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We study the Maker-Breaker game on chains in a poset. In a chain-
product poset, the maximum size of a chain that Maker can guar-
antee building is k−�r/2�, where k is the maximum size of a chain
in the poset and r is the maximum size of a factor chain. We also
study a variant where Maker must build a chain in increasing or-
der, called the ordered chain game. Within the bottom k levels of a
product of d chains of size at least k, Walker can guarantee a chain
that hits all levels if d ≥ 14; this result uses a solution to Con-
way’s Angel-Devil game. When d = 2, the maximum that Walker
can guarantee is only 2/3 of the levels; when d = 3, Walker cannot
guarantee all levels, as shown by Clarke, Finbow, Fitzpatrick, Mes-
senger, and Nowakowski by studying a related game. It is unknown
whether Walker can guarantee all levels when 4 ≤ d ≤ 13. In the
product of two chains of equal size, Walker can guarantee 2/3 of
the levels asymptotically.

1. Introduction

TheMaker-Breaker game on a hypergraphH is played by Maker and Breaker,
who alternate turns (beginning with Maker). A move acquires a previously
unchosen vertex of H. Maker wins by acquiring all vertices of some edge
of H; Breaker wins by preventing this.

Maker-Breaker games have been studied for many hypergraphs, particu-
larly when the vertices are the edges of an n-vertex complete graph. In that
setting, when n is large enough Maker can build a spanning cycle, a complete
subgraph with q vertices, a spanning k-connected subgraph, or various other
structures. For an introduction to Maker-Breaker games (and more general
positional games), see the surveys [1] and [2] or the book [3]. Recent work
has also considered how quickly Maker can win [8] and what bias Breaker
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needs to win [4, 5, 10], where bias b means that Breaker makes b moves for
each move by Maker.

In this paper, we study the chain game on posets, where the winning
sets are the chains with a given size. For every poset there is a maximum
size of chain that Maker can build against optimal play by Breaker; we seek
this value. For special posets whose elements are integer d-tuples, we give
efficient strategies for Maker that do not waste any move (every element
that Maker selects is in the chain constructed).

Chains in posets are ordered from bottom to top, so a natural variant of
the chain game is the ordered chain game, in which the chain must be built
from bottom to top. The rules for moving are the same as in the chain game;
the difference is that the “score” that counts for Walker is the maximum
size of a subsequence of played elements forming a chain played in increasing
order. To distinguish this game from the (unordered) chain game, we call
its players Walker and Blocker.

We use r,k,2 to denote the posets that are chains of sizes r, k, 2, etc.
The product of d chains with sizes r1, . . . , rd, written

∏d
i=1 ri, is the set of

d-tuples x such that 0 ≤ xi < ri for 1 ≤ i ≤ d, ordered by x � y if and
only if xi ≤ yi for 1 ≤ i ≤ d. (Similarly, x ≺ y if x � y and x �= y.) The
d-dimensional k-wedge, written Wd

k , is the subposet of kd consisting of the
nonnegative-integer d-tuples with sum less than k, under the coordinate-wise
order.

For the chain game and ordered chain game on these posets, we prove
two main results.

Theorem 1.1. Let P be a product of d chains, with r being the maximum
size among these chains and k being the maximum size of a chain in P . In
the chain game on P , Maker can build a chain of size k−�r/2�, and Breaker
can prevent Maker from building a larger chain.

Theorem 1.2. If d ≥ 14, and k ∈ N, then in the ordered chain game on
Wd

k , Walker can build a chain of size k (hitting all levels).

In Wd
k with d = 2, Walker can guarantee hitting 
2k/3� levels but no

more. Clarke, Finbow, Fitzpatrick, Messenger, and Nowakowski [6] showed
that when d = 3, Walker cannot hit all levels. Somewhere between dimension
4 and dimension 14 is a least dimension in which Walker can hit all levels.
We conjecture that this happens already in dimension 4.

We begin in Section 2 with the Maker-Breaker chain game on products
of chains. The remainder of the paper addresses the ordered chain game.
In Section 3 we study the 2-dimensional case for both wedges (proving the

2k/3� result mentioned above) and grids (products of equal chains). In the
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product of two chains of equal size, Walker can guarantee asymptotically 2/3
of the levels; we prove this by a “potential function” argument. In Section 4
we briefly discuss the Seepage game of Clarke et al. [6]; this game (formu-
lated independently of this paper) generalizes the ordered chain game to
acyclic digraphs. Section 4 also relates the ordered chain game to Conway’s
famous Angel-Devil game. We apply this relationship in Section 5 to prove
Theorem 1.2; there we also consider the biased game in which Blocker makes
b moves after each move by Walker.

2. Maker-Breaker on chain-products

In a product of chains, we use level � to denote the set of elements whose
entries sum to �. A successor of a d-tuple x is a d-tuple y such that x ≺ y.
To evoke familiar terminology from games on physical boards, we refer to
an element chosen at a particular time as a move and say that the player
plays that move at that time.

In order to solve the Maker-Breaker game on products of finite chains, we
first solve the ordered chain game on products of 2-element chains. We then
apply this lemma to build an optimal strategy for Maker in the unordered
chain game on arbitrary finite chain-products. Let [d] = {1, . . . , d}. There is
a natural isomorphism from 2d to the lattice of subsets of [d] in which each
binary d-tuple x is mapped to {i : xi = 1}.
Lemma 2.1. For d ≥ 2, let P ′ be the poset obtained from 2d by deleting
the top element and the bottom element. The maximum size of a chain in
P ′ is d−1, and Walker can build a chain of size d−1 in P ′, even if Blocker
moves first.

Proof. View the elements of P ′ as subsets of [d]. On his kth turn, Walker
plays a move S at level k such that (i) S is above all his previous moves
and (ii) Blocker has played no successor of S. Successfully executing this
strategy for d− 1 turns builds a chain of size d− 1.

Let S be the previous move by Walker. If Blocker responded with a move
not a successor of S, then Walker can add any element to S. Otherwise, since
the highest level of P ′ is d−1, the move by Blocker omits some e ∈ [d]. Walker
now plays S∪{e} and restores the property that no successor of the current
move has been played.

Since Walker can build a chain hitting all levels in P ′, we conclude also
that Maker can build a chain hitting all levels in the unordered game. The
latter statement, along with the freedom to let Breaker move first, is what
we need to analyze arbitrary chain-products. Since Maker need not take
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Figure 1: Maker strategy for chain-products.

the elements of a chain in order, Maker can build chains independently in
different copies of the poset P ′ in Lemma 2.1; they will combine to form a
large chain.

To show optimality of the resulting strategy for Maker, we present a
strategy for Breaker. Since every chain in a chain-product is contained in a
longest chain, it suffices to give a pairing strategy for Breaker that guarantees
blocking enough of every longest chain.

Theorem 2.2. Let P =
∏d

i=1 ri. In the unordered chain game on P with
r = maxi ri, Maker can guarantee building a chain of size k − �r/2�, where
k is the maximum size of a chain in P , and Breaker can keep Maker from
building any larger chain.

Proof. The elements of P are the d-tuples x such that 0 ≤ xi < ri for
1 ≤ i ≤ d. By symmetry, we may assume that r = rd = maxi ri. For
0 ≤ j < r, let zj be the element of P whose ith coordinate is min{j, ri − 1}.
For 1 ≤ j < r, let Aj be the subposet of P consisting of all x such that
zj−1 ≺ x ≺ zj . See Fig. 1, where {z0, . . . , zr−1} are in bold. Note that
z0 ≺ · · · ≺ zr−1, that A1, . . . , Ar−1 are pairwise disjoint, and that each Aj is
isomorphic to the poset P ′ of Lemma 2.1 for some dimension (as j increases
beyond some ri, the dimension decreases). Fig. 1 illustrates A1, . . . , Ar−1.

The key to Maker’s strategy is that chains in A1, . . . , Ar−1 combine with
{z0, . . . , zr−1} to form a chain in P . Let Z = {z0, . . . , zr−1}. Maker begins
by playing an element in Z. When Breaker plays an element in Z, Maker
responds by playing another element in Z if one is available. Maker treats
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each subposet Aj as an instance of the poset P ′ of Lemma 2.1; when Breaker
plays in Aj , Maker responds using the strategy of Lemma 2.1. When Breaker
plays any other move, Maker plays to increase the chain in some Aj or Z.

By Lemma 2.1, Maker obtains in each Aj a chain hitting all levels. These
combine with Z to form a long chain in P . The only levels that Maker misses
are those containing an element of Z played by Breaker. Maker’s strategy
ensures that Breaker plays at most �|Z|/2� such moves. Since |Z| = r, the
bound follows.

To prove optimality, Breaker uses a pairing strategy. For all j with 0 ≤
j < �r/2� and all (x1, . . . , xd−1), Breaker pairs the elements (x1, . . . , xd−1, 2j)
and (x1, . . . , xd−1, 2j+1). When Maker plays a paired element, Breaker plays
its mate; when Maker plays an unpaired element, Breaker responds arbitrar-
ily. We show that Maker misses at least �r/2� elements from every maximal
chain.

Given a maximal chain X, let Xj be the subchain of X consisting of
all elements whose last coordinate has value j, for 0 ≤ j ≤ r − 1. Let x
be the last element of X in X2m, and let y be the first element of X in
X2m+1 (note that X cannot skip any Xj). Since Breaker has paired x with
y, Maker misses at least one of these. Thus in every maximal chain Maker
misses elements from at least �r/2� levels.

3. Walker vs. Blocker in two dimensions

For the ordered chain game, wedges are easier to analyze than chain-products,
because the poset formed by the successors of any element is isomorphic to
a truncation of the same wedge by discarding the highest levels. This al-
lows Walker to define a strategy locally. In a chain-product, when the top
of a growing chain reaches the maximum in a given coordinate, no further
moves in that direction are possible. Blocker may be able to take advantage
of Walker being “trapped in a corner”. To overcome this, Walker may need
to look farther ahead to plan a strategy.

In this section, we first give an exact solution for the ordered chain
game on W2

k . We then express Walker’s strategy in a more general way
using a “potential function” to show that asymptotically as big a chain can
be built in the game on the product of two (k+1)-element chains as on the
wedge W2

2k+1 that contains it.

Theorem 3.1. In the ordered chain game on W2
k , Walker can build a chain

of size 
2k/3� in 
2k/3� moves. Also, Blocker can prevent Walker from
building a larger chain.
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Proof. We present a strategy in which Walker follows a single chain, with no
wasted moves. Walker first plays (0, 0). For each subsequent move, Walker
plays a successor of his previous move; among all unchosen successors, he
plays one at the lowest level. A level containing a move by Walker is “won
by Walker”. After a move (a, b), Walker next plays at level a+ b+ 1 unless
Blocker has already played both (a+ 1, b) and (a, b+ 1). We then say that
Blocker wins level a+ b+ 1.

Since Blocker spends at least two moves in a level to win it, while Walker
spends only one move per level won, the number of levels that have been
won by Walker is always at least twice the number won by Blocker. At the
end of the game all k levels have been won by one player or the other; hence
Walker has won at least 
2k/3� levels.

For the upper bound, we present a strategy for Blocker to keep Walker
from building a larger chain. If Walker’s previous move was at (a, b) and
exactly one of (a+ 1, b) and (a, b+ 1) have been played, then Blocker plays
the other. If neither of them has been played, then Blocker plays (a+1, b+1),
if available. Otherwise, Blocker plays an arbitrary move.

Once the game has finished, let (a, b) be an element on a largest chain
C that was occupied by Walker in order. If when Walker played (a, b) one of
(a+1, b) and (a, b+1) had already been played, then C has no element from
level a+ b+1. If C has an element x from level a+ b+1, then before x was
played the element (a + 1, b + 1) was played by one of the players. Blocker
next ensures that the other successor of x at level a+ b+2 is occupied, thus
preventing C from having an element from level a+ b+ 2.

We have shown that Blocker’s strategy prevents Walker from building a
chain in order that hits three consecutive levels. Hence Walker wins at most

2k/3� levels.

In efficient strategies, where all moves by Walker form a chain, we refer
to the most recent move by Walker as the head of the chain. A more global
view of the strategy for Walker uses a potential function to measure the
difficulty that Walker faces in the levels above the head.

We define a potential function to measure the future levels that Walker
may need to skip. Thus Walker wants to keep the potential small. When
Walker skips a level, the potential will decrease by 1. Other moves by Walker
will not increase the potential. A move by Blocker will increase the potential
by at most 1/2. We design such a potential and strategy for W2

2k+1 and use

it to show that even when the game is restricted to the subposet (((k+++ 1)))2,
Walker can still win asymptotically 2/3 of the levels.

Blocker’s move at a position (c, d) makes it harder for Walker to win
level c + d. To measure this difficulty when the head is at (a, b), we define
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the influence of (c, d) on (a, b), where a ≤ c and b ≤ d, to be
(
c′+d′

d′

)
2−(c′+d′),

where (c′, d′) = (c, d)− (a, b) (the influence is 0 if a > c or b > d). We write

fa,b(c, d) for the influence of (c, d) on (a, b). Define the potential Φa,b to be

the total influence on (a, b) of the moves Blocker has played. Large potential

is good for Blocker.

To motivate these definitions, note that the influence of (c, d) on (a, b)

equals the probability that a random walk from (a, b) to level c+ d will end

at position (c, d), where the walk iteratively increases a randomly chosen

coordinate by 1. Let (a, b) be the current head of the chain, and let (c, d)

be another position. The average of the influences of (c, d) on (a+ 1, b) and

(a, b+ 1) equals the influence of (c, d) on (a, b). Walker will want to choose

the option that produces the smaller potential.

Theorem 3.2. In the ordered chain game on (((k+++ 1)))2, Walker can build a

chain hitting more than 2
3(2k + 1) − 4

√
k ln k of the 2k + 1 levels, and this

is asymptotically sharp.

Proof. Since Blocker can limit Walker to winning 
(2/3)(2k + 1)� levels in

W2
2k+1, Walker can do no better on the subposet (((k+++ 1)))2. Hence it suffices

to prove the lower bound.

Consider the game on W2
2k+1. At a given time, let S(a, b) denote the

set of elements at or above (a, b) that Blocker has played. Recall that the

potential Φa,b at a point (a, b) is
∑

(c,d)∈S(a,b) fa,b(c, d).

We have noted that always fa,b(c, d) =
1
2 [fa+1,b(c, d) + fa,b+1(c, d)]. When

the head of the chain is at (a, b), we have (a, b) /∈ S(a, b), and hence sum-

ming over S(a, b) yields Φ(a,b) =
1
2(Φ(a+1,b)+Φ(a,b+1)). To keep the potential

small, Walker wants to move to whichever of (a + 1, b) and (a, b + 1) has

smaller potential.

If this strategy directs Walker to play a move (a′, b′) that Blocker already
played (that is, (a′, b′) ∈ S(a, b)), then Walker simply computes the choice

the strategy would make from (a′, b′) instead. The influence of (a′, b′) on

Φa′,b′ is 1, and by skipping (a′, b′) this influence is lost. Thus when Walker

chooses a successor of (a′, b′), the potential decreases by (at least) 1. Walker

may skip several levels before the preferred option is available, decreasing

the potential by 1 for each level skipped.

Since Blocker cannot play where Walker just played, the increase in

potential from Blocker’s move is at most 1/2. Since the potential is 0 at the

start and the end of the game, Blocker must make at least two moves for

every level skipped by Walker. Walker wins a level for each move played, so

Walker wins at least twice as many levels as are skipped.
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In order to restrict play to (((k+++ 1)))2, which is a subposet of W2
2k+1, we

grant Blocker initially all moves that are outside (((k+++ 1)))2. The key obser-
vation, which we formalize below, is that all of these free moves for Blocker
increase the potential only by o(k). Since again the potential decreases to 0
at the end, Walker loses at most o(k) more levels than in the original game
on W2

2k+1, and hence Walker gets at least the fraction 2/3−o(1) of the 2k+1
levels. (Here o(g(k)) denotes any function of k whose ratio to g(k) tends to
0 as k → ∞.)

To bound the initial influence of the forbidden moves, recall that f(c, d)
is the probability that a random walk from (0, 0) to level c + d ends at
(c, d). The distribution of the endpoint is the standard binomial distribu-
tion for c + d trials. Let Xn be the binomial random variable counting the
heads in n flips of a fair coin. The initial value of the potential function is∑2k

n=k+1 Pr(|Xn − n/2| > k − n/2). Let k′ = 

√
2k ln k� and n0 = 2k − k′.

For each n greater than n0, the probability is at most 1. For n ≤ n0, we use
the well-known Chernoff bound.

The Chernoff bound states that Pr(|Xn − n/2| > nt) ≤ 2e−2nt2 ; we
apply it with t = k/n − 1/2. Since 2nt2 increases as n decreases, we may
assume n = n0 and use 2e−2n0t2 as a bound on the contribution from these
terms. We have n0 = 2k(1 − x), where x = k′/2k >

√
ln k/(2k). Also,

2t = 1
1−x − 1 = x

1−x . We compute

2n0t
2 =

n0

2
(2t)2 = k(1− x)

x2

(1− x)2
> kx2 >

1

2
ln k.

Thus 2e−2n0t2 < 2k−1/2, bounding the total contribution from these terms by
2
√
k. From the k′ terms with largest n, the bound on the total is 


√
2k ln k�.

Hence the initial potential is less than 4
√
k ln k. As a result, Walker misses

fewer than 4
√
k ln k levels in addition to the (1/3)(2k + 1) levels missed by

the earlier argument.

4. Seepage and the Angel-Devil game

In this section, we study two games: the Seepage game, defined by Clarke,
Finbow, Fitzpatrick, Messenger, and Nowakowski [6]; and Conway’s Angel-
Devil game. We relate these two games to the ordered chain game.

A rooted digraph is a digraph with a single vertex designated as the
root. The Seepage game is played by Sludge and Green on an acyclic rooted
digraph G. Sludge and Green take turns claiming vertices of G. A vertex
claimed by Sludge is said to be polluted, while a vertex claimed by Green
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is said to be protected. In each round, first Sludge pollutes an unprotected

out-neighbor of a currently polluted vertex (on the first turn, Sludge instead

pollutes the root). Next, Green protects some unpolluted vertex. On a finite

digraph (the only kind we consider), the game ends when a sink becomes

polluted, in which case Sludge wins, or when the active player has no legal

move, in which case Green wins provided that no sink is polluted.

Acyclic rooted digraphs are closely related to rooted posets, which are

posets having a unique minimal element called the root. A k-prefix in a

rooted poset is a chain of size k consisting of elements x0, . . . , xk−1 such

that x0 is the root and xi covers xi−1 for 1 ≤ i ≤ k − 1. The top element of

a prefix is its head; climbing a prefix means following it in order.

The k-prefix game on a rooted poset P is a variant of the ordered chain

game in whichWalker must climb a k-prefix to win. Winning does not require

the k-prefix to be followed consecutively; there may be dead ends along the

way. If Walker wins the k-prefix game on P , then Walker can build a chain

of size k in the ordered chain game, since a k-prefix is a k-chain with the

additional requirements of skipping no levels and starting at the bottom.

Following [6], when G is a rooted acyclic digraph we write (G, d) to

refer to the subgraph of G induced by the vertices having distance at most

d from the root. The following proposition establishes a straightforward

correspondence between the Seepage game and the k-prefix game:

Proposition 4.1. Let P be a rooted poset, and let G be the cover digraph

of P , rooted at the minimal element. Walker wins the k-prefix game on P if

and only if Sludge wins the Seepage game on (G, k).

Proof. It is clear that a Sludge win in G translates into a Walker win in

P : translating Blocker moves directly into Green moves, Walker plays the

corresponding winning strategy of Sludge, and when Sludge wins the con-

straints on Sludge’s legal moves imply that some k-prefix has been climbed

in the correct order.

Conversely, if Walker wins the k-prefix game in P , then Walker has

a winning strategy that never claims a vertex whose in-neighbors are all

unclaimed: such a vertex can clearly never be part of a winning k-prefix.

Thus any winning strategy for Walker can be modified to eliminate such

moves and then translated into a winning strategy for Sludge.

In light of this result, we can translate Theorem 4.6 of [6] into the fol-

lowing theorem about k-prefix games:

Theorem 4.2. If k ≥ 10, then Blocker wins the k-prefix game on W3
k .



642 Daniel W. Cranston et al.

Turning from the Seepage game, we now define a slightly more general
version of Conway’s Angel-Devil game [7]. The Angel-Devil game is played
on an infinite rooted digraph G by two players, Angel and Devil. Angel
and Devil alternate turns. In each round, Angel moves to an available out-
neighbor of the current position (except that Angel’s first move is to occupy
the root vertex), and then Devil burns at most one vertex, preventing Angel
from using it in future moves.

Devil wins if Angel is ever unable to move, meaning that all out-neighbors
of the current position are burned. Angel avoids losing by having a strategy
to continue moving forever. When every vertex of G has finite outdegree, an
equivalent condition for Angel to win is that for every natural number n,
Angel has a strategy to guarantee moving for n turns.

The classical Angel-Devil game is played on the points of an infinite
grid, with Angel starting at the origin and also moving first. We model this
variant by translating the root to the vertex Angel reaches before Devil’s
first move.

Remark 4.3. As noted by Conway, one may grant that Devil burns Angel’s
current position and its out-neighbors not chosen for the next move. If there
is a way for some winning strategy to return to the current vertex or its out-
neighborhood, then Angel does at least as well by making the subsequent
move to an out-neighbor now. Similarly, Devil never needs to burn the vertex
Angel is leaving.

The k-prefix game on a poset can be translated directly into the Angel-
Devil game on an appropriate digraph, with Angel required to survive for k
turns. The difficulty is showing that Angel does not actually need Walker’s
ability to backtrack. Theorem 2.4 of [6] allows us to avoid explicitly present-
ing this argument.

Proposition 4.4. Let P be a rooted poset with minimal element x0, and
assume that every element of P is covered by finitely many other elements.
Let G be the rooted digraph with root x0 that is the cover digraph of P . Devil
wins the Angel-Devil game on G if and only if Blocker wins the k-prefix
game on P for all k.

Proof. Clearly a winning Angel strategy on G can be translated directly into
a winning Walker strategy on P .

For the other direction, let any k be given, and observe that (G, k) is
an acyclic digraph with a single source vertex. Theorem 2.4 of [6] states
that if Sludge wins the Seepage game on (G, k), then Sludge has a winning
strategy that only pollutes the vertices of a path. This winning strategy can
be directly translated into a strategy for Angel to survive k turns.
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In the next section, we will apply the Angel-Devil game to the k-prefix
game on Wd

k .

5. Walker vs. Blocker on high-dimensional wedges

It is difficult to devise winning strategies in Angel-Devil games. To benefit
from the few explicit strategies that are known, we seek ways to transfer
these strategies between games. We define a type of map from one rooted
digraph to another that facilitates such a transfer.

Definition 5.1. Let G and H be digraphs with roots g0 and h0. A robust
map from G to H is a map φ : V (G) → V (H) with φ(g0) = h0 such that
whenever there is an edge from φ(v) to w in H, there is also some vertex z
in G such that φ(z) = w and vz ∈ E(G).

Informally, a map is robust if, whenever the image φ(P ) in H of a path
P in G can be extended, P can also be extended to P ′ in G so that φ(P ′)
is the extended path in H.

Theorem 5.2. Let G and H be two rooted digraphs, and let φ : G → H be
a robust map from G to H. If Angel wins the Angel-Devil game in H, then
Angel also wins in G.

Proof. Given a winning strategy for Angel inH, we define a winning strategy
in G. We play an imaginary game inH to track and simulate the actual game
in G. The G-Angel will maintain a position in G that maps under φ to the
current position of the H-Angel in H. This holds initially, since they both
start at the root.

At some time later, let v be the location of the G-Angel, so the imagined
H-Angel is at φ(v). The G-Devil moves by burning some vertex y in G. The
imagined H-Devil burns the corresponding vertex φ(y). The imagined H-
Angel has a winning response w for this move.

Since w must be an out-neighbor of the current vertex φ(v) in H, the
robustness of φ guarantees a vertex z in G such that vz ∈ E(G) and φ(z) =
w. The vertex z cannot previously have been burned by the G-Devil, because
the imagined H-Devil would have immediately burned w in H to copy that
move. Since z is available and vz ∈ E(G), the G-Angel can move to z. This
preserves the property that the H-Angel is on the image of the position of
the G-Angel, and the game continues. Since the H-Angel can move forever,
the G-Angel also can move forever.

Abusing notation, we will write Wd to denote both the infinite wedge
poset in d dimensions and its cover digraph, rooted at the minimal element.
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Thus the vertices of Wd are nonnegative integer d-tuples, with xy ∈ E(Wd)
if y is obtained from x by increasing one coordinate by 1.

We compare the wedge with the “power-2” Angel-Devil game on Z
2. An

Angel of power k can move to any unburned square that is at most k units
away in each horizontal or vertical direction. Thus in the digraph for the
power-1 game each vertex has outdegree 8, while in the power-2 game the
vertices have outdegree 24. It is known that Devil wins the power-1 game
(see Conway [7]), while Angel wins the power-2 game (proved independently
by Kloster [9] and Máthé [11]).

To prove our result, we give a robust map to the digraph for the power-2
Angel on Z

2. Since Angel wins that game, Theorem 5.2 implies that Angel
wins on Wd when d ≥ 24. Wästlund’s refinement of the argument for the
power-2 Angel gives a winning Angel with only 14 moves [12], lowering our
bound to d ≥ 14. By Proposition 4.4, Walker then wins the k-prefix game
on Wd

k for every finite k.
The construction of our robust map uses the following intuitive idea: if

Angel has d different “types of move” in some digraph, and these moves
commute, then we can introduce a (highly redundant) coordinate system on
the graph by counting how many times Angel has made each type of move.
This coordinate system induces a robust map from Wd into the digraph.
The following lemma formalizes the idea.

Lemma 5.3. If H is a rooted digraph with V (H) ⊂ Z
n, and M ⊂ Z

n is a
finite set such that xy ∈ E(H) implies y − x ∈ M , then there is a robust
map from W |M | to H.

Proof. Let d = |M |, and let m1, . . . ,md be the elements of M . Define
φ : Wd → V (H) by φ(x1, . . . , xd) = h0 +

∑d
i=1 ximi, where h0 is the root of

H. Since φ(0, . . . , 0) = h0, the start condition is satisfied. Now consider
(φ(v), w) ∈ E(H). We must find z ∈ V (Wd) such that φ(z) = w and
vz ∈ E(G). Since (φ(x), v) ∈ E(H), the hypothesis guarantees existence
of mi ∈ M such that φ(x)+mi = v. With ei denoting the unit vector with 1
in coordinate i, we have φ(x+ei) = φ(x)+mi = v, and (x, x+ei) ∈ E(Wd).
Hence φ is robust.

The underlying digraphs of the classical Angel-Devil game fit the hy-
pothesis for H in the lemma, yielding the following corollary:

Corollary 5.4. For d ≥ 14, Angel wins the Angel-Devil game on Wd (and
hence also Walker wins the k-prefix game on Wd for all k).

Proof. Since Angel wins the power-2 Angel-Devil game [9, 11], in which An-
gel always has 24 possible moves expressed as coordinate vectors, Lemma 5.3
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and Theorem 5.2 together imply that Angel wins in W24. Furthermore, An-
gel can win that power-2 Angel-Devil game using only moves changing the
horizontal coordinate by at most 2 and the vertical coordinate by at most 1
(proved by Wästlund [12]); hence Angel wins in W14 (and thus in all higher-
dimensional wedges).

In Section 3, we showed that Blocker wins the ordered chain game on the
wedge W2, and the result of [6] quoted in Theorem 4.2 implies that Blocker
also wins on W3. The question remains: Who wins when 4 ≤ d ≤ 13? We
conjecture the following.

Conjecture 5.5. For d ≥ 4 and for all k, Walker wins the k-prefix game
on Wd.

Since Walker wins the ordered chain game on wedges except in very small
dimensions, it seems fair to give Blocker a chance by introducing bias; in
the b-biased game, Blocker occupies b elements after each move by Walker.
Introducting bias is a typical approach to studying Maker-Breaker games
won by Maker; how much bias is needed to enable Breaker to win? Here
we have another parameter, the dimension of the wedge, so we ask the
question a bit differently. The effect is to generalize the question asked in
Conjecture 5.5.

Definition 5.6. For b ∈ N, let f(b) be the least d such that for all k, Walker
wins the k-prefix game with bias b on Wd.

Clearly f(b) > b, since in b dimensions Blocker can immediately occupy
all elements covering the first move by Walker. In fact, the function is strictly
increasing.

Proposition 5.7. If Blocker wins the b-biased k-prefix game on Wd, then
Blocker wins the (b+ 1)-biased k-prefix game on Wd+1.

Proof. On each turn Blocker plays the out-neighbor of Walker’s previous
move with coordinate d + 1 increased and uses the remaining b moves to
play the strategy for d dimensions. Any move by Walker that increases the
last coordinate immediately loses a level, so Walker does best by playing the
game in d dimensions.

To obtain upper bounds, we discuss the effect of bias in the Angel-Devil
game. Bias b allows Devil to burn b vertices on each turn.

Proposition 5.8. For b ∈ N, Angel wins the power-2b Angel-Devil game
with bias b on Z

2. Moreover, Angel can do so while changing the horizontal
coordinate by at most 2b and the vertical coordinate by at most b on each
turn.
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Proof. Angel uses a winning strategy for the power-2 game (with bias 1)

on Z
2. On each turn in the true game, Devil makes b moves. Angel imagines

these moves in some order and responds, in the imagined power-2 game,

to each move in turn. This leaves Angel at some vertex v; Angel moves

directly to v in the true game. After each turn in the true game, Angel sits

on the same vertex in both games, and the same vertices have been burned.

A technical requirement is that after b rounds of the imagined game, Angel

has not returned to the original vertex. This follows from Remark 4.3, where

a winning Angel can burn visited vertices and their unused out-neighbors

without cost. Now, since Angel wins the imagined game, Angel also wins

the true game.

As proved by Wästlund [12] and used in Corollary 5.4, Angel can win the

power-2 game by changing the horizontal coordinate by at most 2 and the

vertical coordinate by at most 1 on each turn. Thus, in the true game there

is a winning strategy that changes the horizontal coordinate by at most 2b

and the vertical coordinate by at most b on each turn.

Theorem 4.2 shows that f(1) > 3, and thus Conjecture 5.5 is the state-

ment that f(1) = 4. Propositions 5.7 and 5.8 yield general lower and upper

bounds on f(b).

Proposition 5.9. f(b) > b+ 2 for b ≥ 1, and f(b) ≤ (4b+ 1)(2b+ 1)− 15

for b ≥ 2.

Proof. From Proposition 5.8, the same arguments used to prove Corol-

lary 5.4 yield f(b) ≤ (4b + 1)(2b + 1) − 1. However, Remark 4.3 implies

that within the (4b + 1)-by-(2b + 1) rectangle around the current position,

Angel can guarantee a winning strategy without using the central 5-by-3

rectangle when b > 1. When b > 2 it is plausible that a larger internal

region could be thrown away, yielding a tighter bound, but the calculations

become more complex (we cannot simply throw away all spaces reachable

in 2 moves, for example).

Now consider lower bounds. Theorem 4.2 states that f(1) > 3, and by

Proposition 5.7 it follows that f(b) > b + 2 for all b ≥ 1. However, the

resulting Blocker strategy is complex, using the Green strategy of [6] as its

“base case”. We give a simple Blocker strategy when b = 3, resulting in

simpler strategies for higher b.

Walker starts at the root, the all-0 vector. Blocker wants to limit Walker’s

options by playing moves that remain above the head of the chain no matter

where Walker moves. We write elements as strings instead of lists.
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Proposition 5.7 and Theorem 3.1 together yield f(2) > 3. Following those
arguments, Blocker starts with {001, 110} in response to 000. By symmetry,
Walker plays 100, and Blocker wins with {101, 200}.

Now consider bias 3 in W5. Blocker forces Walker to increase a coor-
dinate that is 0 on each subsequent move to avoid skipping a level, while
seizing all elements on one level that avoid coordinate values larger than 1.
Below are the moves by Walker and Blocker, up to symmetry. Walker in-
creases a coordinate at the second move that bypasses one of Blocker’s first
moves, because increasing one of the last two coordinates creates a situa-
tion that is isomorphic to this but with the loss of an extra position ahead.
After Blocker’s second and third moves, the coordinates where Walker can
increase are isomorphic.

Walker Blocker
00000 01111 10111 11011
10000 20000 11101 11110
11000 21000 12000 –
11100 21100 12100 11200

With the three moves of his first turn and two moves of his second,
Blocker occupies all points at the fifth level with largest coordinate 1. Block-
er’s other moves prevent Walker from moving to an element having a coor-
dinate larger than 1 while not skipping a level. No elements with weight 4
and largest coordinate 1 are available, so Walker loses then. The proof of
Proposition 5.7 shows how to extend this strategy to higher b.

In fact, in each dimension where Blocker wins the b-biased game, one can
ask what fraction of the levels will be obtained by Walker under optimal play.
By Theorem 3.1, the fraction is 2/3 when d = 2 and b = 1. The arguments
in Proposition 5.9 show that the fraction also is at most 2/3 when d = 3
and b = 2, and it is at most 4/5 when d = 5 and b = 3.
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