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Meyniel’s conjecture on the cop number: A survey

William Baird and Anthony Bonato
∗

Meyniel’s conjecture is one of the deepest open problems on the
cop number of a graph. It states that for a connected graph G of
order n, c(G) = O(

√
n).While largely ignored for over 20 years, the

conjecture is receiving increasing attention. We survey the origins
of and recent developments towards the solution of the conjecture.
We present some new results on Meyniel extremal families contain-
ing graphs of order n satisfying c(G) ≥ d

√
n, where d is a constant.

Keywords and phrases: Cops and robbers, cop number, retract, ran-
dom graph.

1. Introduction

Cops and Robbers is a game played on a reflexive graph; that is, vertices each
have at least one loop. Multiple edges are allowed, but make no difference
to the game play, so we always assume there is exactly one edge between
adjacent vertices. There are two players consisting of a set of cops and a
single robber. The game is played over a sequence of discrete time-steps or
rounds, with the cops going first in round 0 and then playing alternate time-
steps. The cops and robber occupy vertices; for simplicity, we often identify
the player with the vertex they occupy. We refer to the set of cops as C
and the robber as R. When a player is ready to move in a round they must
move to a neighbouring vertex. Because of the loops, players can pass, or
remain on their own vertex. Observe that any subset of C may move in a
given round.

The cops win if after some finite number of rounds, one of them can oc-
cupy the same vertex as the robber (in a reflexive graph, this is equivalent to
the cop landing on the robber). This is called a capture. The robber wins if he
can evade capture indefinitely. A winning strategy for the cops is a set of rules
that if followed, result in a win for the cops. A winning strategy for the rob-
ber is defined analogously. Cops and Robbers is often called a vertex-pursuit
game on graphs, for reasons that should now be apparent to the reader.
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If we place a cop at each vertex, then the cops are guaranteed to win.
Therefore, the minimum number of cops required to win in a graph G is a
well-defined positive integer, named the cop number (or copnumber) of the
graph G. We write c(G) for the cop number of a graph G. If c(G) = k, then
we say G is k-cop-win. In the special case k = 1, we say G is cop-win (or
copwin).

The game of Cops and Robbers was first considered by Quilliot [22] in
his doctoral thesis, and was independently considered by Nowakowski and
Winkler [21]. The authors of [21] were told about the game by G. Gabor.
Both [21, 22] refer only to one cop. The introduction of the cop number
came in 1984 with Aigner and Fromme [1]. Many papers have now been
written on cop number since these three early works; see the book [5] for
additional references and background on the cop number. Cops and Robbers
has even found recent application in robotics, artificial intelligence, and so-
called moving target search; see [17, 19].

1.1. Meyniel’s conjecture

Meyniel’s conjecture states that if G is a graph of order n, then

(1) c(G) = O(
√
n).

In other words, there is a constant d > 0 such that

c(G) ≤ d
√
n.

We will refer to (1) as the Meyniel bound. The conjecture was mentioned in
Frankl’s paper [15] as a personal communication to him by Henri Meyniel in
1985 (see page 301 of [15] and reference [8]; see Figure 1 for a rare photograph
of Meyniel). Despite this somewhat cryptic reference, Meyniel’s conjecture
stands out as one of the deepest (if not the deepest) problems on the cop
number. The conjecture was largely unnoticed until recently, with several
new works supplying upper bounds to the cop number or solving partial
cases; see [4, 10, 16, 18, 26, 28]. One of the motivations of this survey is
to summarize what is currently known on the problem, while supplying the
requisite background for researchers to consider its aspects (and solution!)
in the future.

For n a positive integer, let c(n) be the maximum value of c(G), where
G is of order n. For example, c(1) = c(2) = c(3) = 1, while c(4) = c(5) = 2.
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Figure 1: Henri Meyniel in Aussois, France, in the 1980’s. Photo courtesy of
Geňa Hahn.

Note that c(n) is a non-decreasing function (to see this, note that adding
a vertex of degree one does not change the cop number). We can rephrase
Meyniel’s conjecture more compactly as

c(n) = O(
√
n).

At the heart of Meyniel’s conjecture, of course, is the task of finding good
upper bounds for the cop number. Incidence graphs of projective planes show
that if the conjecture is true, then the bound is asymptotically tight (see
Section 3). As a first step towards proving Meyniel’s conjecture, Frankl [15]
proved that c(n) = o(n). Recent work has improved this upper bound some-
what (see Section 2). To further highlight how far we are from proving the
conjecture, even the so-called soft Meyniel’s conjecture is open, which states
that for a fixed constant c > 0,

c(n) = O(n1−c).

In Section 2 we give a history of upper bounds for the function c(n). We
close the section with a discussion of the conjecture in random graphs, in
graph classes, and in directed graphs. We discuss families of graphs realizing
the tightness of the Meyniel bound (1) in Section 3.
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For additional background and notation in graph theory, the reader is
directed to the books [11, 30]. All the graphs we consider are reflexive with
no multiple edges, finite, and connected (for emphasis, we will occasionally
remind the reader that the graphs under consideration are connected).

2. Upper bounds for c(n)

For many years, the best known upper bound was the one proved by
Frankl [15].

Theorem 2.1. [15] For n a positive integer

c(n) = O

(
n
log logn

log n

)
.

For a fixed integer k ≥ 1, an induced subgraph H of G is k-guardable if,
after finitely many moves, k cops can move only in the vertices of H in such
a way that if the robber moves into H at round t, then he will be captured
at round t + 1. For example, a clique or a closed neighbour set (that is, a
vertex along with its neighbours) in a graph are 1-guardable.

Given a connected graph G, the distance between vertices u and v in
G, denoted dG(u, v), is the length of a shortest path connecting u and v. A
path P in G is isometric if for all vertices u and v of P,

dP (u, v) = dG(u, v).

For example, a shortest path (or geodesic) connecting two vertices is isomet-
ric. The following theorem of Aigner and Fromme [1] on guarding isometric
paths has found a number of applications.

Theorem 2.2. [1] An isometric path is 1-guardable.

For completeness, we give a proof of Frankl’s upper bound (inspired by
the discussion of Lu, Peng [18]) making use of the Moore bound, which is
an important inequality involving the order n of graph, its maximum degree
Δ, and its diameter. For simplicity, we will write diam(G) = D.

Theorem 2.3. Let G be a graph of order n, with maximum degree Δ > 2
and diameter D. Then

(2) n ≤ 1 + Δ

(
(Δ− 1)D − 1

Δ− 2

)
.
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Proof of Theorem 2.1. Each closed neighbour set of a vertex u of maximum
degree Δ is 1-guardable. By Theorem 2.2, an isometric path of length D is
also 1-guardable. Asymptotically, the Moore bound becomes n = O(ΔD).

By the Moore bound, both Δ and D cannot be less than O( log n
log log n). In

particular, there is a subset X consisting of either a closed neighbour set or
isometric path of order at least log n

log log n in G. Delete X1 to form the graph

G
′′
. Although graph G′′ may be disconnected, the robber is confined to a

connected component G′ of this graph. The cops then move to G′. Then

(3) c(G) ≤ c(G′) + 1,

since X1 is 1-guardable. Now proceed by induction using (3) to derive that

c(n) ≤ c

(
n

2

)
+

n/2
log n

log logn

= O

(
n
log log n

log n

)
,

where the equality follows by a straightforward induction.

The greedy approach used above in the proof of Frankl’s theorem was
used by Chinifooroshan [10] in 2008 to give an improved bound.

Theorem 2.4. [10] For n a positive integer

(4) c(n) = O

(
n

log n

)
.

The bound (4), therefore, represents the first important step forward in
proving Meyniel’s conjecture in over 25 years. The key to proving (4) comes
again from the notion of guarding an induced subgraph. Aminimum distance
caterpillar (or mdc) is an induced subgraph H of G with the following
properties.

1. The graph H is a tree.
2. There is a path P in H that is dominating : that is, for each vertex u

of H not in P, there is a vertex v of P joined to u.

Figure 2 gives an example of a minimum distance caterpillar.
Mdc’s are “sticky” analogues of isometric paths, and require just a few

more cops to guard. The following theorem of [10] can be used to prove
Theorem 2.4 in a way similar to the proof of Theorem 2.1 above.
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Figure 2: An example of an mdc, represented by the thicker lines. The grey
lines forms the path P.

Theorem 2.5. [10]

1. An mdc is 5-guardable.
2. If G has order n, then there is an mdc in G of order at least log n.

Let H be an induced subgraph of G. We say that H is a retract of G if
there is a homomorphism f from G onto H so that f(x) = x for x ∈ V (H);
that is, f is the identity on H. The map f is called a retraction. Isometric
paths are retracts in reflexive graphs: the cops stay on the image of the
robber under the retraction. If the robber moves to the subgraph, then the
cop captures the robber on his image or shadow there. One could imagine
exploiting larger retracts in graphs as an approach to proving Meyniel’s
conjecture. Unfortunately, this will not substantially improve upper bounds
on the cop number for general graphs. A recent result from [4] puts a poly-
logarithmic upper bound on the order of retracts in some graphs. The proof
relies on the probabilistic method.

Theorem 2.6. [4] For all integers n > 0, there is a graph of order n whose
largest retract is of order O(log8 n).

An improvement exists to the bound (4) in Theorem 2.4. The following
theorem was proved independently by three sets of authors.

Theorem 2.7. [18, 16, 28] For n a positive integer

(5) c(n) ≤ O

(
n

2(1−o(1))
√

log2 n

)
.

The bound in (5) is currently the best upper bound for general graphs
that is known, but it is still far from proving Meyniel’s conjecture or even
the soft version of the conjecture. We note that the proofs of Theorem 2.7
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in [18, 28] use the greedy approach as in the proofs of Theorems 2.1 and 2.4,
while expansion properties are used in [16]. In addition, all of the proofs use
the probabilistic method, which represents a new and interesting approach
to proving the conjecture.

2.1. Random graphs

As further support for its veracity, Meyniel’s conjecture has been essentially
proven for binomial random graphs G(n, p). Let p = p(n) be a function of
n with range in [0, 1]. The probability space G(n, p) = (Ω,F ,P) of random
graphs is defined so that Ω is the set of all graphs with vertex set [n], F is
the family of all subsets of Ω, and for every G ∈ Ω

P(G) = p|E(G)|(1− p)(
n

2)−|E(G)| .

The space G(n, p) can be viewed as a result of
(
n
2

)
independent coin flips,

one for each pair of vertices {x,y}, with the probability that x and y are
joined equaling p. We will abuse notation and consider G(n, p) as a graph,
and so write c(G(n, p)) (note that the cop number is a random variable on
the probability space G(n, p)). We say that an event holds asymptotically
almost surely (a.a.s.) if it holds with probability tending to 1 as n → ∞.

In 2009, Bollobás, Kun, Leader proved the following result [4], which
proves Meyniel’s bound in random graphs G(n, p) up to a multiplicative
logarithmic factor for a wide range of p = p(n). The basic idea behind the
proof is to surround the robber using Hall’s theorem on matchings, and then
use induction.

Theorem 2.8. If p ≥ 2.1 log n/n, then a.a.s.

(6) c(G(n, p)) = O(
√
n log n ).

Recent work by Pra�lat and Wormald [26] removes the log n factor in (6)
and hence, proves the Meyniel bound for random graphs (and also for ran-
dom regular graphs).

2.2. Graph classes

While Meyniel’s conjecture is unresolved for general graphs, we may attempt
to solve it in certain graph classes. In some cases, the extra structure avail-
able in a class of graphs can bound the cop number from above more easily.
For example, Aigner and Fromme [1] proved that c(G) ≤ 3 if G is planar.
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For a fixed graph H, Andreae [2] generalized this result by proving that
the cop number of a K5-minor-free graph (or K3,3-minor-free graph) is at
most 3 (recall that planar graphs are exactly those which are K5-minor-free
and K3,3-minor-free). Andreae [3] also proved that for any graph H the cop
number of the class of H-minor-free graphs is bounded above by a constant.

Lu and Peng [18] show that the Meyniel bound holds in the class of
graphs with diameter two. The proof uses the notion of guarding subgraph,
but also uses a randomized argument.

Theorem 2.9. [18] If G is a graph on n vertices with diameter two, then

(7) c(G) ≤ 2
√
n− 1.

The same bound (7) was also shown in [18] in the case whenG is bipartite
and of diameter at most three.

The incidence graphs of projective planes are bipartite of diameter three,
and so show that the bound (7) is asymptotically tight in that class. Meyniel
extremal families whose members have diameter two and bounded chromatic
number were given in [6].

2.3. Directed graphs

Another direction is the analogue of Meyniel’s conjecture in digraphs. For
the conjecture to be sensible, we should restrict our attention to strongly
connected graphs (otherwise, a digraph can have cop number n − 1 even if
the underlying graph is connected). Recent work by Frieze et al. [16] using
expansion properties shows that the cop number of a connected digraph of
order n is O(n(log log n)2/ log n). Can we do better? In other words, does
the Meyniel bound hold for strongly connected digraphs? For tournaments,
Meyniel’s bound fails to be tight. A set D is dominating in a tournament, if
for each vertex x not inD, there is a vertex y inD with (y, x) a directed edge.
The domination number of a tournament G, written γ(G), is the minimum
cardinality of a dominating set. Erdős proved (see p. 28 of [20]) that if G is a
tournament on n vertices, then γ(G) ≤ �log2 n	, thereby giving a logarithmic
upper bound on the cop number of tournaments.

3. Lower bounds for c(n)

Meyniel’s conjecture states that the cop number is at most approximately√
n. Examples are known (and will be discussed immediately below) which

have cop number very close to
√
n. However, the question remains how close

the cop number can approach
√
n from below.
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For graphs with large cop number, we turn to incidence graphs. An
incidence structure consists of a set P of points, and a set L of lines along
with an incidence relation consisting of ordered pairs of points and lines.
Given an incidence structure S, we define its incidence graph G(S) to be
the bipartite graph whose vertices consist of the points (one color), and lines
(the second color), with a point joined to a line if it is incident with it in
S. Incidence structures (and graphs) are quite general, but we restrict our
attention to partial linear spaces, where any pair of points (lines) is incident
with at most one line (point). It is an exercise that the incidence graph of a
partial linear space has diameter at least three with girth at least 6.

Projective planes are some of the most well-studied examples of incidence
structures. A projective plane consists of a set of points and lines satisfying
the following axioms.

1. There is exactly one line incident with every pair of distinct points.
2. There is exactly one point incident with every pair of distinct lines.
3. There are four points such that no line is incident with more than two

of them.

Hence, projective planes are particular partial linear spaces; condition
three rules out certain degenerate cases where all points are on a single line
or all lines are on a single point. We are interested in finite projective planes,
which always have q2 + q+1 points for some integer q > 0 (called the order
of the plane).

For a given projective plane P , define G(P ) to be the bipartite graph
with red vertices the points of P, and the blue vertices represent the lines.
Vertices of different colors are joined if they are incident. We call this the
incidence graph of P. See Figure 3 for G(P ),where P is the Fano plane (that
is, the projective plane of order 2). We note the incidence graph of the Fano
plane is isomorphic to the famous Heawood graph.

Aigner and Fromme proved the following theorem in [1], which provides
a useful lower bound on the cop number in some graphs. The girth of a graph
is the length of a shortest cycle. The minimum degree of G is written δ(G).

Theorem 3.1. [1] If G has girth at least 5, then c(G) ≥ δ(G).

Hence, Theorem 3.1 proves that c(G(P )) ≥ q + 1. As proven in [25], we
actually have that c(G(P )) = q + 1. However, the orders of G(P ) depend
on the orders of projective planes. The only orders where projective planes
are known to exist are prime powers; indeed, this is a deep conjecture in
finite geometry. What about integers which are not prime powers? An infi-
nite family of graphs (Gn : n ≥ 1) is Meyniel extremal if there is a constant
d such that for all n, c(Gn) ≥ d

√
|V (Gn)|.
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Figure 3: The Fano plane and its incidence graph. Lines are represented by
triples.

Recall the famous Bertrand postulate (see [9, 12]).

Theorem 3.2. For all integers x > 1, there is a prime in the interval
(x, 2x).

In [25], a Meyniel extremal family was given using incidence graphs of
projective planes and Theorem 3.2. Using Bertrand’s postulate, it was shown
that

c(n) ≥
√

n

8

for n ≥ 72. Using this theorem and a result from number theory, it was
shown in [25] that for sufficiently large n,

(8) c(n) ≥
√

n

2
− n0.2625.

We do not know if (8) is the best possible lower bound for c(n), and it would
be interesting to find out.

A graph is (a, b)-regular if each vertex has degree either a or b. We pro-
vide a new construction, giving infinitely many Meyniel extremal families
containing graphs which are (a, b)-regular for certain a and b. An affine
plane of order q has q2-many points, each line has q points, and each pair
of distinct points is on a unique line. In an affine plane, there are q2 + q
lines, and each point is on q + 1 lines. The relation of parallelism on the
set of lines is an equivalence relation, and the equivalence classes are called
parallel classes. Note that each parallel class contains q lines, and there are
q + 1 parallel classes.
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Theorem 3.3. For a prime power q and all k = o(q), there exist graphs of
order 2q2 + (1 − k)q which are (q + 1 − k, q)-regular and have cop number
between [q + 1− k, q].

Note the graphs described in Theorem 3.3 have order (1− o(1))q2 with
cop number (1−o(1))q and so are Meyniel extremal. In particular, we can set
k = q1−ε, for ε ∈ (0, 1) and obtain infinitely many distinct Meyniel families.

Proof of Theorem 3.3. Consider an affine plane A with order q. The inci-
dence graph G(A) has order 2q2 + q, and is (q + 1, q)-regular. As G(A)
has girth at least 6, we have that the graphs {G(A) : A an affine plane of
order q} form a Meyniel extremal family.

Affine planes of order q may be partitioned into (q + 1)-many parallel
classes, each containing q lines. Form the partial planes A−k by deleting the
lines in some fixed set of k > 0 parallel classes. For a given A−k the bipartite
graph G(A−k) is then (q + 1 − k, q)-regular, and has order 2q2 + (1 − k)q.
As the girth is at least 6, we have by Theorem 3.1 that

c(G) ≥ q + 1− k.

We claim that

(9) c(G) ≤ q.

To prove (9), we play with q cops. Fix a parallel class which was not deleted,
say �, and place one cop on each line of the parallel class. As each point is
on some line in �, the robber must move to some line L 
∈ � to avoid being
captured in the first round.

Fix a point P of L, and let L′ be the line of � which intersects L at P.
Move the cop on L′ to P. Now the robber cannot remain on L without being
captured, and so must move to some point. However, each point not on L′

is joined to some cop, so the robber must move to a point of L′. But the
unique point on L′ joined to L is P, which is occupied by a cop.

Recent work in [6] provides constructions of new Meyniel extremal fam-
ilies from designs and geometries.
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