the possible unions of sets in G. Equivalently, we
have

F =UmG, where m = |G|.

For any family of sets F, the ground set of F is defined by Feq = UacrA.
The union-closed conjecture, due to Frankl [4], can be stated as follows.

Conjecture 2. For any non-trivial union-closed family of sets F, there
exists an element x € Fgq which appears in at least half of the sets of F.

This simply stated conjecture turned out to be quite difficult to solve.
Partial results that support Conjecture 2 can be found in [1, 3-5, 7-12] and
the references therein.

If one takes a A-closed family of sets, then it is easy to show that the

conclusion of Conjecture 2 holds. More precisely, the following proposition
holds.

Proposition 3. Let F be any non-trivial A-closed family of sets with ground
set Feq. Then, any x € Fgq appears in at least half of the sets in F.

Proof. Let F ={A1,...,A;} be anon-trivial A-closed family of sets on the
ground set F,. For any = € Fg, there exists at least one A; containing =.
Suppose that the number of sets in F containing « is less than % Without
loss of generality, assume that z € A; and each Ay, ..., A(HTlW does not

contain x. Then the sets 4;AA;, where 1 < i < [”Tl], are pairwise distinct
and each of them contains x. Since F is union-closed, all these sets are in F,
and this contradicts the assumption that the number of sets in F containing
x is less than % O

Let G be a non-empty family of [ > 2 sets and let n be a nonnegative
integer. We define the half-life of G with respect to U to be the smallest
integer n such that some x € Gyq appears in at least half of the sets in
U"G. If no such n exists, then we define it as co. We use hy(G) to denote
the half-life of G with respect to U. The half-life of G with respect to A is
defined similarly and denoted by ha(G). The following problem will help us
to understand the union-closed conjecture.

Problem 4. Determine hy(G) and ha(G).

This rest of the paper is organized as follows. We give some bounds for
ha(G) and hy(G) in Sections 2 and 3 respectively. In Section 4, we confirm
the union-closed conjecture for some special cases.
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2. Some bounds on ha(G)

Let G be a family with [ > 2 sets and x € Ggq. For any positive integer n,
let A™(G,x) be the family of sets in A”G containing z. Let A"™(G,Z) be the
family of sets in A"G not containing x. We define the half-life of x € Ggq
with respect to A, denoted by ha(G,x), to be the minimum between oo and
the smallest integer n such that

[A™(G, )]

ang) -

1
5
Thus,

ha(G) = min ha(G,x).

TEGgq
If I = 2, then ha(G,z) =1 for any = € Gyq. So we assume [ > 3.

Proposition 5. For any family G with | > 3 sets and for any v € Ggq,
ha(G,x) < |G| holds.

Proof. Since A'G is A-closed for I = |G|, Proposition 3 implies that
ha(G.2) < [G]. m
In order to state our main result in this section, we need the following

definition.

Definition 6. A family of non-empty sets S = { Ay, ..., 4;} is called linearly
independent if for any integer j with 1 < j <[ and for all indices 1, ...,is €
{1, N ,l} \ {j}, we have A]’ 75 AzlA cee AAL

Lemma 7 will be used in Theorems 8 and 9.

Lemma 7. Let § = {A1,..., A4} be a linearly independent family of sets.
Let1<ig <---<ig<landl1<j <---<jgs <Il. Then, A;)A---AA; =
Aj A~ AAj, if and only if {i1, ..., is} = {j1,...,Jt}

Proof. Let I ={iy,...,is} and J = {j1,...,5:}. Suppose that I # J and
(3) A A AA;, = Aj A AA;.

We may assume that I NJ = (). Indeed, for each i € I N.J we can operate
by A;A on both sides of (3) and consider resulting sets I' = I'\ I N J and
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J' = J\INJ. With the assumption I N J = (), we can now operate by
A A---AA; A on both sides of (3) to obtain

A = A A AA; AA; A AA;,.

is—l
This contradicts the linear independence of S. O

Theorem 8. Let S = {Ay,...,A;} be a linearly independent family sets
with | > 3. For x € UézlAi, let g be the number of sets in S containing x.
(a) If gy is even, then ha(S,x) < [Z_Tl}
(b) If gz is odd and ha(S,z) # 1, then ha(S,z) < |52].

Proof. Since AlS is A-closed, Proposition 3 yields
(4) |AY(S, 2)| > |A1(S, 7).

We simply write ¢, as g throughout the proof. Without loss of generality,
we assume that © € A; for 1 <i < qgand x € A; for i > q. Note that a set in
A"(S, x) must be of the form A;; A---AA;_ , where there are an odd number
of indices i; € {i1,...,1s} such that i; < g. Similarly, a set in A™(S, Z) must
be () or of the form A; A --- AA;_, where there are an even number of indices
ij € {i1,...,1s} such that i; <gq.

(a) q is even. For any positive integer n < [ — 2, define a function f on
A™(S, x) by
f(AllA T AAZS) - Ale e AAjl—s

where {j1,...,751-s} = {1,...,1} \ {i1,...,is}. By Lemma 7, f is a one-
to-one function. Since ¢ is even, f is an onto function from A™(S,z) to
AYS,z) — Al=""1(S, x), which is the set
{A A AA;, cx € A A AA;,, i <<y, L—n<t<lI}.
Therefore,
(5) A™(S,2)| = [AI(S, )] — [AT" (S, 7).
Similarly, define a function g on A™(S,z) by
g(A A AA; ) =Aj A AAj, |
where {j1,...,51—s} ={1,.. ., 1} \ {i1,...,is}, and



An extremal problem for set families generated with. .. 655

Then g is a one-to-one and onto function from A™(S,Z) to AY(S,z) —
Al="=1(S, ). Therefore,

(6) |A™(S,2)| = |AN(S, 7)| — |ATTH(S, 7).
By (4), (5) and (6),
A™(S, 2)| + [ATTH(S, @) = JA™(S, )| + [ATH(S, 7).

Thus, |A™(S,z)| > |A™(S, 7)| or |AIT"1(S, z)| > |AIT"1(S, Z|. If we take
n= LFTIJ, then we get

-1

ha(S,2) < VTlJ or ha(S,1) < {T] |

(b) ¢q is odd. For any positive integer n < [ — 1, define a function f on
A™(S, x) by
FALA DA ) = Aj A A4y

where {jl; ce ,jl,S} = {1, ce ,l} \ {il,. . .,is}.

By Lemma 7, f is a one-to-one function. Since ¢ is odd, f is an onto
function from A"™(S,x) to AYS,z) — AI"""1(S,z), where A%(S,Z) is the
family containing only the empty set (). Therefore,

(7) |A™(S, )| = |AN(S, 7)| — |AT"(S, 7).

Similarly, define a function g on A™(S,z) by

g(AhA T AAls) = Ale T AAjl—s
where {j1,...,51—s} = {1,.. ., [} \ {i1,...,is}, and

Then ¢ is a one-to-one and onto function from A™(S,z) to AYS,z) —
Al="=1(S, z), where A°(S, z) is the empty family. Therefore,

(8) [A™(S,7)| = |AN(S, )| — |ATTH(S, ).
By (4), (7) and (8),

A™(S, 2)| — |A™(S, 2)] < [ATTTH(S, 2)| - [ATTH(S, 7).
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Swapping n with [ —n — 1 yields

[AY(S, 2)| = [A™(S,2)| = [ATTHS, 2)| — [ATTHS, 7).
Thus,

A8, 2)| = |AY(S,2)| = [AT"TH(S, @) — |ATTHS, 7).
So if ha(S,x) # I, then there exists at least one n <1 — 1 such that

ha(S,z) <min{n,l —n—1} < L%J . O

Theorem 9. Let G = {Ai,..., A} be a linearly independent family of | > 3
sets. Let q, be the number of sets in G containing x.

(a) ha(G,x) =2 if and only if% < gy < %
(b) If qo = 1, then ha(G,z) = L.

(c) If . =2 and 1 > 5, then ha(G,z) = [F2].

(d) If ¢ = 3 and | > 7, then ha(G, ) = [F15/E1).

Proof. We simply write ¢, as g throughout the proof. Without loss of gen-
erality, we assume that x € A; for 1 <i < qgand z & A; for i > q.

Note that a set in A™(G,x) must be of the form A; A---AA; , where
there are an odd number of indices i; € {i1,...,%s} such that i; < ¢. Simi-
larly, a set in A™(G,Z) must be () or of the form A; A---AA; , where there
are an even number of indices ¢; € {i1,..., 45} such that i; < ¢. Also recall
that, by Lemma 7, all sets A;; A---AA; withi; <--- <igand 1 <s <
are pairwise distinct. So for n > 2, we obtain

min{| 45 |,[ “5]} min{l—q,n—(2k+1)}

n o ’ q l_q
o weo- Y (1) X (57
k=0 Jj=0
and
min{[£],[ 5]} q min{l—q,n—2k} 1 ¢
(10) A™(G, )| = <2k> > ( j )
k=0 j=0

To show that |A™(G, z)| > |A"G], it is equivalent to show that |A™(G,z)| —
|A™(G,Z)| > 0.
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(a) Now assume ha(G,x) = 2. Since

)+ (5) and 12%G.0)0 =+ 4t - ),

200 —
2% =1+ (|

(+D)—vi-1 (+1)+V1-1

then |[A%(G, z)| > $|A%G| if and only if ¢ + (I —q) > F(1+ 1+ (é))
Solving the previous inequality for ¢ yields 5 q < 5 .
Since ha(G,x) = 1 when g > é, we conclude that <

(b) If g =1, then for 2 <n <1 -1,

"G, — 1AMG. ) = 5 (l ; 1) - ; (l - 1)

By Proposition 5, ha(G, z) = 1.
(¢)Ifg=2andl>5, then for 2<n <[-—2

s o= () (£(5)£(79)

J

where the last inequality holds if and only if n > [%1 So ha(G,x) = [17711
(d) Ifg=3and !> 7, then for 2 <n <[-3,

A" (G, 2)] — |A™(G,2)| = 32 (l . 3) +§% (l ‘.3)

(S E0)

() - () -6
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where the last inequality holds if and only if [l*% VIZL <y < [lil% Izl
So ha(G,z) = [/, O
Remark 10. It follows from the proof of Theorem 9 part (d) that ‘All(ngg’f)l

is not necessarily monotone with respect to n.

Theorem 11. Let G = {A1,..., A} be a family of sets and let I > 3 be
the maximum size of a linearly independent subset S of G. For x € UézlAl-,
let q, be the number of sets in G containing x.

(a) If gy is even, then ha(G,z) <1 —1.

(b) If gz is odd and S C G, then ha(G,z) <1 —1.

Proof. Let S = {A1,...,A;} be a maximum linearly independent subset of
G. Then for every non-empty set A; € G, there exists 1 < iy < -+ < i3 <
such that 4; = A; A---AA; . Since

AlG=AS = {0 U{A A AA; : 1<iy <---<ig <},

both A'G and A!S are A-closed. Furthermore, AI=1S = AlS\ {A;AA;---
AA;} and ATLG is either ALS or ALS.

(a) Assume that g, is even. If A'=1G = ALS, then A'~1G is A-closed, and
it follows from Proposition 3 that ha(G,z) <1 —1. So we may assume that
Alflg — Alfls_

Our goal now is to show that |A'=1(G, z)| > |A'~1G|/2. Since A71(S, z) =
A=1(G, z), it suffices to show that

IAL(S, 2)| > |ATLS) /2.

By Proposition 3, |AY(S, z)| > |AlS|/2. Note that |ALS| — |A71S| = 1 since
the only element in A'S\ A71S is A;A--- AA;.

Since ¢, is even, then A1 A --- AA; does not contain z, and consequently
|ATY(S, 2)| = |AYS, 2)|. Hence, |A7Y(S, 2)| > |ATLS|/2.

(b) Assume that ¢, is odd and § C G. We claim that AlF1G = ALS. Note
that A'71S € Al71G C AlS and AlS \ A71S = {A4;A--- AA;}. Since
S C G, then there exists A; € G\ S such that A; is the symmetric difference
of at least two sets in S; therefore, A1A---AA; € A""1G and consequently
A=1G = AlLS. Then again it follows from Proposition 3 that ha (G, z) < 1—1
since A71G is A-closed. O
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3. Some bounds on hy(G)

Let G be a family with [ > 2 sets and x € Ggq. For any positive integer n,
let U™(G, z) be the family of sets in U"G containing x. Let U™ (G, Z) be the
family of sets in U"G not containing x. Recall that the half-life of x € Ggq
with respect to U, denoted by hy(G, x), is the minimum between oo and the
smallest integer n such that

U™ (G, =)

Q) -

1
5
Thus,

h = min hy(G, ).

(@) = min ()

If the union-closed conjecture (Conjecture 2) is true, then hy(G) < |G|.
We know from Remark 10 that |A™(G,z)|/|A™G| is not necessarily mono-
tone with respect to n. It is interesting to investigate whether or not | U"
(G, x)|/|U™G| is monotone with respect to n. If |U™ (G, z)|/|U" G| were mono-
tone, then union-closed conjecture would hold if and only if hy(G) < |G|.

We now provide two results about hy (G, x) when its value is significantly
less than |G].

Proposition 12. Let G = Uézlgi be a family of sets, where G; is a union
closed family of sets and let x be an element in the ground set of G. Assume
that |G| = g > 1 for 1 <i <l and A;;, U---UA; # A, U---UA,, for
{iv, ... is} # {J1, .-, Ji}, where Ay € G; ) for 1 < p < 1. Finally, assume
that there is an ig, with 1 < ig < I, such that x belongs to all sets in G,
and x does not belong to any other set. Then hy(G,z) < | — 1 whenever
I >1+1mn2/In(l +1/g). Moreover, the union-closed conjecture is true for
U'G, and thus h,(G,z) <1 =|G|/g holds in general.

Proof. Since all A;, U---U A,;_ are pairwise distinct where i; < --- < 45 and
each 4; is from G;, 1 < j <sand 1 <s </, then

n
(1
UG =3¢ ( )
PR
Since a set in UG containing x must be of the form

Aig or Aio UAZ'1 U--- UAz‘S,
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then
n—1 . l—l
u"(g,xnzzg-gﬂ( j )
=0

So,

2|un<g:c|—g+2(( EIOY)
S () (1)

>g+Zg<>+n 1197< ) ”1+1<i__11)

J=
— (-1 1—1 l
=|u" J n—1+1 _n
| g\+g+j§:19( j >+g no1) "9\ )

here we used the assumption g > 1.
Case 1. If n =1 —1, then

-2
(-1
UG, 2) > (U1 Gl + g+ Zgﬂ( . ) Lyl —1) - gl

j=1

l _ _
llg+zg<]) ll+gl l(lfl)*gl ll

=[UT G+ (149" - +gl Yi—1)—g¢"1
UG+ (149 -

Therefore, 2| U1 (G, x)| > |U"1 G| when [ > 1 +1n2/In(1 + 1/g).
Case 2. If n =1, then

-1 l
G| 2 UGl +g+a (7)o () > 100l

Therefore, we have shown that hy(G) <1 —1when! >1+1In2/In(1+41/g).
Moreover, the union-closed conjecture is true for U'G and thus, hy(G) < I
in general. U
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Remark 13. If g = 1 in Proposition 12, then U'G = A!G for any 4, and the
case is covered in Theorem 9 (b).

Proposition 14. Let G = uﬁzlgi be a family of sets where each G; is union
closed and ANB =0 for A€ G; and B € G (i # j). Assume there is an
io and an x € G;, such that x is in at least (|G;,| +1)/2 of the sets of G, .
Then the union-closed conjecture is true for UG and thus, hy(G,z) < 1.

Proof. Let |G;| = k;. Without loss of generality, let « be in at least (k1 +1)/2
sets of G;. We will show that | U’ (G, x)| > %
Form a complete [ partite graph H whose parts are the G; families 1 <

i < 1. Then | U' G| is the total number of cliques in H and | U’ (G, z)| is the
total number of cliques containing a vertex A € U._,G; such that z € A. So

l
UGI=D kit > kiki, -
i=1 1<i1<i2<l
+ Z k’tlklg ”.kil,1 +k1k2”.kl7

1< < <41 <

and
l

1+k 1+k 1+k
U (G, 2)| = 21+ 2121“ 21 > kiki, e
i=2 2<i4, <ip<I

1+ K 14+ Kk
+—5 D Kiki ki, ke h

2
2<4 << -2 <1

(11) =%+%(1f1+§l:ki>+%(1ﬁ§l:ki+ > kk)+
1=2 i=2

2<i1<ia <l

<k1 Z ki, ki, -'-kil_2+/€2"-k‘l_1) —i—%k‘Q---kl_l.

2<iy <<ty —2<l

_|_

DN | =

From (11) and the expression of | U! G| above, we obtain

l
1 1 1
‘Ul(g,$)’:§+§é k’l+§ E ]{Ihkw‘f‘
i=1

1<i; <ip <1
1 1
+t5 | Z kivkis -~ ki, + Skikz -k
1<y << -1 <

_1ug
9,
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4. Some special cases of union-closed conjecture

Let G = {A1,...,A;} be a family of [ sets. We follow the same notations
as in the previous section. Note that U'G is the union-closed family of sets
generated by the sets in G.

Definition 15. We say that {{A4, ,..., 4. },{4;,,..., 4, }} is an overcount
in UG (resp. U™(G, x)) if the following conditions hold

(i) A, U---UA;, and Aj, U---UAj, are in U"G (resp. U"(G, x)),
(11) {Aiu s aAis} 7& {Aj1? s 7Ajt}7
(111) Ai1 U"'U14iS :Aj1 U"'UAjt.
We define an auxiliary graph H" = (V, E™) (resp. HY = (V, E?)) corre-
sponding to the overcounts in U"G (resp. U"(G, ) ) as follows. Let

V:{{Ai17"‘7A’is}: 1§21<<15§n§l}

and join L € V and R € V by an edge in H" (resp. H)) if {L, R} is an
overcount in UG (resp. U™(G, x)).

Definition 16. A set O of overcounts in U"G (or U™(G, x)) is independent
if the corresponding edges in graph H™ (resp. H)') do not induce a cycle.

Lemma 17. Let G = {Aq,..., A} be a family of | sets. Let © € Ggq and c,
be the maximum number of independent overcounts in U"(G,x). Let ¢ be the
mazimum number of independent overcounts in U™G. Suppose that x is in q
sets A; € G. Then, 2| U™ (G, x)| — |U™ G| > 0 if and only if

c—2c$22§<l_iq>_g<i>'

Proof. Without loss of generality, we assume that x € A; for 1 < i < g and
x & A; for i > q. Let us estimate | U™ G| and | U™ (G, z)|.

Note that every set in U"G is of the form A;, U---UA;_, where 1 < s <n.
If A;, U---UA;, are pairwise distinct, then |U" G| =Y (l) In general,

=1 \g
(12) U gl = gzj (l) e

Similarly, every set in U™ (G, ) is of the form A; U---UA; , wherel1 <s<mn
and 1 < i < q. If all these A;, U---U A;, are distinct, then | U" (G, x)| =
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> i (i) -y (l;q). In general

n

(13) 1% (g,x)|zz<i>g(l;q)cx.

i=1
By (12) and (13), we see that 2| U™ (G,z)| — | U™ G| > 0 is equivalent
toc—2e: > 2300, (5 - £ () O

By taking I = n in the above lemma, we obtain the following results
confirming some special cases of the union-closed conjecture.

Theorem 18. Let G = {A1,..., A;} be a family of | sets. Let x € Ul_, A;
and c; be the mazimum number of independent overcounts in UY(G,x). Let
¢ be the mazimum number of independent overcounts in U'G and v = ¢ — ¢y,
Suppose that x is in q sets A; € G.

(1) The union-closed conjecture is true for U'G if and only if there exists
an x € UL_| A; such that ¢ > 2¢, — 2! + 2170+ — 1,

(2) In particular, the union-closed conjecture is true for U'G if one of the
following conditions holds:

(2.a) c, <20 —2l-a+l 1,
(2.b) v >2-1—-1—q.
(2.c) 279 < g+ 1.
(2.d) | U G| >2l-att — 2,
Proof. Taking n =1 in (12) and (13), we have

(14) (U G|=2"—1—cand |U (G,z)| =2 =277 —¢,.

(1) By (14), we see that 2| U (G,z)| — | U' G| > 0 is equivalent to ¢ >
2, — 28 2070 — 1

(2.a) Note that ¢ > ¢;. If ¢; < 2/ = 279% + 1, then (14) yield
2| U (G, x)| — UL G| > 2t — 20+ 41— ¢, >0,

(2.b) Note that |U (G, x)| > q,50 ¢, < 21279 —q. If y = c—c, > 2179—1—q,
then (14) yield

2| Ul (G, )| — UG > 2 =279 1 — ¢, 4y >0,

because ¢; <20 =279 —gand y > 2791 —¢.
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(2.c) Since ¢, < 2! — 279 — g and 277 < ¢ + 1, then equations (14) yield
2| U (G, x)| — | UGl =2 — 2t 41— ¢, > 0.

(2.d) If |U! G| > 2!79+1 — 2 then equation (14) yields ¢ < 2! — 2!=9F1 41,
Since ¢, < ¢, then ¢, < 2! — 21791 4+ 1 and (2.d) follows from (2.a). O

The next corollary follows directly from Theorem 18 (2.d) and the fact
that the union-closed conjecture holds for the families with a generating
family of pairwise disjoint sets.

Corollary 19. The union-closed conjecture holds for a union-closed family
F of sets if F has a generating family of sets G with |G| < logy(|F|+2)+1.

Given a family of sets G with [ sets, we say that U'G satisfies the averaged
Frdnkl’s property if

S @U@~ U gl >,

€G g4

Satisfying the averaged Frankl’s property clearly implies satisfying the union-
closed conjecture. As observed in [2], there are many families G with [
sets such that U'G satisfying the union-closed conjecture, but the averaged
Frankl’s property fails.

For any family of sets G = {A;, ..., A;}, recall that the ground set of G
is Ggq = UlizlAi. For any x € Ggq, we let

:(G) ={A: x € A€ G} and guin(G) = min ¢,(G).

TE€Ggq

Furthermore, we sometimes write g, (resp. gmin) instead of ¢, (G) (resp.
Gmin(G)) if the family G is clear from the context.

Let O be a maximum independent set of overcounts in U'G. Then for
any overcount W = {L, R} € O, we let Sy = Uscr, A = User A- Then Sy
is a union of some sets A; € G. Define the average size of a set Sy over all
W e O by

_ 1
(15) S(Q) = @ Z |Swf

WeO

Let ¢, be the maximum number of independent overcounts in U'(G, ) and
define the average value of ¢, over all x € Ggq by

(16) (@) ==Y e
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Theorem 20. Let G be a family of | sets with g = |Gea|. Let 5 =35(G) and
¢ = ¢(G) be as defined in (15) and (16) respectively. Then g/s > 1 always
holds.

(i) The averaged Frdnkl’s property is true for U'G if and only if

1
- I (ol
(2—g/s)c<1+2 —(2/9) Z 501
zeGgd

In particular, the averaged Frdnkl’s property is true for U'G if g/5 > 2.
(43) The union-closed conjecture is true for U'G if 1 < (g/3) < 2, and there
exists x € Ggq satisfying

2l —2l=%+1 4 _}
C/.

cxgmin{ 29/

In particular, the union-closed conjecture is true for U'G if € < %

(iii) The union-closed conjecture is true for U'G for any positive number
€ < 1 with

1+e<g/s <2 and guin > 1 — logy(e).

Moreover, by combining (i) and (iii), it follows that the union-closed con-
jecture is true for U'G whenever /3 > 1 and qumin > 1 — logy(g/5 — 1).

Proof. Let O be a maximum independent set of overcounts in U'G. For any
x € Ggq, let O, C O denote the (possibly empty) set of all those overcounts
W ={L,R} € O for which z € Sy = e, A = Uscr A We count in two
ways the number of pairs (z, W) such that z € Goq and W € O,. Then we
have

(17) > Swl= )" [0.].

WweO IEggd

Let ¢ = |O|, and let C, be a maximum independent set of overcounts in
UN(G, x) with ¢, = |Cy|. If |Cy| > |O,] then O = (O\ O,) U C, is also an
independent set of overcounts in U'G with |O’| > |@|, which contradicts O
being of maximum size. So we may assume that ¢, = |Cy| = |O,| for any
x € Ggq. Then (17) yields

(18) Do ISwl= D e

weO .Z’Eggd
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Now, it follows from (18) and the definitions of 5 and ¢ (see (15) and (16))
that

(19) c=(g/5) %

In general g > 5 since Sy C Ggq for all W € O.
(i) Applying (14), we have }° . (2| UH(G, )| — U G]) > 0 if and only
if
Yo @IUG o) -ugh=) (22 -2 —¢) -2 -1-¢) 20
2€G4a 2€Gga

if and only if

> 2Z$€ggd Cx + 2_l 1

9 9 TEGea 2

c —2l—1,

if and only if

2 1 }
CZ2C+E E 2q$—1_2_1'
:BEggd

By (19), the above inequality holds if and only if

2 Se<14+ 2 2 1
e-gesi+2 -2 3
zeGgd

If there exists o € Ggq satisfying

cx < min{ — 75} )
2—g/3

then by (19), we obtain
c=(9/5) ¢z (9/5)ex 2 260 — 9l 4 ol=@tl _q

because ¢, < (2! — 2/7%+1 1 1)/(2 — ¢/3) holds by hypothesis. Now (ii)
follows from Theorem 18 (2.b).

To prove (iii), first note 2— g/5 < 1—¢ since (by hypothesis) g/5 > 1+e.
Consequently, the sufficient condition in (ii), namely ¢ < (2! — 2i=%+1 ¢
1)/(2 — g/3), holds if

(20) c<(1—et. (2 =2t ),
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Now (20) holds because

c<2<(1—e) 7t (2 =27 %t ),

where the last inequality holds since ¢ < 1 and

dz = qmin > 1 — IOgQ(G) = 2! < (1 - 6)71 . (21 — 9=+l + 1)

The proof of part (iii) is now complete.

The last statement of the theorem is a straightforward combination of

(1) and (iii). O
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