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Graphs that have clique (partial) 2-trees

TERRY A. McKEE

Much of the theory—and the applicability—of chordal graphs is
based on their being the graphs that have clique trees. Chordal
graphs can be generalized to the graphs that have clique repre-
sentations that are 2-trees, or even series-parallel graphs (partial
2-trees) or outerplanar or maximal outerplanar graphs. The result-
ing graph classes can be characterized by forbidding contractions
of a few induced subgraphs. There is also a plausible application
of such graphs to systems biology.
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1. Clique graphs and clique trees

For any graph G, define the clique graph K(G) to be the intersection graph
of the family of all mazcliques—inclusion-maximal complete subgraphs—of
G; in other words, the nodes of K(G) are the maxcliques of G, with two
nodes adjacent in K(G) if and only if the corresponding maxcliques have
nonempty intersection. (The vertices of K(G) will be called nodes in order
to lessen confusion with the vertices of GG, and a maxclique subgraph @ will
be routinely identified with its vertex set V(@) for convenience.)

For every graph H that has the maxcliques of G as its nodes and for
every v € V(G), define H, to be the subgraph of H that is induced by those
nodes that contain v. Define a tree T" whose nodes are the maxcliques of G
to be a clique tree for G if each T, is connected; in other words, each T, is
a subtree of T. (Notice that if G and, therefore, K(G) are not connected,
then a clique tree T for G will not be a subgraph of K(G), since T will
have at least one edge QQ’ with @ N Q' = 0 that is not allowed in K(G).)
Theorem 1.1 will characterize the graphs that have clique trees.

A graph is chordal if every induced cycle is a triangle. Theorem 1.1
underlies both much of the theory [10] and many of the applications [9, 10]
of chordal graphs. In it, a contraction of G is any graph that results from G
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by repeating the following operation: contract edge xy by deleting xy and
replacing the vertices x and y with a new vertex v,, whose neighborhood is
(Ng(x) U Ng(y)) — {z,y} (without creating loops or parallel edges).

Theorem 1.1 ([1, 5, 12]). A graph G has a clique tree if and only if the
4-cycle Cy is not a contraction of an induced subgraph of G; in other words,

if and only if G is chordal.

References [2, 10] present the relationship between chordal graphs and
their clique trees in detail.

2. Clique series-parallel graphs and clique 2-trees

A graph is series-parallel if it contains no subgraph that is isomorphic to
a subdivision of K, (where a subdivision of a graph G is a graph G° that
contracts to G where each contracted edge contains a degree-2 vertex of G°—
thus, edges of G correspond to internally disjoint paths of G° whose internal
vertices are degree-2 vertices). Series-parallel graphs are not required to be
2-connected as well (although this is often done—see [8]); also, all graphs
are assumed to be simple—multiple edges and loops are not allowed.

A graph is a 2-tree if it can be recursively built up from a single edge by
repeatedly creating a new degree-2 vertex that is adjacent to two pre-existing
adjacent vertices; for convenience, also consider a graph that consists of a
single vertex to be a 2-tree. A partial 2-tree is a subgraph of a 2-tree. See
[2] for other characterizations of these concepts, including the following.

Lemma 2.1 ([7, 13]). A graph is series-parallel if and only if it is a partial 2-
tree (and there is a linear algorithm for inserting edges into a series-parallel
graph to make it into a 2-tree).

Define a clique 2-tree [or clique partial 2-tree| for a graph G to be a
[partial] 2-tree H that has the maxcliques of G as its nodes such that, for
every v € V(G), the subgraph H, is connected; a clique partial 2-tree can
also be called a clique series-parallel graph. If G has a clique series-parallel
graph, then G will have a clique series-parallel graph that is a subgraph of
K(G), but G having a clique 2-tree does not imply that G will have a clique
2-tree that is a subgraph of K(G) (since edges QQ’ with Q N Q" = () are
allowed in clique 2-trees for G but not in the clique graph K(G)). Every
clique tree is automatically a clique series-parallel graph, and every clique
series-parallel graph is automatically a clique 2-tree.

Figure 1 shows an example of a graph G with a clique series-parallel
graph H~ and a clique 2-tree Ht that contains H~ as a subgraph. (The
node label 125 abbreviates the maxclique {1,2,5} of G and so on.)
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Figure 1: A graph G with a clique series-parallel graph H~ and a clique
2-tree H™.

Figure 2 shows an example of a graph G that has no clique series-parallel
graph (and so no clique 2-tree): If H were a clique series-parallel graph for
G, then H would have to contain at least two of the three edges from each
of the two triangles in K(G) in order to make Hs and Hy connected, and H
would have to contain the six edges of K(G) that are not in triangles in order
to make the other six H, subgraphs connected. But none of those possible
edge choices would produce a series-parallel graph—there would always be
a subgraph isomorphic to a subdivision of Kj.

Lemma 2.2. A graph has a clique 2-tree if and only if it has a clique series-
parallel graph.

Proof. Every clique 2-tree is, of course, a clique series-parallel graph. Con-
versely, using that an edge QQ' of a clique (partial) 2-tree H is allowed to
have QNQ’ = (), edges can always be inserted to make a clique series-parallel
graph into a clique 2-tree. ]
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Figure 2: A graph G that has no clique series-parallel graph.
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Figure 3: Five graphs that do not have clique 2-trees.
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A claw is an induced subgraph that is isomorphic to K 3 and the degree-
3 vertex of the K 3 the center of the claw. Theorem 2.1 will be the clique 2-
tree analog of Theorem 1.1, with the graphs shown in Figure 3 replacing Cy.
Observe that each graph Gy in Figure 3 has t edge-disjoint triangles and
4 — t edge-disjoint claws (whose centers are shown as larger vertices) and
that G is the graph G in Figure 2.

Theorem 2.1. A graph G has a clique 2-tree if and only if no graph in
Figure 3 is a contraction of an induced subgraph of G.

Proof. First, suppose that some graph G; in Figure 3 is a contraction of an
induced subgraph of G. Using Lemma 2.2, imagine trying to find a clique
series-parallel graph H for G in K(G) [arguing by contradiction].

The ¢ triangles in G; should correspond to nodes Q1,...,Q; of H. [Fig-
ure 2 illustrates this for Go, where the two triangles of G correspond to the
nodes Q1 = 126 and Q2 = 678 in K(G).] Say the 4 —t claws in G; are Gy 1,
..., Gy 4—¢ and have centers vy, ..., v4—; respectively. The three edges of each
G, correspond to a triangle A; in K(Gy). [In Figure 2, the claws G2 1 and
Go2 of G that have centers v1 = 3 and v2 = 5, respectively, correspond to
the triangles A; with nodes 13,34, 38 and Ay with nodes 25,45, 57.] In order
to make each H,, connected, H would have to contain at least two edges of
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each A;; let Q) be a node that is on two such edges. [For the claw G2 in
Figure 2, H would contain at least two edges from Ay, so H would include
at least two of the edges 13-34, 13-38, 34-38 and @} would be one of the
nodes 13, 34, 38.]

Thus, H would contain the t+(4—t) = 4 nodes Q1,...,Q¢, @1, ..., Q)
where those four nodes are pairwise connected by a total of six paths in H
such that no internal node of one path is a node of another path. Thus, H
would contain a subgraph isomorphic to a subdivision of K4 [contradicting
H being series-parallel]. Therefore, G could not have a clique 2-tree.

Conversely, suppose a graph G has no clique 2-tree. Further suppose that
G is both vertex deletion minimal and contraction minimal-—so deleting any
vertex from G or contracting any edge of G would produce a graph that has
a clique 2-tree. Therefore, G must be 2-connected (if each block of G had a
clique 2-tree, then G would have a clique series-parallel graph and so would
have a clique 2-tree by Lemma 2.2).

Because K(G) is not series-parallel (by Lemmas 2.1 and 2.2, since G
has no clique 2-tree), K(G) contains a subgraph H that has degree-3 nodes
Q1, Q2, Q3, Q4—each a maxclique of G—such that H is isomorphic to a
subdivision of K4 (and so all nodes of H other than Q1, Q2, @3, Q4 have
degree 2 in H). The vertex deletion minimality of G implies that each node @
of H contains only enough vertices to make ) have nonempty intersections
with two or three other nodes of H. Specifically, the four nodes @; have
|Qi| € {2,3}, and the other nodes @ of H have |Q| = 2. Therefore, each
node of H either has degree 3 and induces a triangle or edge of G or has
degree 2 and induces an edge of G.

If a degree-3 node Q); of H induces a triangle of GG, then each vertex
of that triangle will be adjacent to one vertex outside the triangle (from
a node of one of the three paths of H that have @); as an endpoint). Now
suppose instead that a degree-3 node @); of H induces an edge v;w; of G,

/

and suppose the maxcliques R}, R/, R of G are the neighbors of @; in the
three paths of H that have @Q; as an endpoint. Without loss of generality,
say v; € RN R} . Thus, v; ¢ R and w; € R} (otherwise w; could have been
deleted from G, with H modified by deleting the node @); and inserting two
edges to join one of R., R/, R!" to the other two so as to make one of them
a degree-3 node of H) and w; ¢ (R, U R!) (otherwise Q; C R] or Q; C R/,
contradicting that Q;, R}, R} are maxcliques of G). Therefore, v; is adjacent
to vertices r, € R, — R/ and r! € R — R] where r and r/ are nonadjacent
(since R} and R are maxcliques of G). Moreover, w; and 7} are nonadjacent
(since r} is adjacent to v; and {v;,w;} is a maxclique of G). Similarly, w; and

! are nonadjacent, and so {v;, w;, .,/ } induces a claw in G with center v;.
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Also, each of w;, r],r! will be adjacent to one vertex outside the claw (from
a node of one of the three paths of H that have @; as an endpoint).
Therefore, the four degree-3 nodes @)1, Q2, @3, Q4 of H will induce four
edge-disjoint subgraphs of G such that, for some t € {0,1,2,3,4}, each
maxclique ); is one of ¢ triangles or 4 — t claws. By the vertex deletion
minimality and contraction minimality of G, the vertices of G outside of
those four subgraphs will form a total of six paths—each of length 0 or
1—that pairwise connect those four subgraphs. Considering each of the five
possible values for ¢ in turn, G must be the graph G; shown in Figure 3.
(Contracting any additional edges of any G; would produce a graph that
has a clique series-parallel graph.) O

3. Clique outerplanar and clique mop graphs

A graph is outerplanar if it has a plane embedding with all vertices on
one face. Thus, a 2-connected graph is outerplanar if and only if it has a
hamiltonian cycle C such that every edge of the graph either is an edge of C
or is a chord of C that has no crossing chord. By [3], a graph is outerplanar
if and only if it contains no subgraph that is isomorphic to a subdivision of
K, or Ky3. Thus, every outerplanar graph is series-parallel (and K33 is a
series-parallel graph that is not outerplanar).

A graph is a maximal outerplanar graph—often abbreviated as a mop
graph—if it is outerplanar but inserting an additional edge would always
create a graph that is not outerplanar. Equivalently, a graph is a mop graph
if and only if it is a 2-tree with no edge in three triangles. Notice that
outerplanar graphs can also be called partial mop graphs and that every
[partial] mop graph is a [partial] 2-tree.

Define a clique mop graph [or clique partial mop graph] for a graph G to
be a [partial] mop graph H that has the the maxcliques of G as its nodes
such that, for every v € V(G), the subgraph H, is connected; a clique partial
mop graph can also be called a clique outerplanar graph. If G has a clique
outerplanar graph, then it will have a clique outerplanar graph that is a
subgraph of K(G), but G having a clique mop graph does not imply that G
will have a clique mop graph that is a subgraph of K(G) (since edges QQ’
with QN Q' = 0 are allowed in clique mop graphs for G but not in the clique
graph K(G)). Every clique tree is automatically a clique outerplanar graph,
every clique outerplanar graph is automatically a clique series-parallel graph,
and every clique mop graph is automatically a clique 2-tree.

The graphs H~ and H™" in Figure 1 are not clique (partial) mop graphs—
neither is even outerplanar. Figure 4 shows an example of a graph G that
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Figure 4: A graph G with a clique outerplanar graph H~ and a clique mop

graph HT.
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Figure 5: Three graphs that have clique 2-trees but not clique mop graphs.

has a clique outerplanar graph H~ and a clique mop graph H that contains
H™ as a subgraph.

Lemma 3.1. A graph has a cliqgue mop graph if and only if it has a clique
outerplanar graph.

Proof. Every clique mop graph is, of course, a clique outerplanar graph.
Conversely, edges can be inserted into any outerplanar graph so as to make
it into a mop graph (see [6] for an algorithmic discussion) and so edges can
always be inserted to make a clique outerplanar graph into a clique mop
graph. O

Theorem 3.1 will be the clique 2-tree analog of Theorem 1.1, with the
graphs shown in Figures 3 and 5 replacing Cy. Observe that each graph G}
in Figure 5 has t vertex-disjoint triangles and 2 — t vertex-disjoint claws
(whose centers are shown as larger vertices).

Theorem 3.1. A graph G has a clique mop graph if and only if no graph
i Figure 8 or Figure 5 is a contraction of an induced subgraph of G.

Proof. First, suppose that some graph Gy in Figure 3 or G} in Figure 5 is
a contraction of an induced subgraph of G. In the G; case, Theorem 2.1
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shows that G would have no clique 2-tree and so no clique mop graph.
Thus, assume G} is a contraction of an induced subgraph of G, and using
Lemma 3.1, imagine trying to find a clique outerplanar graph H for G in
K (G). The argument proceeds as in the proof Theorem 2.1, except now with
t triangles and 2 — t claws where H would contain ¢t + (2 — t) = 2 degree-3
nodes connected by three paths in H, and so H would contain a subgraph
isomorphic to a subdivision of K33 (contradicting H being outerplanar).
Therefore, G could not have a clique mop graph.

Conversely, suppose a graph G has no clique mop graph but using The-
orem 2.1, has a clique 2-tree (toward showing that one of the three graphs
in Figure 5 is a contraction of an induced subgraph of G). Further suppose
G is both vertex deletion minimal and contraction minimal. The argument
proceeds as in the proof of Theorem 2.1, except H is now isomorphic to
a subdivision of K53 with two degree-3 nodes )1 and )2 where, for some
t € {0,1,2}, each maxclique Q; is one of ¢ triangles or 2 — ¢t claws. By the
vertex deletion minimality and contraction minimality of G, the vertices of
G outside of those two subgraphs will form three paths—each of length 0 or
1—that connect those two subgraphs. Considering each of the three possible
values for ¢ in turn, G must be the graph G} shown in Figure 5. (Contract-
ing any additional edges of any G} would produce a graph that has a clique
outerplanar graph.) O

4. Practicality and applicability

The greedy minimum spanning tree construction of the clique trees of chordal
graphs (see [10, §2.1]) underlies the traditional applications of chordal graphs
as surveyed in [10, §2.4]. (Edges are chosen by Kruskal’s algorithm—heaviest-
weight-first, avoiding forming cycles—where the weight of the edge QQ' is
|Q N Q'|.) But a similar greedy construction fails for clique series-parallel
graphs and clique outerplanar graphs. (If a clique series-parallel graph H is
constructed for the graph G in Figure 1 by first choosing the edges that are
shown there in H~, except with the weight-1 edge 129-189 chosen instead
of the weight-1 edges 129-146 and 146-479, then those fifteen edges make
each H, with v # 4 connected, but no further edges can be chosen so as to
make Hy connected as well while preserving H being series-parallel.)

Even finding all the maxcliques of a nonchordal graph can present com-
putational problems: The generalized octahedron K» o of order 2n—which
does have a clique series-parallel graph by Lemma 2.2 and Theorem 2.1—
has 2™ maxcliques. (By way of contrast, every chordal graph of order n has
at most n maxcliques, and they can be found in linear time.)
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On the positive side, a fairly recent application of clique trees in systems
biology (see the detailed account in [14], the more general survey in [11], or
the brief description in [9]) can potentially use clique series-parallel graphs
instead of clique trees. In the existing form of this application, a protein in-
teraction graph G leads to a clique tree H whose nodes represent “functional
groups” of proteins that correspond to “snapshots of protein associations”
during some sort of a dynamic process. (If G does not have a clique tree,
then edges are inserted in order to make G chordal.) The clique tree H
“elucidat|es] temporal relations between functional groups”, ... “tracking a
protein’s path through a cascade of functional groups” [14]. Yet this appli-
cation does not make a particular case for requiring H to be a tree (indeed,
there a reluctance “to impose an artificial order between functional groups”,
as would occur in a clique tree).

Modifying this application to allow H to be a series-parallel graph could
be useful in light of a characterization from [4]:

A 2-connected graph H is series-parallel if and only if the arbitrary orientation
of any edge e of H determines a unique orientation of E(H) such that the set
of directed cycles is exactly the set of cycles that contain e (in other words,

a unique orientation with no other edge e’ such that e and e’ are directed
consistently in one cycle yet are directed oppositely in another cycle).

In the biological application, this means that knowing or positing the tempo-
ral relation—the direction in which proteins move—between two arbitrary
functional groups that are adjacent in a 2-connected clique series-parallel
graph for a protein interaction graph will imply the temporal relations
among all adjacent functional groups.
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