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Partitioning graphs into paths or cycles of
prescribed lengths

Colton Magnant and Kenta Ozeki

In this paper, we consider the path (and cycle) partition problem
for graphs with additional length restrictions. More specifically, we
prove sufficient degree sum conditions for the vertices of a graph
to be partitioned into paths, with fixed end vertices, such that
these paths have approximately prescribed lengths. We also prove
similar results for partitions into cycles of approximately prescribed
lengths each containing a specified vertex.
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1. Partition problem into paths or cycles

Many researchers have considered the “path (or cycle) partition problem”,
that is, determining whether the vertices of a graph can be partitioned into
paths or cycles (with some properties, mentioned after). In particular, we
are interested in a σ2(G) condition which implies the existence of such a
partition, where

σ2(G) := min{d(x) + d(y) : xy �∈ E(G)}

if G is not a complete graph; otherwise let σ2(G) := +∞. For many related
problems and results, we refer the reader to the path and cycle partition
problem survey [6].

In this paper, we first concentrate on a partition into paths with some
special properties. It is easily proved that if σ2(G) ≥ n− t for a graph G of
order n, there exist t disjoint paths P1, P2, . . . , Pt with V (G) =

⋃t
i=1 V (Pi).

By considering the classical result on a hamilton cycle by Ore [13], we can
obtain the following fact.

Theorem 1 (Ore [13]). Let t be an integer with t ≥ 2 and let G be a graph
of order n. If σ2(G) ≥ n, then for any t vertices x1, x2, . . . , xt, there exists
t pairwise disjoint paths P1, P2, . . . , Pt such that V (G) =

⋃t
i=1 V (Pi) and xi

is an end vertex of Pi.
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On the other hand, Johansson [9] gave a sharp δ(G) condition for the
existence of a partition into paths with given order. Chen et al. extended Jo-
hansson’s result, and we obtain the following σ2(G) condition as a corollary
of it.

Theorem 2 (Chen et al. [2]). Let t be an integer with t ≥ 2 and also let
a1, a2, . . . , at be integers with ai ≥ 2 for any 1 ≤ i ≤ t. Let G be a graph of
order n =

∑t
i=1 ai and suppose σ2(G) ≥ n− t+λ−2, where λ is the number

of even integers in {a1, a2, . . . , at}. Then there exist t pairwise disjoint paths
P1, P2, . . . , Pt such that V (G) =

⋃t
i=1 V (Pi) and |Pi| = ai.

Enomoto and Ota considered the conditions from Theorems 1 and 2 at
the same time, that is, a partition into paths with specified end vertices and
given order. They also posed the following conjecture.

Conjecture 1 (Enomoto and Ota [7]). Let t be an integer with t ≥ 2 and
let a1, a2, . . . , at be positive integers. Let G be a graph of order n =

∑t
i=1 ai.

If σ2(G) ≥ n + t − 1, for any t vertices x1, x2, . . . , xt, then there exist t
vertex disjoint paths P1, P2, . . . , Pt such that V (G) =

⋃t
i=1 V (Pi), xi is an

end vertex of Pi and |Pi| = ai.

The sharpness of the aforementioned conjecture (if it is true) is given by
G1 = Kt+(K1 ∪Kn−t−1). Notice σ2(G1) = t+(n− t− 2+ t) = n+ t− 2. If
the vertices of the Kt are the prescribed vertices, there is no way to use the
vertex of the K1 in a desired partition if ai ≥ 3 for all 1 ≤ i ≤ t.

In [7], Enomoto and Ota showed positive results in the case t = 3 or
ai = 3 for all 1 ≤ i ≤ t. Later Kawarabayashi [10] showed that if σ2(G) ≥∑t

i=1max{�43ai	, ai + 1} − 1, there exist t vertex disjoint paths desired in
Conjecture 1. Magnant and Martin [11] proved an asymptotic version of
this Conjecture 1 very similar to the results contained in this work but, in
general, the conjecture is still unsolved.

The above results and conjecture are concentrated on a partition into
paths with one specified end vertex. Along these lines, we have a question;
what happens if we specify both end vertices? Egawa et al. [4] showed a result
on a partition into cycles containing specified edges, and as a corollary, we
obtain the following result.

Theorem 3 (Egawa et al. [4], Enomoto [6]). Let t be an integer with t ≥ 2
and let G be a graph of order n ≥ 4t − 1. If σ2(G) ≥ n + 2t − 2, then for
any 2t vertices x1, x2, . . . , xt, y1, . . . , yt, there exist t vertex disjoint paths
P1, P2, . . . , Pt such that V (G) =

⋃t
i=1 V (Pi) and xi and yi are end vertices

of Pi.
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Like Conjecture 1, now we pose a conjecture regarding a partition into
paths with both end vertices specified and given order.

Conjecture 2. Let t be an integer with t ≥ 2 and let a1, a2, . . . , at be positive
integers. Let G be a graph of order n =

∑t
i=1 ai. If σ2(G) ≥ n+2t− 1, then

for any 2t vertices x1, x2, . . . , xt, y1, y2, . . . , yt, there exist t vertex disjoint
paths P1, P2, . . . , Pt such that V (G) =

⋃t
i=1 V (Pi), xi and yi are end vertices

of Pi and |Pi| = ai.

The graph G2 = K2t+(K1∪Kn−2t−1) shows the sharpness of the σ2(G)
condition of Conjecture 2. Notice σ2(G2) = 2t+(n−2t−2+2t) = n+2t−2.
When we specify the 2t vertices from K2t, there is no way to use the vertex
of the K1 in a desired partition if ai ≥ 4.

Note that Conjecture 2 is stronger than Conjecture 1. This is because,
supposing that Conjecture 2 is true, let G be a graph satisfying the assump-
tion of Conjecture 1 with specified vertices x1, x2, . . . , xt. We construct a new
graph G′ by joining t new vertices y1, y2, . . . , yt to G and set a′i := ai + 1
and n′ := n+ t (then n′ is the order of G′). Since σ2(G

′) ≥ n+ t− 1 + 2t =
n′ + 2t − 1, we can find t vertex disjoint paths P ′

1, P
′
2, . . . , P

′
t such that

V (G′) =
⋃t

i=1 V (P ′
i ), xi and yi are end vertices of P ′

i and |P ′
i | = a′i = ai+1.

Then t disjoint paths Pi := P ′
i − {yi} are desired paths in Conjecture 1.

Therefore, we know that Conjecture 2 is at least as hard as Conjecture 1.
The difficulty of Conjectures 1 and 2 seems to arise from considering a
partition into paths with specified end vertex and given “exact” order. In
fact, when we allow some flexibility or “tolerance” in the desired order, the
situation is different. The main purpose of this paper is to find a partition
into paths with both end vertices specified and with given order up to some
“tolerance”.

Theorem 4. Let t be an integer with t ≥ 2. For any set of t positive
real numbers γ1, γ2, . . . , γt with

∑t
i=1 γi = 1 and for every ε > 0 with

ε < min{ 1
182t2 ,

γi

2 }, there exists an integer n0 such that for every (2t + 1)-
connected graph G of order n ≥ n0 with σ2(G) ≥ n + 2t − 2 and for ev-
ery 2t vertices x1, x2, . . . , xt, y1, . . . , yt, there exist t vertex disjoint paths
P1, P2, . . . , Pt such that V (G) =

⋃t
i=1 V (Pi), xi and yi are end vertices of Pi

and (γi − ε)n ≤ |Pi| ≤ (γi + ε)n for all 1 ≤ i ≤ t.

We prove Theorem 4 in Section 4. Since σ2(G) ≥ n + 2t − 1 implies
κ(G) ≥ 2t + 1, this result immediately implies the following, which has a
slightly larger degree sum condition in place of the connectivity assumption.
Theorem 4 is stated and proven as above so it can be used in the proof of
Theorem 6.
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Corollary 5. Let t be an integer with t ≥ 2. For any set of t positive
real numbers γ1, γ2, . . . , γt with

∑t
i=1 γi = 1 and for every ε > 0 with ε <

min{ 1
182t2 ,

γi

2 }, there exists an integer n0 such that for every graph G of
order n ≥ n0 with σ2(G) ≥ n+2t−1 and for every 2t vertices x1, x2, . . . , xt,
y1, . . . , yt, there exist t vertex disjoint paths P1, P2, . . . , Pt such that V (G) =⋃t

i=1 V (Pi), xi and yi are end vertices of Pi and (γi − ε)n ≤ |Pi| ≤ (γi + ε)n
for all 1 ≤ i ≤ t.

Now we consider a partition into cycles. Posa [15] showed that with large
degrees, one can guarantee a 2-factor with a bounded number of cycles.
Egawa et al. [4] gave a σ2(G) condition to guarantee the existence of a
partition into cycles each of which contains one specified vertices. On the
other hand, El-Zahar [5] considered a partition into cycles with given order
and posed a famous conjecture.

Similarly to a partition into paths, we pose the following conjecture.
Moreover, in this paper, we also show a result on such a partition with some
“tolerance”.

Conjecture 3. Let t be an integer with t ≥ 2 and let a1, a2, . . . , at be positive
integers. Let G be a graph of order n =

∑t
i=1 ai. If σ2(G) ≥ n+2t−2, then for

any t vertices x1, x2, . . . , xt, there exist t vertex disjoint cycles C1, C2, . . . , Ct

such that V (G) =
⋃t

i=1 V (Ci), xi ∈ V (Ci) and |Ci| = ai for all 1 ≤ i ≤ t.

Theorem 6. Let t be an integer with t ≥ 2. For any set of t positive
real numbers γ1, γ2, . . . , γt with

∑t
i=1 γi = 1 and for every ε > 0 with

ε < min{ 1
182t2 ,

γi

2 }, there exists an integer n0 such that for every graph
G of order n ≥ n0 with σ2(G) ≥ n + 2t − 2 and for every t vertices
x1, x2, . . . , xt, there exist t vertex disjoint cycles C1, C2, . . . , Ct such that
V (G) =

⋃t
i=1 V (Ci), xi ∈ V (Ci) and (γi − ε)n ≤ |Ci| ≤ (γi + ε)n for all

1 ≤ i ≤ t.

The sharpness of Conjecture 3 is given by G3 = K2t−1+(Kt∪Kn−3t+1).
Notice σ2(G2) = (t − 1 + 2t − 1) + (n − 3t + 2t − 1) = n + 2t − 3. If the
vertices of the Kt are the prescribed vertices, there is no way to construct t
vertex disjoint cycles each of which containing exactly one prescribed vertex
regardless of the choice of ai. The proof of Theorem 6 is also left to Section 4.

Denote the distance, along a path P , between vertices u and v by
distP (u, v). All standard notation can be found in [1].

2. Preliminary results

Along with the classical results of Ore [13], Menger [12] and Dirac [3], the
proofs of Theorems 4 and 6 use the following results of Williamson [17],
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Ore [14] and Thomas and Wollan [16]. A graph is said to be panconnected
(or hamilton-connected) if, between any pair of vertices x, y ∈ V (G), there
exists a path of every length l for d ≤ l ≤ |G| − 1 (a path of length |G| − 1,
respectively), where d is the length of a shortest path connecting x and y.
Williamson [17], and Ore [14] proved the following sufficient conditions for
a graph to be panconnected, and hamilton-connected, respectively.

Theorem 7 (Williamson [17]). Given a graph G of order n, if δ(G) ≥ n+2
2

then G is panconnected.

Theorem 8 (Ore [14]). Given a graph G of order n, if σ2(G) ≥ n+ 1 then
G is hamilton-connected.

A graph is said to be t-linked if, for every choice of 2t vertices x1, . . . , xt
and y1, . . . , yt, there exists t vertex disjoint paths Pi such that xi and yi are
end vertices of Pi for all i. We use the following result.

Theorem 9 (Thomas and Wollan [16]). If a graph G is 10t-connected, then
G is t-linked.

Our proof includes three main steps. The first creates a spanning collec-
tion of vertex disjoint paths (or cycles) starting at the chosen vertices. The
second step moves vertices from paths which are long enough to paths which
are too short if certain conditions are satisfied. When these conditions are
not satisfied, we prove the graph has strong structure which allows us, in
the third step, to build the desired path (or cycle) system directly.

3. Lemmas

Now we consider only a collection of paths. Theorem 4 will be used to prove
Theorem 6 so there is no need to consider lemmas explicitly for Theorem 6.

For the sake of notation, we define some terminology. Throughout this
and the next section, suppose we are given an integer t ≥ 3, t positive
real numbers γ1, . . . , γt with

∑
γi = 1 and a real number 0 < ε ≤ 1

182t2

such that ε ≤ γi

2 for all 1 ≤ i ≤ t. Let G be a (2t + 1)-connected graph
of order n sufficiently large (compared to t, γi’s and ε) with a set S =
{x1, . . . , xt, y1, . . . , yt} ⊂ V (G) of 2t prescribed vertices. A collection of ver-
tex disjoint paths P = {P1, P2, . . . , Pt} is called a path collection for S if Pi

connects xi and yi and |Pi| ≥ εn for any 1 ≤ i ≤ t. A path collection P for S
is spanning if

⋃t
i=1 V (Pi) = V (G) and is desired if (γi−ε)n < |Pi| < (γi+ε)n

for all 1 ≤ i ≤ t.
Since there are many small constants used in this work, to simplify

computations, we will frequently assume the constants, the value of n and
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other variables used are carefully chosen to satisfy divisibility. For example,
in place of �εn�, we will occasionally treat the quantity εn as an integer.

Our first lemma allows us to absorb vertices into path collections. In this
process, we must allow some paths to get shorter. We carefully allow only
very little decrease in length and only from paths which are long enough to
sustain such a loss. The goal of the following lemma is to allow only paths
of length at least 2εn to get shorter and only by a limited amount.

Lemma 1 (Absorbing). Let P = {P1, P2, . . . , Pt} be a path collection for S.
If σ2(G) ≥ n + 2t − 2, κ(G) ≥ 2t + 1 and n > 20t

ε , then there exists a
spanning path collection for S, P ′ = {P ′

1, P
′
2, . . . , P

′
t} such that |P ′

i | ≥ |Pi|
if |Pi| < 2εn and

∑t
j=1max{|Pj | − |P ′

j |, 0} ≤ 20
ε2 .

Proof. Let G be a graph as given above, let P =
⋃t

i=1 V (Pi) and let J =
V (G)\P . We suppose P is the largest such path collection or, in other words,
suppose |J | is minimum under the assumption each path is not shorter than
its corresponding original. The following claims provide structure with which
we prove the desired result.

Claim 1. For every vertex v ∈ J , dP (v) ≤ |P |+2t
3 .

Proof of Claim 1. Let v ∈ J . The vertex v cannot be adjacent to any pairs
of vertices u and u+ which are consecutive along a path Pi as Pi could then
be replaced with P ′

i = . . . , u, v, u+, . . . to form a longer path collection and

contradict the assumptions. This observation implies that dP (v) ≤ |P |+t
2 ,

which means d(v) ≤ |P |+t
2 + |J | − 1. Suppose dP (v) > |P |+2t

3 . By the pi-
geonhole principle, there exists a vertex u ∈ Pi for some 1 ≤ i ≤ t with
vu+, vu− ∈ E(G). By the above observation, we know uv /∈ E(G) and we
may also assume NJ(u) ∩ NJ(v) = ∅. So d(v) + d(u) ≥ n + 2t − 2. Since

dP (v) ≤ |P |+t
2 and dJ(v) + dJ(u) ≤ |J | − 1, we get

dP (u) ≥ n+ 2t− 2− d(v)− dJ(u)

≥ n+ 2t− |P |+ t

2
− |J | − 1

=
|P |
2

+
3t

2
− 1.

This implies that u must be adjacent to two consecutive vertices along
some path Pj ∈ P. Therefore, we may absorb u into Pj as above and replace
Pi with P ′

i = . . . , u−, v, u+, . . . to form a larger path collection, contradict-
ing our original assumption. �Claim 1
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Claim 2. The graph induced on J is hamilton-connected.

Proof of Claim 2. Suppose there exist vertices x, y ∈ J with xy /∈ E(G). By
the assumed degree condition, dG(x) + dG(y) ≥ n+ 2t− 2 but by Claim 1,

dP (x), dP (y) ≤ |P |+2t
3 . Therefore

dJ(x) + dJ(y) ≥ n+ 2t− 2− 2

(
|P |+ 2t

3

)

= |J |+ |P |+ 2t

3
− 2

≥ |J |+ 2.

By Theorem 8, J is hamilton-connected. �Claim 2

Claim 3. |
⋃

v∈J NP (v)| ≥ 2t+ 1. In particular, there exists a path Pi such
that |

⋃
v∈J NPi

(v)| ≥ 3.

Proof of Claim 3. Since G is (2t + 1)-connected, the first statement is ob-
vious. The second statement of Claim 3 directly follows from the fact that
|
⋃

v∈J NP (v)| ≥ 2t+ 1 and the pigeonhole principle. �Claim 3

Let JP = ∪j∈JNP (j) be the set of all neighbors in P of vertices of J .

Claim 4. For every vertex v ∈ J , dP (v) ≥ ε
4n.

Proof of Claim 4. Suppose that there exists a vertex v ∈ J such that dP (v) <
ε
4n. Let A be a shortest path segment of P (not including end vertices)
between vertices in JP and let Pi be the path containing A. Note that

|A| < |Pi|
2 , by Claim 3. The goal of this claim is to move the vertices of A

into Pi \A and absorb v into Pi as above, which contradicts the minimality
of |J |.

Let w be any vertex of A. The segment A was chosen to be the smallest
between edges from J so wx /∈ E(G) for all x ∈ J and, in particular,
wv /∈ E(G). Therefore we know

dP (w) ≥ n+ 2t− 2− d(v)

> n− |J | − ε

4
n+ 2t− 1

≥ |P | − |Pi|
4

+ 2t− 1

≥ (|P | − |Pi|) +
3|Pi|
4

+ 2t− 1
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> (|P | − |Pi|) +
|A|
2

+
|Pi|
2

+ 2t− 1

= (|P | − |Pi|) + |A|+ |Pi| − |A|
2

+ 2t− 1.

This implies that for each w ∈ A, there exists a pair of consecutive ver-
tices u, u+ ∈ Pi \A such that wu,wu+ ∈ E(G) so we may move the vertices
of A, one at a time in order to reapply the above argument, into Pi \A and
absorb at least one vertex of J (or possibly all of J) into Pi. �Claim 4

Claim 5. |J | < 5
ε .

Proof of Claim 5. Suppose |J | ≥ 5
ε . Let � be the number of path segments

between vertex disjoint edges from J to P . Since J is hamilton-connected
(by Claim 2), we know these segments must have length at least |J | + 1.
Let L be the set of vertices in the segments above including the endvertices.
Thus |L| ≥ �(|J | + 1) but furthermore, dL(j) ≤ � + t for all j ∈ J so L has
at most (�+ t)|J | edges to J . Also note that every vertex of P with at least
2 edges to J must be in L. This means that P \L has at most |P \L| edges
to J . Conversely, by Claim 4, dP (j) ≥ εn

4 for all j ∈ J meaning that there

are at least |J |εn
4 edges between P and J . This implies

(�+ t)|J |+ |P \ L| ≥ εn|J |
4

or, since |J | ≥ 5
ε ,

|P \ L| ≥ 5n

4
− 5(�+ t)

ε
.

With |L| ≥ �(|J |+ 1) > 5�
ε and |P | < n, this implies that n

4 < 5t
ε , a contra-

diction. �Claim 5

By Claims 4 and 5, we may assume dP (v) ≥ εn
4 for any v ∈ J and

|J | < 5
ε . The rest of the proof is similar to the proof of Claim 4. We again

consider a segment A between adjacencies of a vertex in J . Unfortunately,
this time we have to be more careful about how we remove the vertices of
A from the path.

Let J ′ := {v ∈ J : dP (v) ≥ n
2t+1} and let J̄ := J − J ′. First, we will

absorb a vertex in J ′ into paths in Q, where Q := {Pi ∈ P : |Pi| ≥ 2εn}.
Note that Q �= ∅. Let Q = {Q1, Q2, . . . } and let Q be the set of vertices in
paths of Q. There are only t total paths, so we know |Q| ≥ (1−2(t−1)ε)n−|J |
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and, since n is sufficiently large and |J | < 5
ε , we get |Q| ≥ (1− 3tε)n. Since

ε was chosen such that ε ≤ 1
6t(2t+1) , we know that |Q| ≥ (1− 1

2(2t+1))n.

Let v ∈ J ′. Since |P \Q| ≤ n
2(2t+1) and dP (v) ≥ n

2t+1 , we have dQ(v) ≥
n

2(2t+1) . Let A be the smallest segment of a path Qi ∈ Q between (not

including end vertices) two vertices adjacent to v. Since dQ(v) ≥ n
2(2t+1) , we

may choose n sufficiently large such that

|A| ≤
(1− 1

2(2t+1))n
n

2(2t+1) − t
≤ 3(2t+ 1).

Let w ∈ A. Of course vw /∈ E(G) so by Claim 1,

dP (w) ≥ n+ 2t− 2−
(
|P |+ 2t

3
+ |J | − 1

)
− (|J | − 1)

=
|P |+ t+ |A|

2
+

|P |
6

+
13t

6
− |A|

2
− |J |

≥ |P |+ t+ |A|
2

,

and we may absorb w into P \A. This same process may be repeated for all
w ∈ A and we may then absorb v into Q. By this process, the path Qi loses
at most |A| ≤ 3(2t + 1) vertices. We repeat this process for each vertex of
J ′. This means that paths of Q lose at most a total of |J ′|(6t+ 3) vertices.

Note that we are now left with dP (v) < n
2t+1 for all v ∈ J̄ . Let v ∈ J̄

and choose a smallest segment A along a path Pi between two adjacencies
of v. Since dP (v) ≥ εn

4 , we know the length of this segment is at most
|A| ≤ n

εn

4
−t <

5
ε for n sufficiently large. If |Pi| ≥ 2εn, we absorb v as above.

This creates a new path P ′
i with |P ′

i | ≥ |Pi| − 5
ε . Therefore we suppose A is

a subpath of a path Pj where εn ≤ |Pj | < 2εn.
Let u be a vertex of A and note that, since A was chosen to be the

smallest such segment, uv /∈ E(G). This means that

d(u) ≥ n+ 2t− 2− d(v)

> n+ 2t− 2−
(

n

2t+ 1
+ |J | − 1

)

≥
(
1− 1

2t

)
n

≥ 5n

6
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Figure 1: Rearrangement of paths.

since n is sufficiently large and t ≥ 3. Certainly the same is true for every
vertex u ∈ V (Pj)\N(v). Assign an ordering � to the vertices of each path Pi

such that �(u) = distPi
(xi, u)+1. Since v cannot be adjacent to two vertices

of Pj with only one vertex in between, there exist four distinct vertices
u1, u2, u3, u4 ∈ Pj \ (A∪N(v)) such that �(u1) = �(u2)−1, �(u3) = �(u4)−1
and �(u2) + 1 ≤ �(u3) ≤ �(u2) + 2.

Let p = |P \ Q| and suppose 5n
6 − p < 19

24(n − p − |J |). Since p ≤ 2tεn,
this inequality implies n < 10tεn − 19|J |, contradicting the fact that n is
sufficiently large. Thus, dQ(ui) ≥ 5n

6 − p ≥ 19
24(n− |J | − p) = 19

24 |Q| for each
vertex ui. By the pigeonhole principle, there exists at least 2· 1924 |Q|−t−|Q| =
7
12 |Q|− t pairs of distinct vertices u′1, u

′
2 (similarly u′3, u

′
4) in paths of Q with

uiu
′
i ∈ E(G) for all i and �(u′1) = �(u′2) + 1 (similarly �(u′3) = �(u′4) + 1).

Since 2( 7
12 |Q| − t) − |Q| − 3t > 0, we may again apply the pigeonhole

principle. Hence, there exists a set of four vertices u′1, u
′
2, u

′
3, u

′
4 in a single

path Pi ∈ Q such that �(u′1) = �(u′2) + 1, �(u′3) = �(u′4) + 1 and �(u′4) =
�(u′1)+3. See Figure 1 where the shaded vertex w may or may not be present.

At this point we may swap Pj = . . . , u1, u2, . . . , u3, u4, . . . for P ′
j = . . . ,

u1, u
′
1, . . . , u

′
4, u4, . . . and swap Pi = . . . , u′2, u

′
1, . . . , u

′
4, u

′
3, . . . for P ′

i = . . . ,
u′2, u2, . . . , u3, u

′
3, . . . . This swap makes |Pj |+1 ≤ |P ′

j | ≤ |Pj |+2 and |Pi|−2 ≤
|P ′

i | ≤ |Pi| − 1. The swap process may be repeated as necessary to make
|P ′

j | ≥ |Pj | + |A| (thereby removing at most |A| + 1 < 5
ε + 1 vertices from

paths of Q).

We may now absorb v into P ′
j , losing the vertices of A to other paths as

above. Again, we may repeat this process to absorb all of J̄ . In both pro-
cesses, we lose at most a total of |J ′|(6t+3)+ |J̄ |(5ε +1− 1) ≤ |J |5ε vertices
from Q. Thus, for all Pj ∈ Q, we have |P ′

j | ≥ 2εn − 5
ε ·

5
ε ≥ εn. Moreover,

we also know that
∑t

i=1max{|Pi| − |P ′
i |, 0} ≤ 20

ε2 . This completes the proof
of Lemma 1.

Our next lemma requires some specific definitions. Suppose we are given
a path collection P = {P1, . . . , Pt}. Let f(Pi) = γin− |Pi|. Without loss of



Partitioning graphs into paths or cycles of prescribed lengths 145

generality, suppose the paths Pi are ordered such that f(Pi) ≥ f(Pi+1). By
the definition of f(Pi) and γi’s, note that f(P1) ≥ 0, because otherwise,

0 >

t∑
i=1

f(Pi)

=

t∑
i=1

γin−
t∑

i=1

|Pi|

≥ n− n = 0,

a contradiction. Define:

μ(P) =

t∑
i=1

(t+ 1− i)f(Pi).

Proposition 1. If P is a spanning path collection but not desired, then
there exists an integer k such that f(Pk) − f(Pk+1) > ε

t2n and f(Pk+1) <
− ε

t2n.

Proof. If f(Pt) > − ε
tn, we get |Pi| < (γi +

ε
t )n < (γi + ε)n for all i, which

implies |Pi| = n −
∑

j �=i |Pj | > (γi − ε)n for all i. This contradicts the
assumption P is not a desired path collection. Thus, f(Pt) ≤ − ε

tn.
Suppose that f(Pk) − f(Pk+1) ≤ ε

t2n for all 1 ≤ k ≤ t − 1. Then
f(P1) ≤ f(Pt)+(t−1) ε

t2n < −ε
t2 n < 0 because f(Pt) ≤ − ε

tn, a contradiction.
Therefore there exists an integer k such that f(Pk) − f(Pk+1) >

ε
t2n. If we

take such an integer k as large as possible, we have f(Pk+1) < − ε
t2n because

f(Pt) < − ε
tn and f(Pi)− f(Pi+1) ≤ ε

t2n for any k + 1 ≤ i ≤ t− 1.

Next we extract a lemma from [8] in a form that is appropriate to our
current situation. This lemma takes two paths and, under certain conditions,
shows the existence of two other paths which are, in some sense, better. For
ease of notation, let c = ε2

24·48t2 .

Lemma 2 (Swapping). Let P = {P1, P2, . . . , Pt} be a spanning path col-
lection for S but not desired. If κ(G) ≥ 2t + 1, σ2(G) ≥ n + 2t − 2 and if
e(A ,P − A ) ≥ ct2n2 for any subcollection A of P, then there exists a
spanning path collection Q such that μ(Q) < μ(P).

Proof. Let P be as stated. By Proposition 1, there exists an integer k with
f(Pk)−f(Pk+1) ≥ ε

t2n and f(Pk+1) <
−ε
t2 n. Let A = {Pi : 1 ≤ i ≤ k}. Since

e(A ,P − A ) ≥ ct2n2, there must exist paths Pi ∈ A and Pj ∈ P − A
with e(Pi, Pj) ≥ cn2. Notice that 1 ≤ i ≤ k and k + 1 ≤ j ≤ t.
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Figure 2: Swapping.

Let A = V (Pj) and B = V (Pi). Let A′ ⊆ A denote the set of vertices

v ∈ A with dB(v) ≥ cn2

2|A| . Since |A| · |B| ≤ n2

4 , note that dB(v) ≥ cn2

2|A| ≥ 2c|B|
for any v ∈ A′. Since e(A,B) ≥ cn2, we find

|A′| ≥
cn2 − (|A| − |A′|)

(
cn2

2|A|
)

|B|

≥ cn2

2|B| ≥ 2c|A|.

Assign a labeling l(v) of the vertices of A and B given by the distance
along Pj or Pi from xj or xi respectively. Define a crossing pair to be a pair
of edges uy and vz with u, v ∈ A and y, z ∈ B such that l(u) < l(v) and
l(z) < l(y). Define the gap of a crossing pair to be |l(y)− l(z)| − 1. We will
concern ourselves only with crossing pairs with gap length at most 4

c .
Consider Figure 2 consisting of two crossing pairs u1y1, v1z1 and u2y2,

v2z2 where a1 = l(v1) − l(u1) − 1 ≥ 0, a2 = l(u2) − l(v1) + 1 > 0, a3 =
l(v2)− l(u2)−1 > 0, b1 = l(y1)− l(z1)−1 > 0, b2 = l(z2)− l(y1)+1 ≥ 0 and
b3 = l(y2)−l(z2)−1 > 0. The goal of this lemma is to create new paths P ′

j =
xj , . . . , u1, y1, . . . , z2, v2, . . . , yj and P ′

i = xi, . . . , z1, v1, . . . , u2, y2, . . . , yi and
by using Lemma 1 to absorb vertices which are removed by this operation.
Note that |P ′

j | = |Pj |− (a1+a2+a3)+b2 and |P ′
i | = |Pi|− (b1+b2+b3)+a2.

First, we find two crossing pairs as in Figure 2 which satisfy:

a2 − b2 ≥
64t+ 112

c2
,

a1 + a3 + b1 + b3 ≤
32 + 8c

c2
,

a1 + a2 + a3 − b2 <
ε

2t2
n,

a2 − (b1 + b2 + b3) <
ε

2t2
n.
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Partition the vertices of A′ into collections of � 4
3c� consecutive (within

A′) vertices. As mentioned earlier, we will assume constants are chosen so
divisibility is satisfied so, as opposed to sticking with � 4

3c�, we will simply
write 4

3c . Call each such collection a chunk.

Claim 6. Given a chunk C, there are at least c|B|
2 crossing pairs within C,

all vertex disjoint in B with gap length at most 4
c .

Proof of Claim 6. We will find many desired crossing pairs iteratively. Sup-
pose we already found r crossing pairs. In other words, 2r vertices of B are
used for the r crossing pairs and we cannot use such 2r vertices for crossing

pairs we will find after this. If r ≥ c|B|
2 , there is nothing to prove. So we may

assume that r < c|B|
2 . Suppose that there exists no more crossing pair with

gap length at most 4
c . Label the vertices of the chunk C as v1, v2, . . . such

that l(vg) < l(vh) for all g < h. We know dB(v1) ≥ 2c|B| but at most 2r
vertices of them are already used for the previous crossing pairs. Therefore
there are at least 2c|B| − 2r ≥ c|B| new adjacencies of v1.

Now suppose we have considered v1, v2, . . . , vh−1 and let vh be the left-
most remaining vertex of C which has not yet been considered. Suppose
that 4

c consecutive vertices of B have at least two vertices, say y and z with
l(y) > l(z), which are not used for the previous crossing pairs and which
are shared by vh and one of v1, v2, . . . , vh−1 as neighbors. Then we can find
two edges vgy and vhz for some 1 ≤ g ≤ h− 1, which is a new crossing pair.

Therefore vh has at least 2c|B| − 2r − |B|/4
c > 3c|B|

4 new adjacencies. This

implies that each vertex vh of C forces at least 3c|B|
4 new vertices of B not

to have any adjacencies in C \ {v1, v2, . . . , vh−1}.
After considering 4

3c vertices of C, at least

c|B|+
(

4

3c
− 1

)
3c|B|
4

=

(
1 +

c

4

)
|B|

vertices of B are used as adjacencies of v1, v2, . . . , v 4

3c
, which is a contradic-

tion and completes the proof of the claim. �Claim 6

Given two crossing pairs u1y1, v1z1 and u2y2, v2z2, we say these pairs
form a swapping structure if l(ui) > l(vj) and l(zi) > l(yj) for some choice
of i, j ∈ {1, 2}. For this choice of i and j, define the distance of the swapping
structure to be l(zi) − l(yj) + 1 (or the distance in B between the vertices
of the crossing pairs).

Claim 7. Within any collection of 4
c chunks, there exists a swapping struc-

ture with distance h such that 0 ≤ h ≤ 16
c2 .
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Proof of Claim 7. This claim employs a proof almost identical to that of

Claim 6. Label the chunks as C1, C2, . . . in the order of l. We first consider

the left-most chunk C1. This chunk has at least c|B|
2 crossing pairs so there

are at least c|B|
2 right-vertices of these pairs.

As before, we suppose h−1 chunks C1, C2, . . . , Ch−1 have been considered

and consider the left-most chunk Ch of the remaining set of chunks. For every
16
c2 consecutive vertices of B, suppose that Ch shares at least 4

c right-vertices

of crossing pairs with C1, C2, . . . , Ch−1. Then, there exist two right-vertices

y1 and y2 which are shared by Ch and some chunk of C1, C2, . . . , Ch−1 such

that l(y2)− l(y1) ≥ 4
c − 1. Let z2 be a left-vertex of the crossing pair in Ch

which corresponds to y2. Since the gap of this crossing pair is at most 4
c , so

l(z2) ≥ l(y2)− 4
c +1 ≥ l(y1). Thus, the crossing pair of Ch containing y2 and

z2 and the one of Cg containing y1 for some 1 ≤ g ≤ h−1 create a swapping

structure with distance at most 16
c2 . Therefore this chunk may share a total of

at most (4c )(
|B|

16/c2 ) =
c|B|
4 right-vertices with preceding chunks. This implies

that at least c|B|
4 right-vertices are new.

Hence, after consideration of the 4
c chunks, there are

|B| − c|B|
2

−
(
4

c
− 1

)
c|B|
4

=
−c|B|

4
< 0

vertices available in B for right-vertices of crossing pairs which is again a

contradiction completing the proof of the claim. �Claim 7

Given a chunk C, define the span of C to be the number of vertices

of A between the left-most and right-most vertex of the chunk. Since the

chunks have 4
3c vertices of A′ and |A′| ≥ 2c|A|, the total number of chunks is

|A′|/ 4
3c ≥ 3c2

2 |A|. Suppose that the number of chunks of span at most 16
c2 is

at most 23c2

16 |A|. Then |A| > 16
c2 (

3c2

2 − 23c2

16 )|A| = |A|, a contradiction. Thus,

we see that the number of chunks of span at most 16
c2 is at least 23c2

16 |A|.
We call such short chunks good and since there are many such chunks, we

consider only those which are good.

We now mark chunks that are at the desired distance apart within A.

Start at the beginning of A (in terms of the original labeling) and mark

the first good chunk. We skip the next 64(t+2)
c2 vertices. We then mark the

next good chunk which starts after the skipped vertices and repeat this

process until we have crossed the entire length of A. Note that at most
64(t+2)

c2 / 4
3c+1 = 48(t+2)

c +1 good chunks are contained in the skipped vertices.
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Certainly there are at least 23c2

16 |A|/(48(t+2)
c + 2) = 23c3|A|

16(48t+96+2c) marked

chunks.
Consider any segment of ε

4t2n consecutive vertices of A and suppose
that any such segments has at most 4

c marked chunks. Then the total num-

ber of marked chunks is at most 8
c (|A|/ ε

4t2n) =
32t2|A|
cεn . Therefore 32t2|A|

cεn ≥
23c3|A|

16(48t+96+2c) , or n ≤ 16·32t2(48t+96+2c)
23c4ε , which contradicts the assumption n is

sufficiently large. So there must exist a segment containing at least 4
c marked

chunks.
By Claim 7, there exists a swapping structure within these chunks. This

is the desired swapping structure since (using the notation from Figure 2)

a2 − b2 ≥
64(t+ 2)

c2
− 16

c2
=

64t+ 112

c2
,

a1 + a3 + b1 + b3 ≤ 2
16

c2
+ 2

4

c
=

32 + 8c

c2
,

a1 + a2 + a3 − b2 ≤
ε

4t2
n+ 2 · 16

c2
<

ε

2t2
n, and

a2 − (b1 + b2 + b3) ≤
ε

4t2
n <

ε

2t2
n

for n sufficiently large.
As mentioned before, we obtain two new paths P ′

i and P ′
j within this

structure. Let P ′ = (P − {Pi, Pj}) ∪ {P ′
i , P

′
j}. Since |Pj | = γjn − f(Pj) ≥

γjn − f(Pk+1) > γjn + ε
t2n, note that |P ′

j | = |Pj | − (a1 + a2 + a3) + b2 >
γjn+

ε
t2n−

ε
2t2n ≥ εn. We know that |P ′

i | = |Pi|−(b1+b2+b3)+a2 > |Pi| ≥ εn.
So |P ′

l | ≥ εn for any P ′
l ∈ P ′. Now we calculate the difference μ(P)−μ(P ′).

We reorder paths in P ′ and rename them Ql’s so that f(Ql) ≥ f(Ql+1)
for all 1 ≤ l ≤ t− 1. Define a mapping φ from {1, 2, . . . , t} to {1, 2, . . . , t} so
that Qφ(l) = Pl for l �= i, j and Qφ(i) = P ′

i and Qφ(j) = P ′
j . By the definition

of P ′
i and P ′

j ,

f(P ′
i )− f(P ′

j) = γin− |P ′
i | − γjn+ |P ′

j |
= γin− γjn−

(
|Pi| − (b1 + b2 + b3) + a2

)
+
(
|Pj | − (a1 + a2 + a3) + b2

)
= f(Pi)− f(Pj)− (a1 + a2 + a3 − b2)

− (a2 − (b1 + b2 + b3))

>
( ε

t2
− 2

ε

2t2

)
n

= 0.
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This implies that f(P ′
i ) > f(P ′

j) and hence φ(i) < φ(j). So,

φ(l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l for 1 ≤ l ≤ i− 1, or φ(i) + 1 ≤ l ≤ φ(j)− 1

or j + 1 ≤ l ≤ t,

l − 1 for i+ 1 ≤ l ≤ φ(i),

l + 1 for φ(j) ≤ l ≤ j − 1.

Denote g(Qφ(l)) := γln−|Qφ(l)|. Then μ(Q) =
∑t

l=1(t−φ(l)+1)g(Qφ(l)).
Since

μ(P)− μ(Q) =

t∑
l=1

(
(t− l + 1)f(Pl)− (t− φ(l) + 1)g(Qφ(l))

)
,

it suffices to calculate each member of the right side. By the definition of φ,
for 1 ≤ l ≤ i− 1, or φ(i) + 1 ≤ l ≤ φ(j)− 1 or j + 1 ≤ l ≤ t,

(t− l + 1)f(Pl)− (t− φ(l) + 1)g(Qφ(l))

= (t− l + 1)f(Pl)− (t− l + 1)f(Pl)

= 0.(1)

For i+ 1 ≤ l ≤ φ(i),

(t− l + 1)f(Pl)− (t− φ(l) + 1)g(Qφ(l))

= (t− l + 1)f(Pl)− (t− l + 2)f(Pl)

= −f(Pl),(2)

and for φ(j) ≤ l ≤ j − 1,

(t− l + 1)f(Pl)− (t− φ(l) + 1)g(Qφ(l))

= (t− l + 1)f(Pl)− (t− l)f(Pl)

= f(Pl).(3)

For l = i,

(t− i+ 1)f(Pi)− (t− φ(i) + 1)g(Qφ(i))

= (t− i+ 1)
(
γin− |Pi|

)
− (t− φ(i) + 1)

(
γin− |Qφ(i)|

)
= (t− i+ 1)

(
γin− |Pi|

)
− (t− φ(i) + 1)

(
γin− |Pi|+ (b1 + b2 + b3)− a2

)
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= (φ(i)− i)
(
γin− |Pi|

)
− (t− φ(i) + 1)

(
b1 + b2 + b3 − a2

)
= (φ(i)− i)f(Pi)− (t− φ(i) + 1)

(
b1 + b2 + b3 − a2

)
,(4)

and for l = j,

(t− j + 1)f(Pj)− (t− φ(j) + 1)g(Qφ(j))

= (t− j + 1)
(
γjn− |Pj |

)
− (t− φ(j) + 1)

(
γjn− |Qφ(j)|

)
= (t− j + 1)

(
γjn− |Pj |

)
− (t− φ(j) + 1)

(
γjn− |Pj |+ (a1 + a2 + a3)− b2

)
= −(j − φ(j))

(
γjn− |Pj |

)
− (t− φ(j) + 1)

(
a1 + a2 + a3 − b2

)
= −(j − φ(j))f(Pj)− (t− φ(j) + 1)

(
a1 + a2 + a3 − b2

)
,(5)

Therefore, Equations (1)–(5) imply

μ(P)− μ(Q) = − (t− φ(i) + 1)
(
b1 + b2 + b3 − a2

)
− (t− φ(j) + 1)

(
a1 + a2 + a3 − b2

)
−

φ(i)∑
l=i+1

f(Pl)

+

j−1∑
l=φ(j)

f(Pl) +
(
φ(i)− i

)
f(Pi)−

(
j − φ(j)

)
f(Pj).

Since f(Pl) ≤ f(Pi) for any i + 1 ≤ l ≤ φ(i), we have
∑φ(i)

l=i+1 f(Pl) ≤
(φ(i)− i)f(Pi), and since f(Pl) ≥ f(Pj) for any φ(j) ≤ l ≤ j − 1,

j−1∑
l=φ(j)

f(Pl) ≥
(
j − φ(j)

)
f(Pj).

So,

μ(P)− μ(Q) ≥ − (t− φ(i) + 1)
(
b1 + b2 + b3 − a2

)
− (t− φ(j) + 1)

(
a1 + a2 + a3 − b2

)
=

(
φ(j)− φ(i)

)
(a2 − b2)

− (t− φ(i) + 1)(a1 + a3)− (t− φ(j) + 1)(b1 + b3)

≥ (a2 − b2)− t(a1 + a3 + b1 + b3)

≥ 64t+ 112

c2
− t(a1 + a3 + b1 + b3).(6)
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Now we apply Lemma 1 and we get a spanning path collection Q′. Since
|Ql| ≥ εn for all 1 ≤ l ≤ t and |V (G)| −

∑t
l=1 |Pl| ≤ a1 + a3 + b1 + b3 ≤

32+8c
c2 ≤ n

8 , Lemma 1 can work for Q. We now show that μ(Q′) < μ(P).
The upper bound of increase from Q to Q′ is at most t times the number
of vertices which may be added to paths, because t is the maximum weight
over the sum of μ. In particular, in the application of Lemma 1, we add at
most a1+a3+ b1+ b3 since we do not have control over where these vertices
fall and Lemma 1 adds at most an additional 20

ε2 vertices. Hence,

(7) μ(Q′)− μ(Q) ≤ t · (a1 + a3 + b1 + b3) + t · 20
ε2

.

Thus, using Inequalities (6) and (7), we get

μ(P)− μ(Q′) ≥ 64t+ 112

c2
− 2t(a1 + a3 + b1 + b3)− t · 20

ε2

≥ 64t+ 112

c2
− 64t+ 16ct

c2
− 20t

ε2

=
112

c2
− 16t

c
− 20t

ε2

≥ 112 · 242 · 482t4
ε4

− 16 · 24 · 48t3
ε2

− 20t

ε2

> 0,

because c = ε2

24·48t2 and ε ≤ 1
6t(2t+1) . Thus, μ(Q

′) < μ(P). This completes

the proof of Lemma 2.

Our next lemma constructs the desired path system directly if the con-
ditions of Lemma 2 are not satisfied. The proof is similar to the proof of the
corresponding Rebuilding Lemma in [8].

Lemma 3 (Rebuilding). Given a set of fractions γ1, . . . , γt, let c1 and c2
be positive real numbers with c1 ≤ ε

24 and c2 < min{ c1
3 , γi/16} for all i.

Suppose that n is sufficiently large (compared to c1 and c2). If κ(G) ≥ 2t+1,
σ2(G) ≥ n + 2t − 2 and V (G) can be partitioned into sets A and B with
|A|, |B| ≥ (4c1 + c2)n and e(A,B) < c1c2n

2 then G contains a spanning
desired path collection for S.

Proof. Let DA be the set of vertices in A with at least c1n edges into B and
let DB be the set of vertices in B with at least c1n edges into A. We know
e(A,B) < c1c2n

2 so |DA|, |DB| < c2n. Let A′ := A \ DA, B
′ := B \ DB

and let u ∈ A′ and v ∈ B′ \N(u). Since dB(u) < c1n, for every choice of u,
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there exists such a v. The edge uv /∈ E(G) so d(u) + d(v) ≥ n+ 2t− 2 but
dB(u), dA(v) < c1n so dA(u) + dB(v) > n− 2c1n+2t− 2. In particular, this
implies that for all vertices u ∈ A′, we have dA(u) > |A| − 2c1n+2t− 2. By
symmetry dB(v) > |B| − 2c1n+ 2t− 2 for all v ∈ B′.

Claim 8. For any Ã ⊆ A′ with |Ã| ≥ 4c1n, G[Ã] is panconnected, and for
any B̃ ⊆ B′ with |B̃| ≥ 4c1n, G[B̃] is panconnected. In particular, G[A′]
and G[B′] are panconnected. Also, this means that if |Ã| ≥ εn

6 , then G[Ã] is

panconnected and similarly for B̃.

Proof of Claim 8. We now recall that dA(v) > |A| − 2c1n + 2t − 2 for any
v ∈ A′. Therefore

δ(G[Ã]) > |A| − 2c1n+ 2t− 2− |A \ Ã|
= |Ã| − 2c1n+ 2t− 2

≥ |Ã|
2

+ 2t− 2.

By Theorem 7 we know G[Ã] is panconnected. In particular, |A′| =
|A| − |DA| ≥ (4c1 + c2)n − c2n = 4c1n, which implies that G[A′] is pan-
connected. By the symmetry, both G[B̃] and G[B′] are also panconnect-
ed. �Claim 8

Now, by Menger’s Theorem [12], there is a matching M between A′∪DB

and B′ ∪DA in G with |M | = 2t+ 1. Choose such M so that |V (M ) ∩ S|
is as small as possible. Notice M contains exactly 2t+1 vertices of A′ ∪DB

and 2t + 1 vertices of B′ ∪ DA. Let M ∩ (A′ ∪ DB) := {a1, a2, . . . , a2t+1}
and M ∩ (B′ ∪ DA) := {b1, b2, . . . , b2t+1} so that aibi ∈ M . The choice of
M implies the following claim.

Claim 9. Every edge in M has at most one vertex in S or G contains a
spanning path collection for S.

Proof of Claim 9. Let u ∈ A′ ∪ DB \ (V (M ) ∪ S) and let v ∈ B′ ∪ DA \
(V (M ) ∪ S). Since |A′| ≥ 4c1n > 4t+ 1, there exists such a vertex u ∈ A′,
and by symmetry there exists such a vertex v ∈ B′. If uv ∈ E(G), then no
edge in M contains a vertex in S. (Otherwise we can switch out such an
edge for the edge uv.) Thus, we may assume that uv �∈ E(G).

If there exists w ∈ (N(u) ∩N(v)) \ V (M ), then no edge in M contains
two vertices in S. (Again otherwise we can change such an edge with an
edge uw or vw.) So we may assume that

N(u) ∩N(v) ⊆ {a1, a2, . . . , a2t+1, b1, . . . , b2t+1}.
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If aj ∈ N(u)∩N(v), then bj �∈ S; otherwise we can change an edge ajbj
with an edge ajv. Suppose that aj , bj ∈ N(u) ∩ N(v) for some j. By the

above fact, aj , bj �∈ S. Moreover, if there exists an edge akbk ∈ M such that

ak ∈ S or bk ∈ S, then we can change two edges ajbj and akbk with two

edges ajv and ubj , which contradicts the choice of M . Therefore, no edge

in M contains a vertex in S, so we may assume that aj �∈ N(u) ∩N(v) or

bj �∈ N(u) ∩N(v).

If |N(u) ∩N(v)| ≤ 2t− 1, then d(u) + d(v) = |N(u) ∪N(v)|+ |N(u) ∩
N(v)| ≤ n + 2t − 3, a contradiction. Thus, |NG(u) ∩ NG(v)| ≥ 2t. Hence

by changing the index if necessary, we may assume that aj ∈ N(u) ∩N(v)

or bj ∈ N(u) ∩ N(v) for all 2 ≤ j ≤ 2t + 1. This implies that aj �∈ S or

bj �∈ S for all 2 ≤ j ≤ 2t+1. If a1 �∈ S or b1 �∈ S, then we obtain the conclu-

sion of the claim. Hence we may again assume that a1 ∈ S and b1 ∈ S. In

this case, all the above inequalities hold, so N(u) ∪N(v) = V (G) − {u, v}.
Since N(u) ⊂ A′ ∪ DB ∪ {b1, . . . , b2t+1}, we obtain B′ ∪ DA ⊂ N(v). By

symmetry, A′ ∪ DB ⊂ N(u). Because this condition holds for any u ∈
A′ ∪ DB \ (V (M ) ∪ S), any two vertices of A′ ∪ DB are connected by an

edge except for two vertices in V (M ) ∪ S. By symmetry, any two vertices

of B′ ∪DA are connected by an edge except for two vertices in V (M ) ∪ S.

Construction of the desired paths is trivial in this situation. This completes

the proof of the claim. �Claim 9

Let v ∈ DB. Since |DA| ≤ c2n and dA(v) ≥ c1n, we have dA′(v) ≥
dA(v)−|DA| > (c1−c2)n. Then the conditions “c1 > c2” and “n is sufficiently

large” implies the existence of a matching MA between V (M )∩DB and A′\
(V (M )∪S). By the symmetry, we have a matching MB between V (M )∩DA

and B′ \ (V (M ) ∪ S).

For any aj ∈ V (M ) ∩ DB, let aja
′
j be an edge in the matching MA

and for any bj ∈ V (M ) ∩DA, let bjb
′
j be an edge in the matching MB. For

convenience, let a′i = ai if ai ∈ V (M ) ∩A′ and b′i = bi if bi ∈ V (M ) ∩B′.
Let Qj := a′j(aj)(bj)b

′
j . Notice that Qj is a path of length one, two or

three, and has at most one vertex in S. Let Q := {Qj : 1 ≤ j ≤ 2t + 1}.
The paths in Q will be used for “transportation” from A′ to B′ when we

construct the desired paths.

If xi ∈ DA (resp. yi ∈ DA), then we take a vertex x′i (resp. y′i) in

B′ \ (S ∪V (Q)). Since dB′(v) ≥ (c1− c2)n for any v ∈ DA, we can take such

vertices x′i and y′i so that all of x′i’s and y′i’s are distinct. We similarly define

x′i and y′i in A′ for xi, yi ∈ DB. For convenience, let x
′
i = xi and let y′i = yi

for xi, yi ∈ A′ ∪B′.
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Figure 3: Routing paths.

We now provide a process for constructing the desired path collection.
Without loss of generality, we may assume that γ1 ≤ γ2 ≤ · · · ≤ γt. The
paths are constructed as follows. Before constructing formally, we show the
outline of the proof.

For each 1 ≤ i ≤ t − 1 start at the vertex x′i (suppose x′i is in A′).
Suppose that y′i ∈ B′. Then we can choose a desired path from two choices
depending on the length of γi. One of them is starting from x′i, “traversing”
A′ until attaining the appropriate length, “jumping” to B′ and ending at
y′i; the other “traverses” B′ after “jumping” to B′. If γi is too small for our
path to “fit” into A′, then we choose the first option; otherwise we choose the
second. If y′i ∈ A′, then there are also two choices, one of them “traverses”
A′ without “jumping”; another “jumps” to B′, “traverses” B′ and “jumps”
back to A′. In each case, we create such a path using no more than two
paths in Q. After constructing t − 1 paths, we finally construct a path Pt.
Since at least three paths in Q remain, we can “traverse” both A′ and B′

until attaining the appropriate length. Figure 3 depicts the two cases listed
above and their two subcases for constructing these paths.



156 Colton Magnant and Kenta Ozeki

Formally, we will show the existence of a spanning desired path collec-
tion. We first connect the vertices of DA\Q into a path. Since each vertex of
DA has at least c1n edges to B and |DA| < c2n < c1n/3, there must exist a
system of two distinct neighbors in B of each vertex of DA. By Claim 8, we
may easily connect these vertices by short paths in B′ so that all of DA \Q
is on a single path of length at most 4c2n < γin/4 which begins and ends
in B′. The same can be said for DB \ Q so, when constructing the desired
paths, we simply use the path through DA \ Q the first time we use ver-
tices of B′ and use the path through DB \ Q the first time we use vertices
of A′.

Suppose we have constructed paths P1, . . . , Pi−1 for 1 ≤ i ≤ t − 1 such
that each of them contains vertices in at most two paths in Q and (γj −
ε
2t)n ≤ |Pj | ≤ (γj − ε

2t)n + 4 for all j ≤ i − 1. We would like to construct

Pi. Let Ri = V (P1) ∪ · · · ∪ V (Pi−1) and let Ã = [A′ \ (S ∪ Ri ∪ V (Q))]
and let B̃ = [B′ \ (S ∪ Ri ∪ V (Q))]. By symmetry, we may assume that
x′i ∈ A′. If (γi − ε

2t)n ≤ |Ã| − ε
6n, use Claim 8 to complete the path Pi of

order (γi − ε
2t)n in A′ from x′i to a′j , where a′j is chosen so that y′i ∈ V (Qj)

if y′i ∈ V (Q); otherwise Qj is not used in the previous paths P1, . . . , Pi−1

and does not contain a vertex in S. Since each path in Q contains at most
one vertex in S and at most 2(i− 1) paths in M are used for the previous
paths P1, . . . , Pi−1, we can find such Qj . If y

′
i ∈ A′, construct a short path

(of length at most 2) from a′j to y′i in A′ and finish with the path to yi.
Otherwise take the path Qj from a′j to b′j (or y′i if y

′
i ∈ V (Qj) \ {b′j}) and

take a path of length at most 2 in B′ ∪DA from b′j to y′i. Notice |Ã \ Pi| ≥
|Ã| − (γi − ε

2t)n > ε
6n and since ε

6 ≥ 4c1, we see that G[Ã \ Pi] is still
panconnected.

Suppose that (γi − ε
2t)n > |Ã| − ε

6n. Then |Ri ∩A′| ≥ |A′| − |Ã| − |S| −
|V (Q)| > |A′| − (γi − ε

2t)n− ε
6n− 6t. Hence

|Ri ∩B′| ≤
i−1∑
j=1

|Pj | − |Ri ∩A′|

<

i−1∑
j=1

((
γj −

ε

2t

)
n+ 4

)
− |A′|+ (γi −

ε

2t
)n+

ε

6
n+ 6t

≤
(

i∑
j=1

γj

)
n− iε

2t
n+ 4(i− 1) +

ε

6
n−

(
n− |B′| − ε

36
n

)
+ 6t

= |B′| −
(

t∑
j=i+1

γj

)
n− iε

2t
n+ 4(i− 1) +

7ε

36
n+ 6t
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which implies:

|B̃| − ε

6
n = |B′| − |Ri ∩B′| − ε

6
n

>

(
t∑

j=i+1

γj

)
n+

iε

2t
n− 4(i− 1)− 7ε

36
n− 6t− ε

6
n

>

(
t∑

j=i+1

γj

)
n+

iε

2t
n− 4(i− 1)− 3ε

8
n

≥ γtn+
t− i− 1

2t
εn+

iε

2t
n− 4(i− 1)− 3ε

8
n

= γtn+
t− 1

2t
εn− 4(i− 1)− 3ε

8
n

≥ γtn− 1

2t
εn

=

(
γi −

ε

2t

)
n.

We use the fact that Ã is panconnected to create a path from x′i to a′j
of length 2 for some j such that a′j is not contained in Ri ∪ S except for x′i.
We construct this short path from x′i to a′j to preserve the panconnectivity

of Ã and connect x′i to Qj . Since (γi − ε
2t)n < |B̃| − ε

6n, we can use the

panconnectivity of B̃ to complete the path Pi of length (γi − ε
2t)n to y′i if

y′i ∈ B′. If y′i ∈ A′, then take a′k so that Qk is not used in Ri ∪ Qj . In
particular, we choose Qk so that a′k = y′i if possible. After that, G[B̃ \ Pi] is
still panconnected since |B̃ \ Pi| ≥ εn

6 .
Suppose we have constructed t−1 paths as above. Let Rt = V (P1)∪· · ·∪

V (Pt−1). Without loss of generality, suppose x′t ∈ A′ and let Q1, Q2, Q3 be
remaining paths of Q. Such paths exist because we use at most two paths of
Q to construct each path Pi and |Q| = 2t+1. Let Ã = [A′ \(S∪Rt∪V (Q))]
and let B̃ = [B′ \ (S ∪ Rt ∪ V (Q))] and note that |Ã|, |B̃| ≥ εn

6 so, by
Claim 8, both sets are still panconnected. By symmetry, we may assume
that x′t �= a′1, a

′
2. If y

′
t are in A′, (suppose y′t �= a′2) use the panconnectivity of

G[Ã] to connect x′t to a′1 using at most one intermediate vertex and connect
y′t to a′2 using all of Ã. We then take the paths, through Q, to B̃ and use the
panconnectivity of B̃ to pick up all of B′ between b′1 and b′2. This produces

a path of order |Pt| ≤ n−
∑t−1

j=1 |Pi| − |D| ≤ γtn+ 2(t−1)ε
2t n+ ε

36 .
Otherwise suppose y′t ∈ B′. By symmetry, a′1 �= x′t and b′1 �= y′t. Again

use the panconnectivity of G[A\Rt] and G[B \Rt] to connect x′t to a′1 using
all of A′, through Q1 and connect b′1 to y′t using all of B′.
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For any Pj ∈ P, we have |Pj | < γjn + 2(t−1)ε
2t n + ε

24 ≤ (γj + ε)n for n
sufficiently large. On the other hand, |Pj | ≥ (γj − ε)n, which completes the
proof of Lemma 3.

Our final lemma gives necessary starting structure for the proofs of our
main results.

Lemma 4 (Setup). Suppose that n is sufficiently large. If κ(G) ≥ 2t + 1
and σ2(G) ≥ n+ 2t− 2, there exists a spanning path collection for S.

Proof. First we will show the existence of a path collection (possibly not
spanning). After finding a path collection, we obtain the desired path col-
lection by applying Lemma 1.

In order to show this, we divide the proof into two parts depending on
the connectivity. Suppose first that κ(G) < 2tεn, and let K be a minimum
cutset of order less than 2tεn. Since σ2(G) ≥ n+ 2t− 2 and ε > 0 is small,
G \K has exactly two components, so we know there exists a component A

of G \K with |A| ≥ (1−2tε)n
2 . Let B = V (G)− (A ∪K).

If |B∪K| ≥ 9n
√
tε, then we know e(A,B∪K) ≥ 2tεn2, because otherwise

we can apply Lemma 3 by letting c1 := 2
√
tε and c2 :=

√
tε
2 . Since all these

edges must be incident to vertices in K, there exists a vertex v ∈ K such
that,

dA(v) >
2tεn2

2tεn
= n.

So we may assume that |B∪K| < 9n
√
tε. We know dG(v) ≤ |B|+ |K|−1

for any v ∈ B, so B induces a clique, because otherwise, dG(v1) + dG(v2) ≤
2|B| + 2|K| − 2 < 18n

√
tε ≤ n, a contradiction, where v1, v2 ∈ B such

that v1v2 �∈ E(G). Consider a vertex v ∈ B. Since u ∈ A has dG(u) ≥
n+2t−2−|B|−|K| = |A|+2t−2, dA(u) ≥ |A|+2t−2−|K| > |A|−2tεn+2t−2.
This implies that for any Ã ⊆ A with |Ã| ≥ 4tεn, Ã is panconnected, because

dÃ(u) ≥ |A| − 2tεn+ 2t− |A \ Ã| = |Ã| − 2tεn+ 2t− 2 ≥ |Ã|+2
2 .

Since G is 2t-connected and |(B ∪K)∩S| = |S| − |A∩S| = 2t− |A∩S|,
there exists a collection of paths Q from (B ∪ K) ∩ S to A − (A ∩ S) in
G−A∩S. For xi ∈ (B ∪K)∩S (yi ∈ (B ∪K)∩S), let Qxi

(Qyi
) be a path

in Q starting from xi (yi, respectively). Let x
′
i (y

′
i) be another end vertex of

Qxi
(Qyi

).

For convenience, let x′i := xi and y′i := yi for any xi, yi ∈ A ∩ S. We
will show that there exist t disjoint paths P ′

1, P
′
2, . . . , P

′
t such that P ′

i con-
nects x′i and y′i with |P ′

i | = εn. Suppose first that we have already found i
disjoint paths P ′

1, P
′
2, . . . , P

′
i for i < t. Let Ã = A− cupij=1V (P ′

j). Note that
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|Ã| = |A| −
∑i

j=1 |P ′
j | > (1− 9

√
tε)n− iεn ≥ 4tεn, because ε < 1

182t (which

implies 1 > 4tε + iε + 9
√
tε). Hence Ã is panconnected. This implies that

we can find a path P ′
i+1 in Ã connecting x′i+1 and y′i+1 with |Pi+1| = εn.

By joining Qxi
, P ′

i and Qyi
, we obtain a path Pi which connects xi and yi.

Moreover, These t paths are pairwise disjoint, so {Pi} is a path collection.
Thus, we may assume that κ(G) ≥ 2tεn.

Since δ(G) ≥ κ(G) ≥ 2tεn, we may create t vertex disjoint paths Q1,
Q2, . . . , Qt in G−{y1, y2, . . . , yt} such that |Qi| = 2εn− 9 which starts at xi
for any 1 ≤ i ≤ t. For 1 ≤ i ≤ t, let zi be an end vertex of Qi other than xi,
and let Q =

⋃t
i=1 V (Qi). Notice |Q| ≤ κ(G)−9t so G−(Q−{z1, z2, . . . , zt})

is at least 10t-connected. By Theorem 9, we know G−(Q−{z1, z2, . . . , zt}) is
t-linked. This implies that we may link zi and yi, and obtain a path collection
P1, P2, . . . , Pt, where Pi is a path combining Qi and the link between zi
and yi.

By Lemma 1, this completes the proof of Lemma 4.

4. Proof of Theorem 4

First, we apply Lemma 4 to obtain a spanning path collection P = {P1, . . . ,
Pt}. Take such a spanning path collection P with μ(P) minimum and
suppose P is not desired.

If for any subcollection A of P, e(A ,P − A ) ≥ ε2

24·48n
2, then we may

apply Lemma 2 to find a collection of paths P ′ with μ(P ′) < μ(P). This
contradicts our assumptions on P.

So there exists a subcollection A of P with e(A ,P − A ) < ε2

24·48n
2.

Letting c1 := ε
24 and c2 := ε

75 . Since
∑

Pi∈A |Pi| ≥ εn ≥ (4c1 + c2)n and∑
Pi∈P−A |Pi| ≥ εn ≥ (4c1+c2)n, we can apply Lemma 3 to find a spanning

desired path collection P ′, thus completing the proof.

5. Proof of Theorem 6

First we consider a matching M with t edges such that each edge contains
a vertex in S. Since σ2(G) ≥ n + 2t − 2, we know δ(G) ≥ 2t, and hence
there exists such a matching M . Let M := {x1y1, x2y2, . . . , xtyt} and let
S′ := S∪{yi : 1 ≤ i ≤ t}. If G is (2t+1)-connected, we can apply Theorem 4
for S′. Then G contains a spanning collection P of vertex disjoint paths
Pi = xi, . . . , yi such that (γi − ε)n < |Pi| < (γi + ε)n for all 1 ≤ i ≤ t. In
this case, {C1, C2, . . . , Ct} is a desired spanning collection of vertex disjoint
cycles, whehe Ci := Pi ∪ {xiyi}. So we may assume that G has a cut set T
of order 2t.
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By the degree sum condition, we know that G − T has exactly two
components and both of them are cliques. In this case, we can easily find a
desired spanning collection of vertex disjoint cycles.
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