
Journal of Combinatorics

Volume 3, Number 1, 101–121, 2012

Chipping away at the edges: How long does it take?

O-Yeat Chan and Pawe�l Pra�lat

We introduce the single-node traffic flow process, which is related
to both the chip-firing game and the edge searching process. Ini-
tially, real-valued weights (instead of chips) are placed on some ver-
tices, and all the edges have zero weight. When a vertex is “fired”,
the whole content accumulated in this vertex is sent uniformly
to all its neighbours, and each edge increases its weight by the
amount that is sent through this edge. We would like to discover
the shortest firing sequence such that the total amount of traffic
that has passed through each edge is at least some fixed value. A
complete characterization for complete graphs is presented as well
as discussion of other classes of graphs.

AMS 2000 subject classifications: 05C50, 05C57, 05C78, 05C85.
Keywords and phrases: Single-node traffic flow process, graph search-
ing, chip-firing game.

1. Introduction

Given a network where traffic flows between nodes, it is often the case that
the life of a connection between the nodes is dependent on the total amount
of traffic that has passed through it. The question naturally arises, “what
is the minimum amount of time that must pass before all the connections
have worn out?” A related problem is if the traffic must pay a toll to travel
from one node to its neighbour, how long will it take for each connection to
recover its costs?

We may model this process as a discrete process where a certain amount
of traffic flows between the nodes at each step. In the present treatment we
consider the case where the total amount of moveable traffic in the network
is fixed, and all the moveable traffic in some node moves evenly to all the
neighbouring nodes in each step.

The process we study here is similar to the cleaning process [14, 9, 10, 2,
17, 15, 16, 11], and is related to the chip-firing game (see, for example, [3, 5])
and edge searching (see, for example, [1, 6]). In the past thirty years, the
edge-searching problem and similar type problems have attracted researchers
from various fields of mathematics and computer science and have been

101

http://www.intlpress.com/JOC/

102 O-Yeat Chan and Pawe�l Pra�lat

linked to pebble games [12], that model sequential computation; to assuring
privacy when using bugged channels [8]; and to VLSI circuit design [7].
The chip-firing game also has rapidly become an important and interesting
object of study in structural combinatorics, in part because of its relation
to the Tutte polynomial and group theory [13]. It has also been studied in
computer science [5], physics [3], and social science [4].

We formally describe the process below.

Definition 1.1. Let G = (V,E) be a connected, undirected graph, and let
ωt : V ∪ E → R+ ∪ {0} such that ωt(v) and ωt(uv) denote the weight of
a vertex v and an edge uv, respectively at time t ∈ {0, 1, . . . }. Define the
single-node traffic flow process P = P(G,ω0) = {ωt}Tt=0 of G with an initial
configuration ω0 and total weight of ω =

∑
v∈V ω0(v) as follows:

1. Set t := 0 and the weight of all edges to zero (that is, ω0(uv) = 0 for
each uv ∈ E).

2. If no edge has weight less than one (that is, minuv∈E ωt(uv) ≥ 1),
then stop the process, set T = t, return the firing sequence of vertices
α = (α1, α2, . . . , αT) and the sequence of weights β = (β1, β2, . . . , βT)
that have been used during the process. Otherwise, go to step 3.

3. Set t := t+ 1. Then fire the content of any vertex αt by moving βt =
ωt−1(αt)/ deg(αt) units to each neighbour of αt. Each edge incident
to αt then increases its weight by βt. More precisely, ωt(αt) = 0, for
every v ∈ N(αt), ωt(αtv) = ωt−1(αtv) + βt and ωt(v) = ωt−1(v) + βt
(the other values of ωt remain the same as ωt−1).

4. Go to step 2.

Note that the total number of moveable units at any step of the process
is equal to ω. Note also that it is possible that the process never stops (for
example, one can fire the same vertex all the time) but for any connected
graph there is a firing sequence that can be used so that the process is finite,
unless the total weight is zero.

Theorem 1.2. Let G = (V,E) be any connected graph and ω0 be any initial
configuration of a non-zero total weight ω. There is a firing sequence α that
can be used to finish the process; that is, to get T < ∞.

Proof. Consider the following greedy algorithm that fires a vertex of a max-
imum weight at each step of the process. It is clear that the weight of each
vertex fired is at least the average weight; that is, ωt−1(αt) ≥ ω/|V | > 0. We
show that this algorithm yields T < ∞. For a contradiction, suppose that
the algorithm runs forever; that is, there is a vertex that is fired an infinite
number of times. Note that after �|V | deg(v)/ω� firings of a vertex v, each

Chipping away at the edges: How long does it take? 103

edge adjacent to v must have weight at least one. Therefore there must also
be at least one vertex that is fired a finite number of times. Consider a vertex
v that is fired a finite number of times and is adjacent to the vertex u that is
fired an infinite number of times. Suppose the final firing of v occurs at step
t = T . Since u is fired an infinite number of times, after t = T each time the
content of u is fired v receives at least ω/(|V | deg(u)) units of traffic. As the
total number of moveable units is ω, v eventually accumulates enough units
to be fired. Contradiction.

Based on the Theorem 1.2 the following definition is natural.

Definition 1.3. Let G = (V,E) be any connected graph and ω0 be any
initial configuration of a non-zero total weight ω. Let its life f(G,ω0) be
the minimum value of T that can be realized by the single-node traffic flow
process. In particular, fω(G) = f(G,ω0), where ω0 is an initial configuration
with total weight ω where every vertex has equal weight; that is, ω0(v) =
ω/|V |, v ∈ V.

In light of definition 1.3, the process can also be viewed as an one-person
combinatorial game on graphs (f(G,ω0) is the score obtained by a perfect
player).

The remainder of the paper is organized as follows. In the next section,
we investigate the process for complete graphs on n vertices. In particular,
we obtain a complete characterization of the life of Kn for any initial config-
uration ω0. In Section 3 we extend our results to complete bipartite graphs,
obtaining an order-of-magnitude result for the life fω(Kn,n). It seems that
analyzing other families of graphs is much more sophisticated. As an exam-
ple, we consider stars in Section 4, and conclude the paper with a few open
problems in Section 5.

2. Complete graphs

We begin by proving some results for complete graphs G = Kn+1 where
the initial configuration is ω0. In fact, we prove that the number of steps
needed by a greedy algorithm that always fires a vertex of maximum weight
is asymptotically equal to fω(Kn+1) for large n. To that end, we first prove
some properties of the greedy approach.

Let x1 ≥ x2 ≥ · · · ≥ xn > 0 denote a sorted sequence of weights for
Kn+1. (Note that the vertex that has been fired in the last round has weight
zero so n numbers is enough to model the behaviour of Kn+1.) The greedy
algorithm can be modelled by the map F : Rn → Rn which replaces x1 by
x1/n and adds x1/n to all the other n− 1 numbers, and then sorts them in

104 O-Yeat Chan and Pawe�l Pra�lat

non-increasing order (again we ignore the vertex of weight zero that results
from each firing). That is, F is given by

F ((x1, . . . , xn)
T) =

(
x2 +

x1
n
, x3 +

x1
n
, . . . , xn +

x1
n
,
x1
n

)T

.

Since F is linear on the xi, we may rewrite the map in terms of multiplying
the vector �x = (x1, . . . , xn)

T by an n× n matrix An given by

An :=

⎛
⎜⎜⎜⎜⎜⎝

1/n 1 0 · · · 0
1/n 0 1 0
...

...
. . .

. . .
...

1/n 0 0 1
1/n 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

so that F k(�x) = Ak
n�x for any k ∈ N. Note that after at most n iterations the

internal ordering becomes strictly decreasing.

Theorem 2.1. Denote by �x the column vector (x1, . . . , xn)
T and by �s the

vector (n, n− 1, . . . , 1)T . For any �x ∈ Cn we have

(2.1) lim
k→∞

Ak
n�x =

2(x1 + · · ·+ xn)

n(n+ 1)
�s.

To prove Theorem 2.1, we use the following theorem from the theory of
polynomials [18, p. 255].

Theorem 2.2 (Eneström-Kakeya). Let p(z) :=
∑n

j=0 ajz
j be a polynomial

of degree n with positive real coefficients. Then all the zeroes of p(z) lie inside
the annulus α ≤ |z| ≤ β, where

α = min
0≤j<n

{aj/aj+1}, and β = max
0≤j<n

{aj/aj+1}.

Proof of Theorem 2.1. Let An(m) be the m×m matrix of the form of An;
that is, the m × m matrix with 1/n down the first column, ones on the
upper off-diagonal, and zeroes everywhere else. The characteristic equation
fm,n(λ) = det(An(m)− λIm) is given by

det(An(m)− λIm) = (1/n− λ)(−λ)m−1 − (−λ)m−2/n

+ (−λ)m−3/n− · · ·+ (−1)m−1/n

=
(−1)m−1

n
(1 + λ+ · · ·+ λm−1 − nλm).

Chipping away at the edges: How long does it take? 105

The case we are interested in is at m = n, so that

fn,n(λ) = fn(λ) =
(−1)n

n
(nλn − λn−1 − · · · − 1)

=
(−1)n

n
(λ− 1)(nλn−1 + (n− 1)λn−2 + · · ·+ 1).

Clearly λ = 1 is a simple zero of fn. Since n(−1)n(λ− 1)fn = nλn+1 −
(n+1)λn+1 has derivative n(n+1)λn−1(λ−1), we see that fn in fact has n
distinct simple zeroes. Eneström-Kakeya implies that aside from λ = 1, the
remaining n−1 zeroes of fn lie in the annulus 1/2 ≤ |λ| ≤ 1−1/n. Thus An

has n distinct eigenvalues λ1, λ2, . . . λn, with λ1 = 1 and 1/2 ≤ |λi| ≤ 1−1/n
for 2 ≤ i ≤ n. If we let �vi be the eigenvector associated with λi, then since
the eigenvalues are distinct, the eigenvectors are linearly independent over
C and so any �x ∈ Cn may be expressed as a unique linear combination of
the �vi. That is,

�x =

n∑
i=1

ci�vi

for some constants ci. Therefore, we find that

lim
k→∞

Ak
n�x = lim

k→∞
Ak

n

n∑
i=1

ci�vi = lim
k→∞

n∑
i=1

ciλ
k
i �vi

= c1 �v1 + lim
k→∞

n∑
i=2

λk
i �vi = c1 �v1.

It is easy to check that �v1 = �s. So all that remains is to calculate c1. But we
note that multiplying any vector �x by An preserves the sum of the compo-
nents of �x. Thus we have the condition

x1 + x2 + · · ·+ xn = c1(n+ (n− 1) + · · ·+ 1).

Solving for c1 completes the proof.

Remark 2.3. We note that if the sum of the weights x1+ · · ·+xn is non-zero,
then in fact the algorithm that fires each vertex in turn will be eventually
greedy, in the sense that the vertex with the largest absolute value of the
weight will be fired in each step.

Corollary 2.4. Let n be fixed and let �x and �s be as in Theorem 2.1. Then
the rate of convergence, as k tends to ∞, is

106 O-Yeat Chan and Pawe�l Pra�lat

(2.2)

∥∥∥∥Ak
n�x− 2(x1 + · · ·+ xn)

n(n+ 1)
�s

∥∥∥∥ = O

(
n

(
1− 1

n

)k
)
,

where the big-O constant depends on �x.

Proof. From the proof of Theorem 2.1 we have that

(2.3)

∥∥∥∥Ak
n�x− 2(x1 + · · ·+ xn)

n(n+ 1)
�s

∥∥∥∥ =

∥∥∥∥∥
n∑

i=2

ciλ
k
i �vi

∥∥∥∥∥ .
Applying the triangle inequality and using the fact that λi ≤ 1 − 1/n for

2 ≤ i ≤ n, we find

∥∥∥∥∥
n∑

i=2

ciλ
k
i �vi

∥∥∥∥∥ ≤ (n− 1)

(
max
2≤i≤n

‖ �civi‖
)(

1− 1

n

)k

= O

(
(n− 1)

(n− 1)k

nk

)

as required.

We also have a lower bound for the error.

Corollary 2.5. Let n be fixed and let �x and �s be as in Theorem 2.1. If

�x �= 2(x1+···+xn)
n(n+1) �s, then the difference is bounded below by

(2.4)

∥∥∥∥Ak
n�x− 2(x1 + · · ·+ xn)

n(n+ 1)
�s

∥∥∥∥ = Ω
(
2−k

)
,

where, as above, the big-Ω constant depends on �x and n.

Proof. Let L = max2≤i≤n |λi|. Applying the triangle inequality to (2.3) we

find that

∥∥∥∥∥
n∑

i=2

ciλ
k
i �vi

∥∥∥∥∥ ≥

∣∣∣∣∣∣∣∣
∑

2≤i≤n
|λi|=L, ci �=0

Lk‖ci�vi‖ −
∑

2≤i≤n
|λi|<L

λk
i ‖ci�vi‖

∣∣∣∣∣∣∣∣
= Ω

(
Lk

)

as k → ∞, since for fixed n and �x, the ci and �vi are also fixed. Since L ≥ 1/2

by Theorem 2.2, we have the desired result.

We can also prove explicit bounds for the special case �x = (x, . . . , x)T .

Chipping away at the edges: How long does it take? 107

Corollary 2.6. Let �x = (x, . . . , x)T and denote by x1(k) the first coordinate
of Ak

n�x. Then we have

(2.5)

∣∣∣∣x1(k)− 2
nx

n+ 1

∣∣∣∣ ≤ xn(n− 1)

n+ 1

(
n− 1

n

)k+1

.

Proof. It is easy to check that for each eigenvalue λi, the corresponding
eigenvector is

(2.6) �vi =

⎛
⎜⎜⎜⎜⎜⎝

cnλi

−λi + nλ2
i

...

−λi − λ2
i − · · · − λn−2

i + nλn−1
i

1.

⎞
⎟⎟⎟⎟⎟⎠

To obtain explicit bounds, we need to determine ci for i ≥ 2. We claim that
ci =

x
n+1 works. That is, we would like to show that for each 1 ≤ j ≤ n we

have
n∑

i=1

ci

(
nλj

i −
j−1∑
�=1

λ�
i

)
= x

for that choice of ci. Recalling that c1 = 2x/(n+1) and λ1 = 1, we calculate
(dividing through by x for simplicity),

n∑
i=1

ci

(
nλj

i −
j−1∑
�=1

λ�
i

)
=

n− j + 1

n+ 1
+

n∑
i=1

1

n+ 1

(
nλj

i −
j−1∑
�=1

λ�
i

)
.

Let Sk denote the elementary symmetric polynomial of degree k on λ1, . . . , λn

and Pk denote the sum of the kth powers of λi. That is,

Pk :=

n∑
i=1

λk
i .

Since the λi are all the zeroes of fn(λ), we have Sk = (−1)k (normalized
coefficient of λn−k) = (−1)k−1/n for 1 ≤ k ≤ n and S0 = 1. Now, by the
Newton-Girard Formulas [18, p. 8, eq. 1.2.9] we have

(2.7) Pk = (−1)k−1kSk +

k−1∑
j=1

(−1)j−1SjPk−j =
k

n
+

k−1∑
j=1

Pj

n
.

108 O-Yeat Chan and Pawe�l Pra�lat

Therefore,

n− j + 1

n+ 1
+

n∑
i=1

1

n+ 1

(
nλj

i −
j−1∑
�=1

λ�
i

)
=

n− j + 1

n+ 1
+

nPj

n+ 1
− 1

n+ 1

j−1∑
�=1

P�

=
n− j + 1

n+ 1
+

j

n+ 1
= 1,

as required.
It is now a simple matter to estimate the size of the first coordinate in

Ak
n�x− c1 �v1. Since

Ak
n�x− c1 �v1 =

n∑
i=2

λk
i ci�vi,

we find that∣∣∣∣x1(k)− 2nx

n+ 1

∣∣∣∣ =
∣∣∣∣∣

n∑
i=2

λk
i

xnλi

n+ 1

∣∣∣∣∣ ≤ xn(n− 1)

n+ 1
max
2≤i≤n

|λi|k+1

≤ xn(n− 1)

n+ 1

(
n− 1

n

)k+1

.

Corollary 2.7. Let x1(k) be as in Corollary 2.6. Then we have

(2.8) |x1(k)| ≤
xn

n+ 1

(
1 +

1

n

)n

<
xne

n+ 1

for all k ≥ 0.

Proof. By the proof of Corollary 2.6, we have

x1(k) =

n∑
i=1

ciλ
k
i nλi =

xn

n+ 1
Pk+1 +

xn

n+ 1
λk+1
1 .

Since the λi satisfy fn(λi) = 0, we find that for k ≥ n,

λk
i =

λk−1
i + · · ·+ λk−n

i

n
.

Thus

(2.9) Pk =
Pk−1 + · · ·+ Pk−n

n

Chipping away at the edges: How long does it take? 109

for all k ≥ n. But using (2.7) we have

Pk =

(
1 +

1

n

)k

− 1

for 1 ≤ k ≤ n, so 0 < P1 < P2 < · · · < Pn. Combining this with (2.9) we

find that

0 ≤ Pk ≤ Pn =

(
1 +

1

n

)n

− 1

for all k ≥ 1. This gives the desired result.

We are now ready to prove the main theorem on complete graphs.

Theorem 2.8. For n ≥ 1 and ω some function of n, we have

fω(Kn+1) =
n(n+ 1)2

4ω
+O(n log n).

In particular, for ω = o(n2/ logn)

fω(Kn+1) =
n3

4ω
(1 + o(1)).

Proof. In order to get an upper bound, we analyze a greedy algorithm

that always fires the content of a vertex of maximum weight. Let V =

{v1, v2, . . . , vn+1} such that ω0(v1) = ω0(v2) = · · · = ω0(vn+1) =
ω

n+1 . It is

easy to see that the firing process can be divided into a number of rounds

where at each round vertices v1, v2, . . . , vn+1 are processed in increasing

order of labels. After the first step, we obtain an equivalent system with

ω(v2) = · · · = ω(vn+1) =
ω

n+1 + 1
n

ω
n+1 = ω

n , ω(v1) = 0. From Corollary 2.6

with x = ω/n it follows that at time t of the process we fire the content of

a vertex of weight

ωt−1(αt) = nβt ≥ ω

(
2

n+ 1
− n− 1

n+ 1

(
1− 1

n

)t
)

≥ ω

(
2

n+ 1
− e−t/n

)
.

Thus, during the round k the weight of each vertex processed is at least

ω(2
n+1 − e−k(n+1)/n). For early rounds (say, up to and including round k0),

one can use a trivial lower bound of ω
n+1 . Since at each round each edge

increases its weight two times, we find that any k (and k0) such that the

110 O-Yeat Chan and Pawe�l Pra�lat

inequality

2ωk0
n(n+ 1)

+

k∑
i=k0+1

2ω

n

(
2

n+ 1
− e−i(n+1)/n

)
≥ 1

holds will give an upper bound on the number of rounds. Simplifying the

left-hand side gives

(4k − 2k0)ω

n(n+ 1)
− 2ωe−(k0+1)(1+1/n)

n

1− e−(k−k0−1)(1+1/n)

1− e−1−1/n
≥ 1.

This is implied if the inequality (with k0 = log n)

(4k − 2 logn)ω

n(n+ 1)
− 2ω

n2(e1+1/n − 1)
≥ 1

holds. Thus we have

k ≥ n(n+ 1)

4ω
+

n+ 1

2n(e1+1/n − 1)
+

log n

2
=

n(n+ 1)

4ω
+O(log n)

as n → ∞.

For a lower bound, we use the fact that at the end of the process, each

edge has weight at least one; that is,

(2.10)

N∑
t=1

nβt ≥
(
n+ 1

2

)
.

Note that this is a necessary condition for the process to finish but clearly

not a sufficient one. Define by S(�a,N) the maximum over all processes with

exactly N steps of the sum

N∑
t=1

nβt

with initial configuration �a, and S(�a,N, k) the analogous maximum provided

the first vertex fired is the kth component of �a. We now show by induction

that the greedy algorithm gives S(�a,N) for all �a and N . The base case N = 1

is trivial. For the inductive step, consider a process of length N + 1 ≥ 2.

We start with an initial configuration ω0; let xi = ω0(vi), i ∈ [n+ 1] (recall

Chipping away at the edges: How long does it take? 111

that x1 ≥ x2 ≥ · · · ≥ xn+1). We could start the process by firing vertex vk,

k ≥ 2, to get a sorted sequence of weights

�a :=
(
x1 +

xk
n
, . . . , xk−1 +

xk
n
, xk+1 +

xk
n
, . . . , xn+1 +

xk
n

)T

(where we drop the zero term from the vector) but it appears that firing

vertex vk−1 gives a result which is not worse than the previous one. After

firing vk−1 we get

�b :=
(
x1 +

xk−1

n
, . . . , xk−2 +

xk−1

n
, xk +

xk−1

n
, . . . , xn+1 +

xk−1

n

)T

and in both situations a greedy algorithm has to be used to maximize the

sum we consider, by the inductive hypothesis. Let Δ = xk−1 − xk ≥ 0. The

process starting with �b can be seen as a combination of two processes: the

process starting with �a and the process starting with

�b− �a =

(
Δ

n
, . . . ,

Δ

n
,
Δ

n
−Δ,

Δ

n
, . . . ,

Δ

n

)T

=
Δ

n
(1, 1, . . . , 1)T −Δ�ek−1 = Δ(An −A2−k

n)�e1

(here �ek is the elementary unit vector with a 1 in the kth component and 0

everywhere else, so that Ak−1
n �ek = �e1). In other words, ω

�b
i (v) in the process

starting with �b can be obtained as a sum of two values ω�a
i (v) and ω

�b−�a
i (v)

for corresponding processes starting with �a and with �b − �a, respectively.

Applying the greedy algorithm gives the sequence of weight vectors Aj
n�a

and Aj
n
�b = Aj

n�a+Aj
n(�b− �a) after j steps. Therefore

S(�a,N) = g

(
N−1∑
i=0

Ai
n�a

)
:= first coordinate of

N−1∑
i=0

Ai
n�a,

and

S(�b,N) = g

(
N−1∑
i=0

(
Ai

n�a+Ai
n(
�b− �a)

))
.

Thus the difference S(�x,N + 1, k − 1)− S(�x,N + 1, k) is

112 O-Yeat Chan and Pawe�l Pra�lat

S(�x,N + 1, k − 1)− S(�x,N + 1, k) = Δ + S(�b,N)− S(�a,N)

= Δ + g

(
N−1∑
i=0

Ai
n(
�b− �a)

)

= Δ

(
1 + g

(
N−1∑
i=0

(Ai+1
n −Ai+2−k

n)�e1

))
.

Define qs :=
∑s

i=0 g(A
i
n �e1), with q0 = 1 and q−s = 0 for all s > 0. It is easy

to see that qs is positive and increasing for s ≥ 0 since the summands are

positive for i ≥ 1. Therefore,

S(�x,N + 1, k − 1)− S(�x,N + 1, k) = Δ

(
1 + g

(
N−1∑
i=0

(Ai+1
n −Ai+2−k

n)�e1

))

= Δ(1 + qN − q0 − qN−1+(2−k))

= Δ(qN − qN−(k−1)) ≥ 0.

This finishes the inductive proof.

To show the lower estimate, once again apply Corollary 2.6 to show that

at time t the maximum weight of the vertices is bounded above by

ωt−1(αt) = nβt ≤ ω

(
2

n+ 1
+

n− 1

n+ 1

(
1− 1

n

)t
)

≤ ω

(
2

n+ 1
+ e−t/n

)
.

For early steps (say, up to and including step t0) we can apply Corollary 2.7

to estimate that

nβt ≤
ωe

n+ 1
.

Thus the largest positive integer T ≥ t0 that satisfies

t0∑
t=1

ωe

n+ 1
+

T∑
t=t0+1

ω

(
2

n+ 1
+ e−t/n

)
≤ n(n+ 1)

2

gives a lower bound for fω(Kn+1). Simplifying we find the left-hand side is

bounded above by

ω(2T + (e− 2)t0)

n+ 1
+ ωe−(t0+1)/n(T − t0).

Chipping away at the edges: How long does it take? 113

Choosing t0 = 2n log n we get

ω(2T + 2(e− 2)n log n)

n+ 1
+

ωe−1/n(T − 2n log n)

n2
≤ n(n+ 1)

2
,

and solving for T we find that

T ≥ n(n+ 1)2

4ω
−O(n logn)

is necessary for (2.10) to hold.

The above techniques extend to arbitrary initial configurations ω0 =
(x1, x2, . . . , xn, 0) for Kn+1.

Theorem 2.9. For sorted initial configurations ω0 = (x1, x2, . . . , xn, 0) on
Kn+1, where both x1 and ω = x1 + · · ·+ xn may depend on n, we have

n(n+ 1)2

4ω
−O

(
n2x1
ω

logn

)
≤ fω(Kn+1) ≤

n(n+ 1)2

4ω
+O(n log(nx1/ω)).

(2.11)

Proof. Beginning with a sorted configuration �x = (x1, x2, . . . , xn)
T for Kn+1

with sum ω, we may decompose it as

�x =

n∑
i=0

xi�ei =

(
n∑

i=0

xiA
−i
n

)
�e1 =

(
n∑

i=0

xiA
−i−1
n

n(n+ 1)

)(
2�v1 +

n∑
j=2

�vj

)
,

where as before �vi, 1 ≤ i ≤ n, are the eigenvectors of An, corresponding to
the eigenvalues λi with λ1 = 1. This implies

�x =
2ω

n(n+ 1)
�v1 +

n∑
j=2

(
n∑

i=1

xiλ
−i−1
j

n(n+ 1)

)
�vj .

Thus the first coordinate x1(k) of A
k
n�x is bounded by

∣∣∣∣x1(k)− 2ω

n+ 1

∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=2

(
n∑

i=1

xiλ
k−i−1
j

n(n+ 1)

)
nλj

∣∣∣∣∣∣
≤ x1n(n− 1)

n+ 1

(
1− 1

n

)k−n

.

114 O-Yeat Chan and Pawe�l Pra�lat

We also have the uniform bound

|x1(k)| =

∣∣∣∣∣∣
ω

n+ 1
+

n∑
j=1

(
n∑

i=1

xiλ
k−i−1
j

n(n+ 1)

)
nλj

∣∣∣∣∣∣
≤ ω

n+ 1
+

∣∣∣∣∣
n∑

i=1

xi
n+ 1

Pk−i

∣∣∣∣∣ ≤ ω

n+ 1
+

nx1(e− 1)

n+ 1

valid for k ≥ n. But we know for k < n, x1(k) can be bounded by the first
coordinate of the process that starts with (x1, x1, . . . , x1). Thus the bound

|x1(k)| ≤
nx1e

n+ 1

is valid for all k ≥ 0. Now we apply the same techniques as before to obtain
upper and lower bounds for fω0

(Kn+1). The relevant inequality for the upper
bound is

(4k − 2k0)ω

n(n+ 1)
− 2x1e

−(k0−1+1)(1+1/n)

1− e−1−1/n
≥ 1.

Setting k0 = log(nx1/ω) and solving for k gives the result. For the lower
bound the relevant inequality is

t0∑
t=1

nx1e

n+ 1
+

T∑
t=t0+1

(
2ω

n+ 1
+

nx1e

n+ 1
e−t/n

)
≤ n(n+ 1)

2
.

Using t0 = 2n log n as before works.

3. Complete bipartite graphs

The case of complete bipartite graphs Kn,n is much more delicate compared
to the analysis of complete graphs in the previous section. An upper bound
is easy to obtain:

Theorem 3.1. For any n ≥ 1 and ω a function of n, we have

(3.1) fω(Kn,n) ≤ max

(
n3

ω
+

n

2
, n

)
.

Proof. Consider the algorithm which fires every vertex of one partite set in
some order, then the vertices of the other partite set, and so on. After the

Chipping away at the edges: How long does it take? 115

first n steps each vertex not fired will have weight ω/n and so after k rounds
of firing all n vertices of a partite set (including the first round, of course),
each edge has weight

ω

n2
(k − 1) +

ω

2n2
.

In order for this to be greater than 1 we require

k ≥ n2

ω
+

1

2

rounds.

We note that the algorithm in the above proof is greedy after n steps. It is
natural to ask whether greedy improves this bound, and whether it will give
an optimal lower bound as in the case of complete graphs. Unfortunately,
even if we ignore the question of how to choose between two vertices of
equal weight in asymmetric cases, the following example shows that a greedy
algorithm does not necessarily maximize the edge-sum for arbitrary length
processes as in the case of complete graphs.

Example 3.2. Consider the graph K2,2 with partite sets (x1, x2) and (y1, y2)
and weights ω(x1) = 1.5, ω(x2) = 1, ω(y1) = 2, ω(y2) = 0. Then a greedy
algorithm would fire vertices in the order y1, x1, x2 in 3 steps, giving an edge
sum of 6.5. However, if we fire the vertices in the order x1, y1, x2, then the
edge sum becomes 6.625.

While the methods of the previous section no longer extend directly to
Kn,n, we may still obtain non-trivial lower bounds.

Theorem 3.3. For any n ≥ 1 and ω a function of n, we have

(3.2) fω(Kn,n) ≥ max

(
n3

2ω
−O(n logn), n

)
.

Proof. The main idea is to reduce the problem to something treatable by our
previous methods. To that end, given our complete bipartite graph G = Kn,n

with partite sets X = (x1, . . . , xn) and Y = (y1, . . . , yn) we associate with
it a graph G′ by contracting each pair of vertices (xi, yi) to a single vertex
zi, while keeping the edge xiyi as a loop on zi. At any time t, we let the
weight of the vertices in G′ be given by ωt(zi) = ωt(xi) + ωt(yi). Then any
firing sequence (vi)

N
i=1 in G corresponds to some firing sequence in G′ where

only some fraction 0 < rt ≤ 1 of ωt(zi) is fired. We claim that a greedy
algorithm with rt = 1 for all t maximizes the N -step edge-sum in G′ for

116 O-Yeat Chan and Pawe�l Pra�lat

every N . We note that the greedy algorithm on G′ with rt = 1 for all t

can be modelled by the same matrix An as in the complete graph case.

That is, the sorted vector of the n vertex weights at time t + 1 is given

by multiplying the vector at time t by An. Thus, we only need to show

that firing any vertex with rt = 1 gives a larger edge-sum than firing that

same vertex with rt < 1. The proof now proceeds in exactly the same way

as before. Let S(�a,N), and S(�a,N, k) be as before, and let S(�a,N, k, r) be

the corresponding maximum given that the vertex zk is fired first and only

rω(zk) is fired. In particular S(�a,N, k) = S(�a,N, k, 1). Starting with a sorted

sequence of weights �w = (w1, . . . , wn), firing a fraction r of vertex k gives a

sorted sequence of weights

�a := (w1, w2, . . . , wk−1, wk+1, . . . , wj , (1− r)wk, wj+1, . . . , wn)
T

+
rwk

n
(1, . . . , 1)T ,

where wj ≥ (1 − r)wk > wj+1. In the case r = 1 we have j = n and we

denote this vector by �b. Then

D := S(�w,N + 1, k)− S(�w,N + 1, k, r)

= (1− r)wk + S(�b,N)− S(�a,N)

= (1− r)wk + g

(
N−1∑
i=0

Ai
n(
�b− �a)

)
,

where as before g extracts the first coordinate of its argument. We decompose
�b− �a as

�b− �a = (1− r)
wk

n
(1, 1, . . . , 1)T + (wj+1 − (1− r)wk)�ej

+

n∑
i=j+1

(wi+1 − wi)�ei

= (1− r)wkAn �e1 + (wj+1 − (1− r)wk)A
1−j
n �e1

+

n∑
i=j+1

(wi+1 − wi)A
1−i
n �e1,

with wn+1 := 0. Thus,

Chipping away at the edges: How long does it take? 117

D = (1− r)wk

+ g

(
N−1∑
i=0

(
(1− r)wkA

i+1
n + (wj+1 − (1− r)wk)A

i+1−j
n

+

n∑
m=j+1

(wm+1 − wm)Ai+1−m
n

)
�e1

)

= (1− r)wk(1 + qN − q0) + (wj+1 − (1− r)wk)qN−1−(j−1)

+

n∑
m=j+1

(wm+1 − wm)qN−1−(m−1)

≥ (qN − qN−j) (1− r)wk +

n∑
m=j+1

wm(qN−m−1 − qN−m) ≥ 0.

Now we apply the same analysis as in the previous section, except the
edge-sum must now be at least n2 rather than

(
n+1
2

)
. The result follows

immediately. Note that we always need at least n steps since that is the size
of the minimum vertex cover.

It is clear that the lower bound is not best possible, since the process on
the complete graph G′ with rt = 1 at every step cannot occur in the corre-
sponding Kn.n, as content fired from one partite set ends up in the other.
We therefore suspect that the upper bound is closer to the true value for
fω(Kn,n). One might ask, can a greedy algorithm yield better bounds than
the process given in the proof of Theorem 3.1? It turns out that one can show,
using the same linear algebra techniques from the previous section, that

• The greedy algorithm applied directly to ω0 on Kn,n is the same as
applying the greedy algorithm alternately to each partite set, and this
algorithm is well-defined. That is, the map can be modelled by the
matrix

Bn :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1/n 1 0 0 · · · 0
0 0 1 0 0

1/n 0 0 1 0
...

...
. . .

. . .
...

0 0 0 0 1
1/n 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

acting on the vector (x1, y1, . . . , xn−1, yn−1, xn)
T , where xi ≥ xi+1 be-

long to one partite set and yi ≥ yi+1 ≥ yn = 0 belong to the other
partite set.

118 O-Yeat Chan and Pawe�l Pra�lat

• The greedy algorithm requires at least n3/ω−O(n log n) steps and at

most n3/ω +O(n2) steps.

4. Stars

In this section, we consider another simple class of graphs: stars. The lack

of symmetry between the two partite sets causes a lot of difficulty, and so

we only focus on obtaining upper bounds for fω(K1,n) in this work.

In order to warm up, let us consider a star with 4 rays (vertex v is

adjacent to v1, v2, v3, and v4) with the total weight of 5. We look at the

ratio between the increase in weight of each edge to the number of moves

in each round, in order to find the most efficient strategy for general ini-

tial configurations. Ignoring for the moment the condition that we stop the

process when every edge attains weight 1 (or equivalently, scale the initial

configuration by an appropriate factor to expose asymptotic behaviour), let

us consider the following three different approaches:

• Process vertices in the following order: v1, v, v2, v, v3, v, v4, v, and

so on. The process converges to the stationary distribution on vi’s

(1/2, 1, 3/2, 2) (vi with the highest value fire 2 units and then v fire

1/4 to each of its neighbours). Each edge increases its weight by 4

during 8 moves. The ratio between the increase and the number of

moves is 1/2.

• Process vertices in the following order: v1, v2, v, v3, v4, v, and we con-

verge to (5/6, 5/6, 10/6, 10/6). Each edge receives 10/3 units during 6

moves, so the ratio is 5/9 > 1/2.

• Process vertices in the following order: v1, v2, v3, v4, v, getting immedi-

ately (5/4, 5/4, 5/4, 5/4). Each edge receives 5/2 units during 5 moves,

and we are back to 1/2 again.

Trying to discover the best general strategy, let us consider a star with

n = 2k rays for k ∈ N. Fix an i in 0 ≤ i ≤ k and create 2k−i groups consisting

of 2i vertices each. We process all vertices in a group with maximum content,

then v, and repeat. In the stationary distribution, every vertex of group j

(j = 1, 2, . . . , 2k−i) has value of jx/2k−i (in particular, the last one has

value x). Since the sum over all vertices is ω, we get

2k−i∑
j=1

2i
jx

2k−i
= ω,

Chipping away at the edges: How long does it take? 119

so x = 2ω/(2k + 2i). During the whole cycle (2k + 2k−i moves) each edge
receives 2x units. The ratio is then 4ω

(2k+2i)(2k+2k−i) , which is maximized for

i = �k/2. Therefore, it seems then that the best strategy is to split vi’s
into roughly

√
n sets of cardinalities as close to each other as possible. It is

natural to conjecture that

fω(K1,n) =
n2

4ω
(1 + Θ(1/

√
n))

for ω small enough. Unfortunately, this still remains an open problem.

5. A few open problems

We already mentioned about the conjecture for complete bipartite graphs
and stars. We would like to finish the paper with one more open problem.
Let G be any connected graph on n vertices and consider its life fω(G) with
ω = n (that is, initially each vertex has weight of 1). It seems that fω(G)
should depend on the density of G. It follows from our results that

fω(Kn)

|E(Kn)|
=

1

2
+ o(1),

fω(Kn,n)

|E(Kn,n)|
≤ 1 + o(1),

fω(K1,n)

|E(K1,n)|
≤ 1

4
+ o(1).

Let G(n) be a family of connected graphs on n vertices. It it natural to ask
whether the following limits exist, and if so to find their values.

M = lim
n→∞

max
G∈G(n)

fω(G)

|E(G)| ,

m = lim
n→∞

min
G∈G(n)

fω(G)

|E(G)| .

In particular, is it true that 0 < m < M = O(1)?

References

[1] Alspach, B. (2004). Searching and sweeping graphs: A brief survey. In:
International Conference in Combinatorics, Le Matematiche, Vol. LIX,
Fasc. I–II, pp. 5–37. MR2243023

http://www.ams.org/mathscinet-getitem?mr=2243023

120 O-Yeat Chan and Pawe�l Pra�lat

[2] Alon, N., Pra�lat, P. and Wormald, N. (2008). Cleaning d-regular graphs
with brushes. SIAM Journal on Discrete Mathematics 23 233–250.
MR2476825

[3] Bak, P., Tang, C. and Wiesenfeld, K. (1987). Self-organized criticality:
An explanation of the 1/f noise. Physics Review Letters 59(4) 381–384.
MR0949160

[4] Biggs, N. (1997). Algebraic potential theory on graphs. The Bulletin of
the London Mathematical Society 29 641–682. MR1468054

[5] Björner, A., Lovász., L. and Shor, W. (1991). Chip-firing games on
graphs. European Journal of Combinatorics 12 283–291. MR1120415

[6] Dyer, D. (2004). Sweeping graphs and digraphs. Ph.D. thesis, Simon
Fraser University. MR2707415

[7] Fellows, M. and Langston, M. (1989). On search, decision and the ef-
ficiency of polynomial time algorithm. In: 21st ACM Symp. on Theory
of Computing (STOC 89), pp. 501–512.

[8] Frankling, M., Galil, Z. and Yung, M. (2000). Eavesdropping games: A
graph-theoretic approach to privacy in distributed systems. Journal of
ACM 47 225–243. MR1769442

[9] Gaspers, S., Messinger, M. E., Nowakowski, R., and Pra�lat, P. (2009).
Clean the graph before you draw it! Information Processing Letters 109
463–467. MR2509446

[10] Gaspers, S., Messinger, M. E., Nowakowski, R., and Pra�lat, P. (2010).
Parallel cleaning of a network with brushes. Discrete Applied Mathe-
matics 158 467–478. MR2592453

[11] Gordinowicz, P., Nowakowski, R. and Pra�lat, P. POLISH-or-Let’s play
the cleaning game, Theoretical Computer Science, in press, 17 pp.

[12] Kirousis, L. M. and Papadimitriou, C. H. (1986). Searching and peb-
bling. Theoretical Computer Science 47 205–218. MR0881212

[13] Merino, C. (2005). The chip-firing game. Discrete Mathematics 302
188–210. MR2179643

[14] Messinger, M. E., Nowakowski, R. J. and Pra�lat, P. (2008). Cleaning
a network with brushes. Theoretical Computer Science 399 191–205.
MR2419777

[15] Messinger, M. E., Nowakowski, R. and Pra�lat, P. (2011). Cleaning with
brooms. Graphs and Combinatorics 27 251–267. MR2771160

http://www.ams.org/mathscinet-getitem?mr=2476825
http://www.ams.org/mathscinet-getitem?mr=0949160
http://www.ams.org/mathscinet-getitem?mr=1468054
http://www.ams.org/mathscinet-getitem?mr=1120415
http://www.ams.org/mathscinet-getitem?mr=2707415
http://www.ams.org/mathscinet-getitem?mr=1769442
http://www.ams.org/mathscinet-getitem?mr=2509446
http://www.ams.org/mathscinet-getitem?mr=2592453
http://www.ams.org/mathscinet-getitem?mr=0881212
http://www.ams.org/mathscinet-getitem?mr=2179643
http://www.ams.org/mathscinet-getitem?mr=2419777
http://www.ams.org/mathscinet-getitem?mr=2771160

Chipping away at the edges: How long does it take? 121

[16] Pra�lat, P. (2011). Cleaning random d-regular graphs with brooms.
Graphs and Combinatorics 27 567–584. MR2813456

[17] Pra�lat, P. (2009). Cleaning random graphs with brushes. Australasian
Journal of Combinatorics 43 237–251. MR2489423

[18] Rahman, Q. I. and Schmeisser, G. (2002). Analytic Theory of Polynomi-
als, London Mathematics Society Monographs New Series 26, Oxford
University Press. MR1954841

O-Yeat Chan

10221 Hollymount Drive

Richmond, BC, Canada V7E 4T5

E-mail address: math@oyeat.com

Pawe�l Pra�lat

Department of Mathematics

Ryerson University

Toronto, ON, Canada, M5B 2K3

E-mail address: pralat@ryerson.ca

Received October 16, 2011

http://www.ams.org/mathscinet-getitem?mr=2813456
http://www.ams.org/mathscinet-getitem?mr=2489423
http://www.ams.org/mathscinet-getitem?mr=1954841
mailto:math@oyeat.com
mailto:pralat@ryerson.ca

	Introduction
	Complete graphs
	Complete bipartite graphs
	Stars
	A few open problems
	References

