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Nodal domain and eigenvalue multiplicity of graphs
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We give a uniform proof of the upper and lower bounds of strong
nodal domains for generalized Laplacians of discrete graphs. We
also study the set of all possible numbers of strong nodal domains
and the maximum multiplicity sequence of spectra.
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1. Introduction

Let G = (V,E) be a graph with vertex set V = {1, . . . , n} and edge set E.
Throughout the paper, a graph G is undirected and simple (i.e., has no
multi-edges or loops). We allow G to be disconnected.

The Laplacian of G is the matrix L(G) = D−A, where D is the diagonal
matrix whose entries are the degree of the vertices and A is the adjacency

matrix of G. Chung’s normalized Laplacian L̃(G) [6] is defined by

(1) L̃uv =

⎧⎪⎨
⎪⎩
1 if u = v and d(u) > 0,

−1/
√

d(u)d(v) if uv ∈ E,

0 otherwise.

A symmetric n × n matrix M is called a generalized Laplacian of G
if it has nonpositive off-diagonal entries and two distinct vertices u and v

are adjacent if and only if Muv < 0. We denote by M (G) the set of all
generalized Laplacians of G. Both L(G) and L̃(G) belong to M (G).

For a given M ∈ M (G), the eigenvalues of M are enumerated by λ1 ≤
λ2 ≤ · · · ≤ λn.

The maximum multiplicity sequence of spectra of G is denoted by δ(G) =

(δ1, . . . , δn), where δk is defined to be the largest number r such that the
k-th eigenvalue of some M ∈ M (G) has multiplicity r, namely

(2) λ1 ≤ · · · ≤ λk−1 < λk = · · · = λk+r−1 < λk+r ≤ · · · ≤ λn.
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Given an eigenfunction f on G, recall that a strong nodal domain of f
is a maximal connected induced subgraph of G such that f is either strictly
positive or strictly negative. Denote by S(f) the number of strong nodal
domains. As an analogue of Courant’s nodal domain theorem for elliptic
operators on manifolds, we have the following discrete nodal domain theorem
of Davies et al. (cf. also [8]):

Theorem 1.1. [7] Let M ∈ M (G). Let λk be the k-th eigenvalue with
multiplicity r. Then for any eigenfunction f corresponding to λk, we have
S(f) ≤ k + r − 1.

Thus δk controls the upper bound of strong nodal domains.

Corollary 1.2. Let M ∈ M (G) and f be an eigenfunction of its k-th eigen-
value. Then S(f) ≤ k + δk − 1.

An upper bound of δk of 3-connected graphs in terms of the embedding
genus into surfaces was obtained in [12]. Their proof used the method of
Cheng [5] in estimating eigenvalue multiplicity of Riemann surfaces.

We have the following result on the lower bound of strong nodal domains.

Theorem 1.3. Let M ∈ M (G). Let λk be the k-th eigenvalue with multi-
plicity r and f an eigenfunction corresponding to λk, which is zero on exactly
z vertices. Then S(f) ≥ k + r − 1 − � − z, where � is the minimal number
of edges that need to be removed from G in order to turn it into a forest.

We emphasize that the graph G in Theorems 1.1 and 1.3 may be discon-
nected. Theorem 1.3 was first proved by Berkolaiko [1] under the stronger
assumption that G is connected, λk is a simple eigenvalue and f is not zero
on any vertex.

The paper is organized as following: In Section 2, we give a uniform
proof of Theorems 1.1 and 1.3. In Section 3, we study the gap phenomenon
in the counting of strong nodal domains. In Section 4, we compute δ(G) for
certain special graphs.

2. Upper and lower bounds of strong nodal domains

Given a graph G = (V,E) (not necessarily connected). Labeling V with
{1, . . . , n}, we may identify a function on V as a vector (x1, . . . , xn). Let c
denote the number of connected components of G and � be the minimal
number of edges that need to be removed from G in order to turn it into a
forest.

We need some standard results from linear algebra.
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Lemma 2.1. [9] Let T be a tree with the set of vertices {1, . . . , n}. Then
the n− 1 linear forms xi−xj where (i, j), i < j, are edges of T , are linearly
independent.

The following classical result is called the interlacing theorem.

Theorem 2.2. Let A be a Hermitian matrix with eigenvalues λ1, . . . , λn

and B be a principle submatrix with eigenvalues μ1, . . . , μm. Then we have
the inequalities λi ≤ μi ≤ λn−m+i, ∀1 ≤ i ≤ m.

Lemma 2.3. Prescribe a sign {+,−} at each vertex of G. Let B =∑
(i,j)∈E aij(xi−xj)

2 be a quadratic form satisfying aij > 0 if i and j are of
the same sign and aij < 0 if i and j have different signs. We assume that
the rank of B equals n − r and the positive index of inertia of B equals d.
Let T be a spanning forest of the subgraph H consisting of all edges (i, j)
such that aij > 0. Then

(3) d ≤ |E(T )| ≤ |E(H)| ≤ d+ �.

Similarly, let T ′ be a spanning forest of the subgraph H ′ consisting of all
edges (i, j) such that aij < 0. Then

(4) n− r − d ≤ |E(T ′)| ≤ |E(H ′)| ≤ n− r − d+ �.

Proof. By Sylvester’s law of inertia, we can rewrite B as

(5) B =

n−r∑
i=1

biY
2
i ,

where Yi =
∑n

j=1mijxj are independent linear forms and b1 > 0, . . . , bd > 0,
bd+1 < 0, . . . , bn−r < 0. We shall prove (3) by contradiction.

First, we assume that |E(T )| < d, consider two systems of linear equa-
tions

(6) {xi − xj = 0}(i,j)∈E(H), Yd+1 = 0, . . . , Yn−r = 0

and

(7) Y1 = 0, . . . , Yn−r = 0.

Since the rank of the system (7) is n − r and by Lemma 2.1 the rank of
the system (6) is ≤ |E(T )| + n − r − d < n − r, there exists a nontriv-
ial solution (x01, . . . , x

0
n) of (6) which does not satisfy (7). It follows that
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B(x01, . . . , x
0
n) ≤ 0 by (2) and B(x01, . . . , x

0
n) > 0 by (3). We have reached a

contradiction.
Next we assume |E(H)| > d+�. Consider two systems of linear equations

(8) Y1 = 0, . . . , Yd = 0, {xi − xj = 0}(i,j)/∈E(H)

and

(9) {xi − xj = 0}(i,j)∈E(G).

Since the rank of the system (9) is n − c and the rank of the system (8) is
≤ d+n−c+�−|E(H)| < n−c, there exists a nontrivial solution (x01, . . . , x

0
n)

of (8) which does not satisfy (9). It follows that B(x01, . . . , x
0
n) ≤ 0 by (8) and

B(x01, . . . , x
0
n) > 0 by (9). We again reached a contradiction. So we conclude

the proof of (3). The proof of (4) is similar.

2.1. Proof of Theorems 1.1 and 1.3

The first half of the proof was adapted from the argument of Biyikoglu [2].
We first assume that f does not vanish on any vertex. We divide V (G) into
three disjoint sets P , S and C, where P and S denote the set of all vertices
where f is positive and negative respectively and which are incident to some
edge where f does not change sign. C is the set of remaining vertices. Let
G[P ] and G[S] denote the induced subgraphs of P and S respectively. In
fact, they consist of those edges where f does not change sign. Let p and s
be the number of components of G[P ] and G(S). Let T be a spanning forest
of the disjoint union of G[P ] and G[S]. Then we have |P | − p + |S| − s =
|E(T )|.

Let F be the a diagonal matrix with Fvv = f(v), v ∈ V (G), and let
B = F (M − λkI)F . Since B satisfies Buu +

∑
uv∈E(G)Buv = 0, ∀u ∈ V (G).

We have (Bg)(x) =
∑

uv∈E(G)(−Buv)(g(u)− g(v)), from which we get

〈g,Bg〉 =
∑

uv∈E(G)

(−Buv)(g(u)− g(v))2

=
∑

uv∈E(G)

(−Muv)f(u)f(v)(g(u)− g(v))2.

It follow from (3) that

(10) n− (k + r − 1) ≤ |E(T )| ≤ n− (k + r − 1) + �,
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which implies

(11) |P |+ |S| − (n− (k+ r− 1))+ � ≤ p+ s ≤ |P |+ |S| − (n− (k+ r− 1)).

By definition of P , S and C, we have

(12) S(f) = |C|+ p+ s = n− (|P |+ |S|) + p+ s,

together with (11), we get

(13) k + r − 1− � ≤ S(f) ≤ k + r − 1.

For general f that is zero on some vertex, say v, then the restriction of f

to G − v is still an eigenvector of λk, regarded as an eigenvalue of G − v.

Assume that λk is the k′-th eigenvalue of G− v with multiplicity r′. By the

interlacing theorem, it is not difficult to see that k+ r− 1 ≤ k′ + r′ ≤ k+ r.

So we get S(f) ≤ k′ + r′ − 1 ≤ k + r − 1 by induction on the number of

vertices of G. If we assume that f is zero on exactly z vertices of V (G), then

by induction on z, we get S(f) ≥ k+ r−1− �− z. So we conclude the proof

of Theorems 1.1 and 1.3.

Corollary 2.4. Given a tree T and M ∈ M (T ), let λk be the k-th eigenvalue

with multiplicity r and f an eigenfunction corresponding to λk, which is zero

on exactly z vertices. Then S(f) ≥ k + r − 1− z.

Proof. It follows from Theorem 1.3, since � = 0 for trees.

Corollary 2.5. Let M ∈ M (G) be a generalized Laplacian of a (not nec-

essarily connected) graph G. If f is an eigenfunction corresponding to an

eigenvalue λ which does not vanish on any vertex, then the multiplicity r of

λ satisfies

(14) c ≤ r ≤ c+ �.

Proof. Since f is nonvanishing, λ is an eigenvalue of M restricted to each

connected component. It follows that r ≥ c.

Add up (3) and (4), we get

(15) |E(H)|+ |E(H ′)| ≤ n− r + 2�.

Since |E(H)|+ |E(H ′)| = |E(G)| = n− c+ �, we get r ≤ c+ �.
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In Corollary 2.5, when G is a tree, it is a well-known result of Fiedler [9]
that r = 1.

The sharpness of Theorem 1.3 and Corollary 2.5 can be seen as following:
Consider the Laplacian L of the cycle graph Cn, λ2 = 2 − 2 cos(2π/n)

has multiplicity 2 with an eigenfunction

f =

(√
2

2
, sin

(
2π

n
+

π

4

)
, . . . , sin

(
2π(n− 1)

n
+

π

4

))
,

which does not vanish on any vertex. We have S(f) = 2.
Consider the Laplacian L of the star graph Sn, λ2 = 1 has multiplicity

n − 2 with an eigenfunction f which is nonzero (taking 1 and −1) only on
two degree one vertices. Then S(f) = 2.

3. Possible numbers of strong nodal domains

If we prescribe a sign {+,−, 0} on each vertex of G, denoting such a sign
pattern by s, we can still define the number of strong nodal domains S(s).

Lemma 3.1. Given a sign pattern s on G = (V,E), there is an eigenfunc-
tion f of some M ∈ M (G) with the sign pattern s if and only if for each
vertex v with s(v) = 0, either all neighbors of v are zero vertices or v is
adjacent to vertices with both + and − signs.

Proof. The necessity was proved in [3, p. 20]. Let f be an eigenfunction of
some M ∈ M (G), we may assume its eigenvalue equals 1. If f(z) = 0, then

0 =
∑
x∈V

Mzxf(x) =
∑
x∼z

Mzxf(x).

Since Mzx < 0 when x ∼ z, so we get the necessary condition if s is the sign
pattern corresponding to f .

Next we prove that if a sign pattern s satisfies the given condition,
then it must be the sign pattern of an eigenfunction f with eigenvalue 0.
We may order the vertices so that s = (s(v1), . . . , s(vp), 0, . . . , 0)

T , where
s(vi) 
= 0, 1 ≤ i ≤ p. Let f(vi) = s(vi) ·1, ∀1 ≤ i ≤ n. We want to construct a
symmetric matrix M ∈ M (G) such that Mf = 0. Since f(vi) 
= 0, 1 ≤ i ≤ p
and the diagonals of M ∈ M (G) is unconstrained, we can arbitrarily specify
Mij = Mji, where (i, j) ∈ E, 1 ≤ i < j ≤ p, such that

(16) Mii = − 1

f(vi)

∑
(i,j)∈E

1≤j≤p

Mijf(vj), 1 ≤ i ≤ p.
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Similarly it is not difficult to see that we can assign negative values to

Mij , where p + 1 ≤ i ≤ n, 1 ≤ j ≤ p, (i, j) ∈ E, such that they satisfy the

following system of linear equations

(17)
∑

(i,j)∈E

1≤j≤p

Mijf(vj) = 0, p+ 1 ≤ i ≤ n.

Other entries of M can be specified such that M ∈ M (G). Then M con-

structed above must satisfy Mf = 0.

As pointed out in [3, p. 47], Lemma 3.1 belongs to the eigenvalue problem

of sign-solvable linear systems studied in detail by Brualdi and Shader [4].

A sign pattern of G satisfying the condition of Lemma 3.1 will be called

an admissible sign pattern, its totality is denoted by P(G). The nodal do-

main count sequence of G is the set η(G) = {S(s) | s ∈ P(G)} arranged

in increasing order. Note a theorem of Oren [13] says that for a connected

graph G, S(s) ≤ |V | − χ+ 2, where χ is the chromatic number of G. More-

over, n ∈ η(G) if and only if G is bipartite.

Example 3.2. Let T be a tree with n vertices. Then η(T ) = (1, . . . , n).

Actually we prove the stronger statement that for any 1 ≤ k ≤ n, we can

get k strong nodal domains by assigning only {+,−} signs. The proof is by

induction on n. We take x to be a leaf and consider the tree T − {x}. By
assigning {+} or {−} to x, the rest of the proof is immediate.

The following example shows that η(G) may have gaps, i.e. k1, k2 ∈ η(G)

but j /∈ η(G) for some j ∈ (k1, k2).

Example 3.3. Let Cn be a cycle of length n. Then η(Cn) = (1, 2, 4, . . . ,

2[n/2]). We first prove that η(Cn) must not contain any odd number greater

than 1. Obviously η(C3) = {1, 2}. The proof is by induction on n and by

contradiction. If S(s) = 2a + 1 > 1 is an odd number for some admissible

sign pattern s of Cn, then either s(u) = 0 for some vertex u or there are

two adjacent vertices u and v with s(u) = s(v) 
= 0. In the first case,

the two neighboring vertices of u must have different signs {+} and {−}
respectively and we may remove u and make the two neighbors of u adjacent.

In the second case, we may merge u, v into a single vertex. Either of the two

operations generates an admissible sign pattern on Cn−1 with 2a+1 strong

nodal domains. We arrived at a contradiction by induction on n.

On the other hand, it is easy to see that for any even number 2k ≤ n,

we have 2k ∈ η(Cn).
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The above two examples imply that for a connected unicycle graph G,
other than the cycle, η(G) has no gaps. The following example shows that
the gaps in η(G) may be arbitrarily large.

Example 3.4. Let m ≥ n ≥ 1 and Km,n = (V1 + V2, E) be a complete
bipartite graph with |V1| = m, |V2| = n and every vertex in V1 is adjacent to
every vertex in V2. Then η(Km,n) = (1, . . . ,m,m+ n). For any 1 ≤ k ≤ m,
denote by s the sign pattern that assigns {−} to all vertices of V2, assigns
{+} to k− 1 vertices of V1 and assigns {−} to n−k+1 vertices of V1. Then
we have S(s) = k.

On the other hand, we have k /∈ η(Km,n) for any m < k < m + n,
since for a sign pattern s, if both V1 and V2 have signs {+} and {−}, then
S(s) = 2.

The following lemma shows that for a bipartite graph G, a rather weak
necessary condition for η(G) to have no gaps is that G must have a cut
point.

Lemma 3.5. Let G be a bipartite graph with n ≥ 3 vertices. Then n− 1 ∈
η(G) if and only if G has a cut point.

Proof. If p ∈ V is a cut point of G and G1, . . . , Gk, k ≥ 2 are the connected
components of G−{p}, then we may define a sign pattern s of G by requiring
that the restriction of s to each Gi has |Vi| strong nodal domains. Finally
set s(p) = 0, by swapping the {+} and {−} signs on some Gi if necessary,
we get an admissible sign pattern s and S(s) = n− 1.

On the other hand, if n − 1 ∈ η(G), i.e. there exists an admissible sign
pattern s such that S(s) = n − 1, then either there are two neighboring
vertices u, v having the same signs, say s(u) = s(v) = {+} or there is a
vertex u such that s(u) = 0. In the former case, u, v could not lie on the
same cycle, otherwise S(s) < n − 1 since each cycle in G has even length.
Then at least one of u, v is a cut point of G. In the latter case, p must be
adjacent to two vertices u, v with s(u) = {+}, s(v) = {−}. Then u, p, v could
not lie on the same cycle since G has only even cycles. So we proved that p
is a cut point of G.

It shall be interesting to find a characterization of those connected graphs
G such that η(G) has no gaps.

4. The maximum multiplicity sequence of spectra

Without loss of generality, we may assume G to be connected when talk-
ing about δ(G), the maximum multiplicity sequence of spectra defined in
Section 1.
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Lemma 4.1. Given a connected graph G with δ(G) = (δ1, . . . , δn), we have

i) δ1 = 1 and 1 ≤ δk ≤ n+ 1− k, ∀1 ≤ k ≤ n.

ii) If G is bipartite, then δk ≤ n− k, ∀1 ≤ k ≤ n.

iii) If G′ is obtained by removing a vertex from G and δ(G′) = (δ′1, . . . ,
δ′n−1). Then δk − 1 ≤ δ′k ≤ δk+1 + 1, ∀1 ≤ k ≤ n− 1.

iv) δk = max{i0(M) | M ∈ M (G), i−(M) = k−1}, where (i+(M), i−(M),

i0(M)) is the inertia of M .

v) max(δ1, . . . , δn) = n − mr(G), where mr(G) = min{rank(M) | M ∈
M (G)}.

vi) max(δ1, . . . , δn) = 1 if and only if G = Pn the path.

vii) δ2 = n− 1 if and only if G = Kn the complete graph.

Proof. δ1 = 1 follows from the Perron-Frobenius Theorem (cf. Corollary 2.23

in [3]). The inequality in (i) is obvious. (ii) follows from the fact that the

largest eigenvalue of M ∈ M (G) is simple if G is bipartite (cf. Corollary 3.25

in [3]). (iii) follows from the interlacing theorem (cf. Theorem 2.2). (iv) and

(v) are obvious. (vi) and (vii) follow from (v) and respective characteriza-

tions of Pn and Kn.

It would be interesting to compute or estimate these δi in terms of graph

invariants. For trees, there is the following elegant result.

Theorem 4.2. [10] Let T be a tree with δ(T ) = (δ1, . . . , δn). Then

(18) max(δ1, . . . , δn) = p(T ),

where p(T ) is the path cover number of T , i.e., the minimum number of

vertex disjoint paths that cover all the vertices of T .

In fact, the authors of [10] considered more general real symmetric matrix

M such that two distinct vertices u and v in T are adjacent if and only if

Muv 
= 0. However for such M , it is not difficult to see that there exists a

nonsingular diagonal matrix D such that the off-diagonal entries of DMD

is either 0 or −1. Therefore, in the proof of Theorem 4.2, we may restrict to

M with Muv = −1 for adjacent u, v.

In general, it is very difficult to compute δ(G) for an arbitrary graph G.

We do not know an algorithm.

Example 4.3. We compute δ(G) for the five connected graphs with 4 ver-

tices. By Lemma 4.1, it is easy to see that
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δ

(• •

• •

)
= (1, 1, 1, 1), δ

(• •

• •

)
= (1, 2, 1, 1),

δ

(• •

• •

)
= (1, 3, 2, 1).

In order to show

(19) δ

(• •

• •

)
= (1, 2, 2, 1),

we pick out two of its generalized Laplacians together with their character-
istic polynomials:⎡

⎢⎢⎣
−1 −1 −1 0
−1 −1 −1 0
−1 −1 0 −1
0 0 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 −1 −1 0
−1 −1 −1 0
−1 −1 −2 −1
0 0 −1 −1

⎤
⎥⎥⎦

λ2(λ2 + λ− 5) λ2(λ2 + 5λ+ 5)

In order to show

(20) δ

(• •

• •

)
= (1, 2, 2, 1),

we pick out two of its generalized Laplacians together with their character-
istic polynomials:⎡

⎢⎢⎣
0 0 −1 −1
0 0 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 0 −1 −1
0 2 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤
⎥⎥⎦

λ2(λ2 + 2λ− 4) λ2(λ2 + 5λ+ 5)

The remaining verifications are easy applications of Lemma 4.1.

Example 4.4. For the path Pn, the complete graph Kn and the star Sn,
we have

δ(Pn) = (1, . . . , 1),(21)

δ(Kn) = (1, n− 1, n− 2, . . . , 1),(22)

δ(Sn) = (1, n− 2, n− 3, . . . , 2, 1, 1).(23)
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To prove (22), we consider the following generalized Laplacians of Kn for

0 ≤ k ≤ n− 2,

−J − diag[1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

],

where J is the n×n matrix with all entries equal to 1 and diag[· · · ] denotes
a diagonal matrix. Its characteristic polynomial p(λ) equals

p(λ) =

{
λn−1(λ+ n), if k = 0,
λn−1−k(λ+ 1)k−1(λ2 + (n+ 1)λ+ n− k), if 1 ≤ k ≤ n− 2,

which has no positive roots.

To prove (23), we just use (iii) of Lemma 4.1 and compute that for any

1 ≤ k ≤ n − 2, the characteristic polynomial of the following generalized

Laplacians of Sn ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 . . . −1
−1 −1

}
k

. . .

... −1
0

. . .

−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

equals λn−2−k(λ+1)k−1(λ3+λ2− (n−1)λ− (n−1−k)), which has exactly

one positive root.

Proposition 4.5. For the cycle graph Cn, n ≥ 3, we have

(24) δ(Cn) =

{
(1, 2, 1, 2, . . . , 1, 2, 1) if n is odd,

(1, 2, 1, 2, . . . , 1, 2, 1, 1) if n is even.

Proof. It is easy to see that mr(Cn) = n − 2. So δi ≤ 2, ∀1 ≤ i ≤ n. Since

the Laplace spectrum of Cn is 2 − 2 cos(2πi/n), i = 0, . . . , n − 1, we have

δ2j = 2, 1 ≤ j ≤ n−1
2 . So it remains to prove δk = 1 when k is odd. Assume

that δk = 2 for some 1 ≤ k ≤ n. Without loss of generality, we may assume

that the k-th eigenvalue λk = 0, namely

λ1 ≤ · · · ≤ λk−1 < λk = λk+1 = 0 < λk+2 ≤ · · · ≤ λn.
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A generalized Laplacian M ∈ M (Cn) is of the form

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1 −a1 . . . −an

−a1 d2 −a2

...
. . .

...

−an−2 dn−1 −an−1

−an −an−1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where ai > 0, 1 ≤ i ≤ n. Assume rank(M) = n − 2, the characteristic
polynomial of M equals λ2p(λ) and

(25) p(0) = (−1)n
∑

1≤i<j≤n

det(M (̂i, ĵ)) 
= 0,

where M (̂i, ĵ) is the principle submatrix obtained by deleting the i-th & j-th
rows and columns. We shall prove that

(26) det(M (̂i, ĵ)) ≤ 0, ∀1 ≤ i < j ≤ n.

By symmetry, we may assume i = 1. Since the matrix M(1̂, ĵ) is of the form[
A 0
0 B

]
,

where A is a (j − 2)× (j − 2) matrix and B is a (n− j)× (n− j) matrix. If
we put back i-th row and j-th column, we get a (n − 1) × (n − 1) singular
matrix M̃ , since rank M = n− 2. It is not difficult to check that

det M̃ = (−1)j(a1 · · · aj−1 · detB + aj · · · an · detA) = 0,

with the convention that detA = 1 if j = 2; detB = 1 if j = n. So we get
det(M(1̂, ĵ)) ≤ 0. Obviously (26) and (25) imply that∑

1≤i<j≤n

det(M (̂i, ĵ)) < 0,

so by (25) there must be odd number of negative roots to the polynomial
p(λ) = 0, which implies that k must be even. We conclude the proof.

The nonpositiveness of off-diagonal entries in the definition of generalized
Laplacians is crucial for the validity of Proposition 4.5. For example, the
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following symmetric matrix (with underlying graph C4)⎡
⎢⎢⎣

0 −1 0 −1
−1 0 −1 0
0 −1 0 1
−1 0 1 0

⎤
⎥⎥⎦ ,

has characteristic polynomial (λ2 − 2)2, so the third eigenvalue has multi-
plicity 2.

Assume that M ∈ M (G) has distinct eigenvalues λ1 < λ2 < · · · < λq

with multiplicity m1, . . . ,mq, then (m1, . . . ,mq) is called the ordered multi-
plicity list of M .

Similar to Johnson et al. [11], one may ask the following problem: Given a
connected graphG and an ordered partition (m1, . . . ,mq) of n, whether there
exists some M ∈ M (G) such that (m1, . . . ,mq) is the ordered multiplicity
list of M . An obvious necessary condition is

(27) mj ≤ δbj , where bj = 1 +

j−1∑
i=1

mi, ∀1 ≤ j ≤ q.

From Example 4.3, it is not difficult to check that when n ≤ 4, the above
condition (27) is also sufficient.
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