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Multicolor on-line degree Ramsey numbers of trees
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†

In the on-line Ramsey game on a family H of graphs, “Builder”
presents edges of a graph one-by-one, and “Painter” colors each
edge as it is presented; we require that Builder keep the presented
graph in H. Builder wins the game (G,H) if Builder can ensure
that a monochromatic G arises. The s-color on-line degree Ramsey
number of G, denoted R̊Δ(G; s), is the least k such that Builder
wins (G,H) when H is the family of graphs having maximum de-
gree at most k and Painter has s colors available. More generally,
R̊Δ(G1, . . . , Gs) is the minimum k such that Builder can force a
copy of Gi in color i for some i when restricted to graphs with
maximum degree at most k.

In this paper, we prove that R̊Δ(T ; s) ≤ s(Δ(T ) − 1) + 1 for
every tree T ; this is sharp, with equality whenever T has adjacent
vertices of maximum degree. We also give lower and upper bounds
on R̊Δ(G1, . . . , Gs) when each Gi is a double-star. When each Gi

is a star, we determine R̊Δ(G1, . . . , Gs) exactly.

1. Introduction

When every 2-edge-coloring of a host graph H contains a monochromatic

copy of a target graph G, we write H → G. More generally, when every

s-edge-coloring of H contains a monochromatic G, we write H
s→ G. The

central problem of graph Ramsey theory is to find the least n such that

Kn → G, which can be restated as min{|V (H)| : H → G}. The value is

called the Ramsey number of G, denoted R(G) (or R(G; s) in the s-color

setting).

This phrasing of the Ramsey number generalizes: given a graph parame-

ter ρ, let Rρ(G) = min{ρ(H) : H → G}. When ρ is the maximum degree, the

Ramsey parameter is the degree Ramsey number, RΔ(G). Burr, Erdős, and
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Lovász [2] introduced this notion and determined RΔ(K1,k) and RΔ(Kn);
further results appear in [7, 9].

An on-line variant of the degree Ramsey number can be phrased as a
game played by two players, “Builder” and “Painter”, on an infinite set of
vertices. In each round, Builder introduces an edge and Painter colors it
from a fixed set of s colors. Builder aims to force a monochromatic copy of a
target graphG. By Ramsey’s Theorem, Builder can win by presenting a large
complete graph. Thus we restrict Builder by requiring that the presented
graph remains in a familyH; the game is then played on H. If Builder can still
force a monochromatic G, then we say Builder wins. More generally, Builder
wins (G1, . . . , Gs;H) if Builder can force a copy of Gi in color i for some
i when playing on H with Painter having s colors available. Introduced by
Beck [1], this model was studied by Grytczuk, Ha�luszczak, and Kierstead [5]
for several natural choices of H in the case where s = 2 and G1 = G2. Later
results appear in [4, 6, 8, 10].

We focus on the case where H is Sk, the set of graphs with maximum
degree at most k. We define R̊Δ(G1, . . . , Gs) to be the least k such that
Builder wins (G1, . . . , Gs;Sk). When G1 = · · · = Gs = G, we have the
diagonal case and abbreviate the notation to R̊Δ(G; s), called the s-color
on-line degree Ramsey number of G. The parameter is well-defined, since it
is bounded by the ordinary s-color Ramsey number minus 1.

For s = 2, Butterfield et al. [3] determined the exact 2-color on-line
degree Ramsey numbers for paths, stars, and double-stars (trees with diam-
eter 3), and they proved that R̊Δ(T ; 2) ≤ 2Δ(T )−1 for every tree T . In this
paper, we extend several of those results to the s-color, non-diagonal setting.
Proposition 2.3 states that R̊Δ(Pn1

, . . . , Pns
) = s+1 when each ni is at least

4, where Pn denotes the path with n vertices. This result uses a recursive
lower bound for R̊Δ(G1, . . . , Gs) in terms of R̊Δ(G1, . . . , Gs−1). Theorem 2.5
gives somewhat technical lower and upper bounds for R̊Δ(G1, . . . , Gs) when
each Gs is a double-star; these bounds coincide when the central vertices
of each Gi have identical degrees (Corollary 2.7). A refined argument de-
termines the exact value when each Gi is a star (Theorem 2.8). Finally,
Theorem 2.10 states that R̊Δ(T1, . . . , Ts) ≤

∑s
i=1(Δ(Ti)− 1) + 1 when each

Ti is a tree; this bound holds with equality when each Ti has adjacent vertices
of maximum degree.

2. Results

In the course of a particular game, we often focus attention on special sub-
graphs of the presented graph, usually monochromatic. In such situations,



Multicolor on-line degree Ramsey numbers of trees 93

we must distinguish between the degree of a vertex within the subgraph and
its degree within the full presented graph. We use “degree” to mean “degree
within the given subgraph” and “global degree” to mean “degree within the
full presented graph”.

In giving strategies for Builder to prove upper bounds, we may assume
that Painter behaves “consistently”. A consistent Painter chooses a color for
edge uv based solely on the edge-colored components presently containing u
and v. It was shown in [3] that for any graph G and any monotone additive
graph family H, Builder wins (G;H) if and only if Builder wins against ev-
ery consistent Painter. Thus consistent Painters are no weaker than general
Painters, but this formal restriction on the Painter simplifies what needs
to be said for a Builder strategy. If Builder repeats the same sequence of
moves on disjoint sets of vertices, then a consistent Painter produces the
same coloring every time. This observation yields the lemma below, which
we apply throughout the paper without explicit citation.

Lemma 2.1. If Builder can force an edge-colored graph G against a consis-
tent Painter, then Builder can force arbitrarily many copies of G.

We often apply Lemma 2.1 when presenting strategies for Builder. Builder
maintains “partial” copies of the target graphs in each color, uses Lemma 2.1
to produce many of these partial copies, and presents edges joining them in
such a way that Painter must either augment one of the copies or directly
produce a monochromatic copy of some target graph. Eventually, one of the
partial copies grows to include the full target graph, and Builder wins.

Our first result is a general lower bound on R̊Δ(G; s). It uses a Painter
strategy that generalizes the “greedy Sk-Painter” from [3], who colors an
edge red when the resulting red subgraph would belong to Sk and blue
otherwise.

Proposition 2.2. For graphs G1, . . . , Gs,

R̊Δ(G1, . . . , Gs) ≥ (R̊Δ(G1, . . . , Gs−1)− 1) + max
uv∈E(Gs)

min{dGs
(u), dGs

(v)}.

Proof. Let r = R̊Δ(G1, . . . , Gs−1) − 1 and d = maxuv∈E(Gs)min{dGs
(u),

dGs
(v)}; we provide a strategy for Painter to win on Sr+d−1. Painter col-

ors edges using blue and s − 1 shades of red. Painter behaves similarly
to a greedy Sr-Painter. However, whenever Painter colors an edge red, he
chooses the particular shade of red according to some winning strategy for
(G1, . . . , Gs−1;Sr). In this way Painter avoids producing a copy of any Gi in
the corresponding shade of red; it suffices to show that also Painter produces
no blue Gs.
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Suppose that Painter has produced a blue copy H of Gs. Choose an edge

uv in H maximizing min{dH(u), dH(v)}. Since Painter colored uv blue, one

of its endpoints, say u, lies on r red edges in the presented graph. Since u

also lies on at least dH(u) blue edges, it has global degree at least r + d, a

contradiction.

As an application of Proposition 2.2, we determine R̊Δ(Pn1
, . . . , Pns

); the

proof of this result introduces techniques used in the proof of Theorem 2.10.

Proposition 2.3. R̊Δ(Pn1
, . . . , Pns

) = s + 1 when ni ≥ 4 for all i in

{1, . . . , s}.

Proof. The lower bound follows from Proposition 2.2 and the observations

that R̊Δ(Pn; 1) = 2 and that the maximum over uv ∈ E(Pn) of min{dPn
(u),

dPn
(v)} is 2 when n ≥ 4.

For the upper bound, it suffices to prove that R̊Δ(Pn; s) = s + 1 when

n ≥ 4, where n = max{n1, . . . , ns}. We provide a strategy for Builder by

induction on s; note again that R̊Δ(Pn; 1) = 2. Suppose that Builder can

force Pn on Ss when Painter has s− 1 colors available. Consider an s-color

game on Ss+1. A consistent Painter uses the same color on all isolated edges;

without loss of generality, call this color blue. Let the other s− 1 colors be

shades of red. It suffices to show that for any k, Builder can force either a

Pn in some shade of red or a blue P2k in which each endpoint has global

degree 1.

We prove this claim by induction on k. The case k = 1 is immediate, since

Painter colors isolated edges blue. For the induction step, Builder first forces

many blue copies of P2k−1 whose endpoints have global degree 1. Builder

next selects one endpoint from each of these blue paths. On these endpoints,

Builder plays a winning strategy for the (s−1)-color game (Pn;Ss), provided

by the overall induction hypothesis (the global degree remains at most s+1).

If Painter uses only the s− 1 shades of red, then Pn arises in some shade of

red. Otherwise, Painter colors some edge blue; this connects two blue paths,

yielding a blue P2k whose endpoints still have global degree 1.

We next consider stars and double-stars.

Definition 2.4. A double-star is a tree with diameter 3. Such a tree has

two central vertices; we denote by Sa,b the double-star with central vertices

of degrees a and b.
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Theorem 2.5. If ai ≤ bi for all i in {1, . . . , s}, then

b1 − 1 +

s∑
i=2

(ai − 1) + 1 ≤ R̊Δ(Sa1,b1 , . . . , Sas,bs)

≤ min
X⊆{1,...,s}

fX(a1, . . . , as, b1, . . . , bs),

where

fX(a1, . . . , as, b1, . . . , bs)

= 1 +max

{ ∑
i∈X

(bi − 1) +
∑
j �∈X

(aj − 1),
∑
i∈X

(ai − 1) +
∑
j �∈X

(bj − 1)

}
.

Proof. The lower bound follows by induction on s, using Proposition 2.2 and
the observation that R̊Δ(Sa,b; 1) = b when a ≤ b.

To establish the upper bound, we provide a strategy for Builder. Builder
first partitions the set of available colors into some sets X and Y . Builder
aims to make two special vertices u and v the central vertices of a monochro-
matic double-star. Let the quota of u in color i be bi − 1 if i ∈ X and ai − 1
if i ∈ Y . For v, use the reverse values: the quota of v in color i is ai − 1 if
i ∈ X and bi − 1 if i ∈ Y . Whenever u or v reaches its quota of incident
edges in a color c, call that vertex saturated in color c. Note that coloring
uv with a color in which both u and v are saturated produces the desired
monochromatic double-star in that color.

Starting with u and v as isolated vertices, Builder repeats the following
process for the remainder of the game. Let Gu and Gv denote the cur-
rent components of the presented graph that contain u and v, respectively.
Builder presents edge uv; let c be the color Painter uses on it. If u was not
already saturated in c, then Builder adds uv and all of Gv to Gu, creates
new copies of v and Gv, and repeats. If u was saturated in c but v was not,
then Builder adds uv and all of Gu to Gv, creates new copies of u and Gu,
and repeats. Finally, if both u and v were already saturated in c, then u
and v are now the central vertices of a monochromatic Sac,bc in color c, and
Builder has won.

Whenever Gu or Gv is enlarged, the special vertex receives another in-
cident edge, so always u or v has maximum global degree after Gu and Gv

are “recreated”. When Builder is ready to present the edge uv, the degree
of u is at most

∑
i∈X(bi− 1)+

∑
j /∈X(aj − 1), and the degree of v is at most∑

i∈X(ai − 1) +
∑

j /∈X(bj − 1). Thus the maximum degree used is at most
one more than the maximum of these two quantities. Optimizing over the
choice of X yields the stated bound.
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In the diagonal case, the minimum over X in the upper bound in Theo-
rem 2.5 occurs whenever |X| = �s/2�. This yields a much simpler formula:

Corollary 2.6. If a≤ b, then R̊Δ(Sa,b; s)≤ �s/2� (b−1)+ �s/2	 (a−1)+ 1.

When ai = bi for all i, the upper and lower bounds in Theorem 2.5
coincide:

Corollary 2.7. For “symmmetric” double stars, R̊Δ(Sb1,b1 , . . . , Sbs,bs) =∑s
i=1(bi − 1) + 1. In particular, R̊Δ(Sb,b; s) = s(b− 1) + 1.

When each double-star is in fact a star, the upper bound in Theorem 2.5
is the correct value. The answer is obtained by splitting the sum of the sizes
of the stars as equally as possible and using the larger half in such a split.

Theorem 2.8. R̊Δ(K1,k1
, . . . ,K1,ks

) = 1+minX⊆{1,...,s}max
{∑

i∈X(ki−1),∑
i/∈X(ki − 1)

}
. In particular, R̊Δ(K1,k; s) =

⌈
s
2

⌉
(k − 1) + 1.

Proof. The upper bound follows from Theorem 2.5.

For the lower bound, we provide a strategy for Painter to win on Sd−1,
where d is the claimed bound. Call a vertex saturated in color i when it lies
on ki−1 edges of color i. Painter’s strategy is straightforward: when Builder
presents an edge, Painter colors it with any color in which neither endpoint
is already saturated.

To show that this is always possible, consider the possibility of Builder
playing an edge uv. If no color is available for use on uv, then for each i,
either u or v is saturated in color i. Let X be the set of colors in which u is
saturated; u has degree at least

∑
i∈X(ki− 1). Likewise, since v is saturated

in the remaining colors, v has degree at least
∑

i/∈X(ki − 1). Thus u or v
already has degree at least d− 1, and Builder cannot present uv.

The lower bound in Theorem 2.8 yields a general lower bound:

Corollary 2.9. R̊Δ(G1, . . . , Gs) ≥ 1 + minX⊆{1,...,s}max
{ ∑

i∈X(ki − 1),∑
i/∈X(ki − 1)

}
, where ki = Δ(Gi) for 1 ≤ i ≤ s.

Proof. The on-line degree Ramsey number is monotone: if G′
i ⊆ Gi for 1 ≤

i ≤ s, then R̊Δ(G1, . . . , Gs) ≥ R̊Δ(G
′
1, . . . , G

′
s). Consequently, R̊Δ(G1, . . . ,

Gs) ≥ R̊Δ(K1,k1
, . . . ,K1,ks

), and Theorem 2.8 applies.

We next turn to general trees. Corollary 2.7 shows that R̊Δ(Sb,b; s) =

s(b−1)+1; in fact, this is the maximum value of R̊Δ(T ; s) over all trees with
maximum degree b. This was shown in [3] for s = 2; we prove the general
result by a different approach.
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Theorem 2.10. If T1, . . . , Ts are trees, then R̊Δ(T1, . . . , Ts) ≤
∑s

i=1(Δ(Ti)−
1)+1. Moreover, the bound holds with equality whenever all Ti have adjacent
vertices of maximum degree.

Proof. The sharpness follows from Corollary 2.7 and the monotonicity of R̊Δ.

For the upper bound, we provide a strategy for Builder. To simplify
notation, let d be the claimed bound, let ki = Δ(Ti), and let hi = |V (Ti)|. If
each ki is 1, then Builder wins by presenting a single edge. We proceed by
induction on

∑
i ki. If any ki is 1, then Ti is a single edge, so color i may be

ignored: if Painter ever uses that color, then Builder wins. Thus Builder wins
by following a strategy to win (T1, . . . , Ti−1, Ti+1, . . . , Ts;Sd), the existence
of which is guaranteed by the induction hypothesis.

Hence we may assume ki ≥ 2 for each i. Let T k,h denote the rooted tree
in which all non-leaves have degree k and all leaves lie at distance h from
the root. Since Ti ⊆ T ki,hi for each i, by monotonicity it suffices to show
that R̊Δ(T

k1,h1 , . . . , T ks,hs) ≤
∑

i(ki − 1) + 1.

Builder aims to grow a tree containing T ki,hi in color i, for some i. More
generally, let a (k, h)-subtree be a rooted tree with the property that all
non-leaves within distance h of the root have degree k in the tree and all
leaves within distance h of the root have global degree 1. Builder can force
a (ki, hi)-subtree in color i for some i by playing a star with up to d edges.
The Pigeonhole Principle yields a star with ki edges in color i for some i by
the time this is finished, and such a star is a (ki, hi)-subtree.

It now suffices to show that if Builder can force a (ki, hi)-subtree T in
color i, then he can either win or force a (ki, hi)-subtree T ′ in color i that
has more vertices than T within distance hi of the root. This completes the
proof because the number of vertices within distance hi of the root of a
(ki, hi)-subtree is maximized when the tree contains T ki,hi .

Without loss of generality, we may assume that the monochromatic star
produced by Painter when Builder starts the process with an isolated star
has color 1, which we call red.

Let v be the root of the current red (k1, h1)-subtree, T . If T has no leaves
with distance less than h1 from v, then T contains T k1,h1 , and Builder wins.
Otherwise, let x be some such leaf. Builder forces many copies of T (Builder
plays against a consistent Painter). We consider two cases.

Case 1: k1 ≥ 3. By the induction hypothesis, Builder has a strategy to
win the game (T k1−1,h1 , T k2,h2 , . . . , T ks,hs ;Sd−1); Builder plays this strategy
on the copies of x within the copies of T . Since each copy of x had global
degree 1 when its copy of T was created, the presented graph remains within
Sd. Builder either wins the original game (if the threshold is reached in
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Figure 1: Induction step for Case 1 of Theorem 2.10 (k1 = 3 and h1 = 2).

another color) or forces a red T k1−1,h1 (see Figure 1, where k1 = 3 and
h1 = 2).

In the latter case, let T̂ be the red copy of T k1−1,h1 produced, and let x′

be its root. Let v′ be the copy of v within the copy of T containing x′, and
let T ′ be the maximal red tree rooted at v′ (in Figure 1, all edges drawn
belong to T ′). All non-leaves of T ′ within distance h1 of v′ lie on k1 red
edges: those that were leaves in their copies of T lie on k1−1 red edges from
T̂ and one from T , while all others were non-leaves in their copies of T . Since
leaves of T̂ lie at distance h1 from x′, their distances from v′ exceed h1, so
their degrees in red are unimportant. Every leaf of T ′ within distance h1 of
v′ has global degree 1, because each corresponds to a leaf in its copy of T .
Note that T ′ has more vertices within distance h1 of v′ than T has within
distance h1 of its root, since x′ acquires children in T̂ . Thus T ′ with root v′

is the desired (k1, h1)-subtree.
Case 2: k1 = 2. Builder cannot proceed as before, because T 1,h1 may

not be well-defined. Note that T 2,h1 is a path. Since k1 = 2, in the initial
phase Builder can force many red copies of P3 whose endpoints have global
degree 1. Builder plays a winning strategy for (P2, T

k2,h2 , . . . , T ks,hs ;Sd−1)
on copies of x, where x is a leaf of the current red path that Builder can force
(with endpoints of global degree 1). If Painter uses no red edges, then Builder
wins, by the induction hypothesis. Otherwise, Builder obtains a longer red
path in which both endpoints have global degree 1; he then chooses x to be
one of these endpoints and repeats the process as needed, eventually either
winning or obtaining a red T 2,h1 .

In the diagonal case, the bound reduces to a simpler expression:

Corollary 2.11. If T is a tree, then R̊Δ(T ; s) ≤ s(Δ(T )− 1) + 1.
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The double-star Sb,b shows that Corollary 2.11 is sharp. However, we
do not know whether the bound is sharp for any tree not having adjacent
vertices of maximum degree.

Comparing R̊Δ and RΔ, we remark that RΔ(T )≤ 2s(Δ(T )− 1) for any
tree T [7], and it was shown in [9] that this bound is asymptotically tight.
Thus the maximum value of the on-line degree Ramsey number over the
class of trees is about half that of the “off-line” degree Ramsey number. It
would be interesting to know in general what affects the ratio between the
two parameters.
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