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Two covering polynomials of a finite poset, with
applications to root systems and ad-nilpotent ideals

Dmitri Panyushev

We introduce two polynomials (in q) associated with a finite poset
P that encode some information on the covering relation in P . If P
is a distributive lattice, and hence P is isomorphic to the poset of
dual order ideals in a poset L, then these polynomials coincide and
the coefficient of q equals the number of k-element antichains in L.
In general, these two covering polynomials are different, and we in-
troduce a deviation polynomial of P , which measures the difference
between these two. We then compute all these polynomials in the
case, where P is one of the posets associated with an irreducible
root system. These are 1) the posets of positive roots, 2) the poset
of ad-nilpotent ideals, and 3) the poset of Abelian ideals.
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1. Introduction

In this note, we associate two polynomials with a finite poset P , study
their properties, and determine these polynomials for some interesting posets
related to root systems. Specifically, we mean the poset of positive roots,
poset of ad-nilpotent ideals, and poset of abelian ideals, see definitions below.

Consider two statistics κ and ι on P . By definition, κ(x), x ∈ P , is the
number of elements of P that are covered by x, and ι(x) is the number of
elements that cover x. The generating function associated with κ (resp. ι)
is called the upper (resp. lower) covering polynomial of P . That is, K̂P(q) =∑

x∈P qκ(x) and ǨP(q) =
∑

x∈P qι(x). The upper covering polynomial, K̂P ,
has briefly been considered, without the adjective ‘upper’, in [16, Section 5].
It immediately follows from the definition that K̂P(1) = ǨP(1) and K̂′

P(1) =
Ǩ′

P(1). The last equality stems from the observation that both values equal

the number of edges in the Hasse diagram of P . Consequently, K̂P(q) −
ǨP(q) = (q−1)2DP(q) for some polynomialDP , which is called the deviation
polynomial of P .
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In Section 2, we begin with some simple observations on these poly-
nomials and then prove that K̂P ≡ ǨP if P is a distributive lattice (see
Theorem 2.2). For a distributive lattice P , the common covering polynomial
is denoted by KP .

Let Δ be an irreducible root system, Δ+ a subset of positive roots, and
Π ⊂ Δ+ the set of simple roots. If Δ is reduced, then g is the corresponding
simple Lie algebra, with fixed Borel subalgebra b corresponding to Δ+. We
determine K̂P , ǨP , and DP in the following cases:

1) P = Δ+, equipped with the standard root order, see Section 3;
2) P is J∗(Δ+) or P = J∗(Δ+ \Π), where J∗(L) stands for the poset of

dual order ideals in L. In the Lie algebra case, J∗(Δ+) is isomorphic to the
poset of ad-nilpotent ideals of b, i.e., b-ideals in u = [b, b], the nilradical of
b; and J∗(Δ+ \Π) is isomorphic to the poset of b-ideals in [u, u]. These two
posets are also denoted by Ad and Ad0, respectively;

3) P = Ab, the subposet of Ad that consists of the abelian ideals of b.
(An abelian ideal of b is a subspace c ⊂ b such that [b, c] ⊂ c and [c, c] = 0.)

Whenever we wish to stress that these (po)sets depend on g, we write Δ(g),
Ad(g), etc.

Let us briefly describe our results. For Δ+, we prove that deg K̂Δ+ =
deg ǨΔ+ � 3 and the coefficients of q3 in K̂Δ+ and ǨΔ+ are equal. This
implies that the deviation polynomial is a constant; namely,DΔ+(q) ≡ rkΔ−
1. This also includes the only non-reduced irreducible root system BCn. We
show that the posets Δ+(BCn), Δ+(Bn+1) \ Π, and Δ+(Cn+1) \ Π are
isomorphic, which allows to reduce many problems on BCn to Bn+1 or
Cn+1.

Since Ad and Ad0 are distributive lattice, we have only two different
covering polynomials for them. The polynomial KAd appeared earlier under
various guises in different theories in [1, 2, 15, 19]. The coefficients of KAd

are the generalised Narayana numbers. A posteriori, it is known that K̂Ad

is palindromic, but no general explanation is available in the context of ad-
nilpotent ideals. Explicit formulae for KAd0

show that this polynomial is not
always palindromic. (Our computation of KAd0(Dn) relies on the conjectural
relationship between the coefficients of KAd0

(q) and the F-triangle intro-
duced by F.Chapoton [7], see Section 4.) However, the ratio K̂′(1)/K̂(1) is
determined by similar rules in both cases. We notice that

K′
Ad(1)

KAd(1)
=

#(Δ+)

h
and

K′
Ad0

(1)

KAd0
(1)

=
#(Δ+ \Π)

h− 1
,

where h is the Coxeter number of Δ. The first equality stems from the fact
that KAd is palindromic, of degree n = rkΔ (although the fact that KAd is
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palindromic is not explained yet). The reason for the validity of the second

one is totally unclear.

The most interesting case is that of abelian ideals. Here the upper and

lower covering polynomials are usually different. The reason is that although

Ab is a meet semilattice, it is a distributive lattice if and only if Δ is of

type Cn or G2. We develop some general theory for computing covering

polynomials, which is based on a bijection between the abelian ideals and

the minuscule elements of the affine Weyl group of Δ. Let I ⊂ Δ+ be an

abelian ideal. Using the minuscule element corresponding to I, we define

the shift vector kI = (k0, k1, . . . , kn), where ki ∈ {−1, 0, 1, 2}, and prove

that κ(I) = #{i | ki = −1} and ι(I) = #{j | kj = 1}. We then de-

scribe a recursive procedure for computing all kI starting from I = ∅. The

procedure basically asserts that if ki = 1, then kI can be replaced with

kI − {the i-th column of the extended Cartan matrix of Δ}, see Section 5

for details.

We also present a method of calculation of ǨAb, which exploits the

canonical mapping of Ab \ {∅} onto the set of long positive roots [14]. For

explicit computations with exceptional root systems, we use the general

equalities K̂Ab(1) = 2n [4, 11] and K̂′
Ab(1) = (n + 1)2n−2 [16]; our calcu-

lations in the classical cases exploit standard matrix presentations of these

Lie algebras and counting certain Ferrers diagrams.

Our computations show that, for many natural posets, the coefficients

of DP are of the same sign. This includes Ab, Δ+, Δ+ ∪ {0}, Δ+ \ Π. It

is likely that there could exist some general conditions on P guaranteeing

that DP has the coefficients of the same sign. In Section 7, we propose a

condition of such sort.

2. Definition and basic properties

Let (P ,�) be a finite poset. Write H(P) for the Hasse diagram of P and

E(P) for the set of edges of H(P). We regard H(P) as a digraph; if x covers

y (x, y ∈ P), then the edge (x, y) is depicted as y → x and we say that (x, y)

originates in y and terminates in x.

For any x ∈ P , let κ(x) be the number of y ∈ P such that y is covered by

x, and ι(x) the number of y ∈ P such that y covers x. In other words, κ(x)

(resp. ι(x)) is the number of edges in E(P) that terminates (resp. originates)

in x. We define two polynomials that encode some properties of the covering

relation in P .
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Definition 1.

(i) The upper covering polynomial of P is K̂P(q) =
∑

x∈P qκ(x);

(ii) The lower covering polynomial of P is ǨP(q) =
∑

x∈P qι(x);

It follows that K̂P(0) (resp. ǨP(0)) is the number of the minimal (resp.
maximal) elements of P . In general, these polynomials are different; they
may even have different degrees. However, one readily deduces from the
definition that

K̂P(q)|q=1 = ǨP(q)|q=1 = #Pand
d

dq
K̂P(q)|q=1 =

d

dq
ǨP(q)|q=1 = #E(P).

Hence K̂P(q)−ǨP(q) = (q−1)2DP(q) for some polynomial DP . We will say
that DP is the deviation polynomial of P . The following is straightforward.

Lemma 2.1. We have the following properties

(i) If P = P1 + P2, then K̂P = K̂P1
+ K̂P2

, and likewise for Ǩ and D;
(ii) If P = P1 × P2, then K̂P = K̂P1

K̂P2
, ǨP = ǨP1

ǨP2
, and DP =

K̂P1
DP2

+ ǨP2
DP1

= ǨP1
DP2

+ K̂P2
DP1

.

We are going to investigate how properties of P are reflected in
K̂P , ǨP ,DP .

Theorem 2.2. Let P be a distributive lattice. Then K̂P = ǨP . More pre-
cisely, if P � J(L), then the coefficient of qk equals the number of k-element
antichains in L.
Proof. By Birkhoff’s theorem for finite distributive lattices, P is isomorphic
to the poset of order ideals of a unique poset L, i.e., P � J(L), see e.g.
[22, Theorem3.4.1]. If I is an order ideal of L, then the set of maximal
elements of I, max(I), is an antichain of L. And the same is true for the set
of minimal elements of L \ I, min(L \ I). It easily follows from Definiton 1
that regarding I as an element of P we have ι(I) = #max(I) and κ(I) =
#min(L \ I). Conversely, each antichain in L occurs as both max(I) and
min(L \ J) for suitable order ideals I, J . This means that both covering
polynomials essentially count all the antichains of L with respect to their
cardinality.

Remark. More generally, the equality K̂P = ǨP holds if P is a modular
lattice [8]. This result of Dilworth is also discussed in [22, Ex. 3.38.5].

Below, it will be more convenient for us to think of a distributive lattice
as the poset of dual order (= upper) ideals. The distributive lattice of upper
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ideals of a poset L is denoted by J∗(L). Then L is being restored as the set
of meet-irreducibles in J∗(L). If I ∈ J∗(L), then κ(I) = #min(I) and ι(I) =
#max(L \ I). Note also that the posets J∗(L) and J(Lop) are canonically
isomorphic.

The following is clear:

Proposition 2.3. If P admits an order-reversing bijection, then K̂P = ǨP .

Example 2.4. 1o. Let (W,S) be a finite Coxeter group. ConsiderW as poset
under the Bruhat-Chevalley ordering ‘�’. It is easily seen that W is not a
lattice. But the mapping w �→ ww0, where w0 ∈ W is the longest element,
yields an order-reversing bijection of (W,�). Hence K̂W (q) = ǨW (q). More
generally, such an equality also holds for the poset W/WJ , where J ⊂ S and
WJ is the corresponding parabolic subgroup of W .

2o. Let P be an arbitrary poset and Pop the opposite poset. Then K̂P =
ǨPop and ǨP = K̂Pop . Hence DP = −DPop . It then follows from Lemma 2.1
that DP×Pop = 0. One may also notice that P × Pop admits an order-
reversing involution.

Example 2.5. As we have shown, if P = J∗(L), then DP = 0. Let 0̂ and 1̂
denote the maximal and minimal element of P , respectively. Set P ′ = P\{0̂}
and P ′′ = P \{1̂}. It is easy to realise the effect of these procedures for both
covering polynomials.

• Let m be the number of maximal elements of L. Then K̂P ′(q) =
KP(q)−mq+m−1 and ǨP ′(q) = KP(q)−qm. Hence K̂P ′(q)−ǨP ′(q) =
qm−mq+(m−1) and DP ′(q) = qm−2+2qm−3+· · ·+(m−2)q+(m−1).
In particular, DP ′ ≡ 0 if and only if m = 1. This is not sur-
prising, because if L has a unique maximal element, say a1, then
P \ {0̂} � J∗(L \ {a1}).

• Since J∗(L) \ {1̂} � J(Lop) \ {0̂}, the formulae for P ′′ are similar.
Only the roles of K̂ and Ǩ are reversed, and in place of m we need
the number, say l, of minimal elements of L. Therefore, DP ′′(q) =
−

(
ql−2 + 2ql−3 + · · ·+ (l − 2)q + (l − 1)

)
.

From the definition of DP , it follows that DP(1) =
1
2(K̂′′

P(1) − Ǩ′′
P(1)).

Therefore

DP(1) =
#{(x, y1, y2) ∈ P3 | y1 → x, y2 → x}

2

− #{(x1, x2, y) ∈ P3 | y → x1, y → x2}
2

,
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where it is assumed that y1 	= y2 and x1 	= x2. In other words,

2DP(1) = #

{
�

� �������

}
−#

{
�

� �

��� ���

}
,

the difference between the number of two types of configurations in H(P).
These configurations are said to be ∧-triples and ∨-triples, respectively. Us-
ing this interpretation, one obtains the following result.

Proposition 2.6. Suppose P̃ is a distributive lattice and P ⊂ P̃ a subposet
such that if I ∈ P and I ′ � I (I ′ ∈ P̃), then I ′ ∈ P. Then DP(1) � 0.
Furthermore, DP(1) = 0 if and only if P is a distributive lattice if and only
if DP ≡ 0.

Proof. Here each ∧-triple can be completed to a diamond inside P , i.e., the
configuration of the form ‘♦’. This provides an injection of the set of ∧-
triples to the set of ∨-triples. If this is a bijection, i.e., each ∨-triple can be
included in a diamond, then P has a unique maximal element. Hence P is
a distributive lattice and DP = 0.

In the following sections, we consider the polynomials K̂P , ǨP , and DP
for the posets described in the Introduction.

3. Covering polynomials for the root systems

Our main reference for root systems and their properties is [3]. Let Δ be
a root system in an n-dimensional real euclidean vector space V . Choose a
subsystem of positive roots Δ+ with the corresponding set of simple roots
Π = {α1, . . . , αn}. Write θ for the highest root in Δ+ and h for the Coxeter
number. The standard root order ‘�’ in Δ+ is determined by the condition
that γ covers μ if and only if γ−μ ∈ Π. Then θ is the unique maximal element
of Δ+. Our goal is to compute both covering polynomials for (Δ+,�). In
view of Lemma 2.1, it suffices to consider the irreducible root systems.

If Δ is reduced and irreducible, then g is the corresponding simple Lie
algebra. If θ =

∑n
i=1miαi, then in this case one also has

∑
imi = h− 1 [3,

Ch.VI § 1.11, Prop. 31].
In what follows, [qm]F stands for the coefficient of qm in the polynomial

F(q).

Theorem 3.1. Let Δ be an irreducible root system of rank n. Then

(i) deg K̂Δ+ � 3 and deg ǨΔ+ � 3;
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(ii) [q3]K̂Δ+ = [q3]ǨΔ+ ;
(iii) if Δ is reduced, then [q]K̂Δ+ = h− 1− n;
(iv) if Δ is simply-laced, then [q]K̂Δ+ = [q3]K̂Δ+ ;
(v) DΔ+(q) ≡ n− 1.

Proof. We provide a uniform proof for parts (i) and (ii) only in the simply-
laced case. The remaining cases (including the non-reduced root system
BCn, see below) can be handled in a case-by-case fashion.

(i) For K̂Δ+ , one has to show that there are at most 3 simple roots that
can be subtracted from a positive root. Suppose γ ∈ Δ+ and γ−αi ∈ Δ+ for
αi ∈ Π and i = 1, 2, . . . , k. If (α1, α2) 	= 0, then these two adjacent simple
roots generate the root system of type A2. Furthermore, γ is the highest
weight in the adjointA2-module inside g. Therefore the weight γ−α1−α2 has
multiplicity two. This is only possible if γ = α1 + α2 and hence k = 2. This
also proves that if k � 3, then all simple roots that can be subtracted from γ
are pairwise orthogonal. In this situation, it was shown in [13, Corollary 3.3]
that k � 3.

The argument for ǨΔ+ is similar.
(ii) Suppose that κ(γ) = 3, and let α1, α2, α3 be the corresponding simple

roots. As is shown in part (i), these roots are pairwise orthogonal. Therefore
γ − α1 − α2 − α3 ∈ Δ+ and the mapping γ �→ (γ − α1 − α2 − α3) sets up a
bijection between {γ ∈ Δ+ | κ(γ) = 3} and {γ ∈ Δ+ | ι(γ) = 3}.

(iii) If γ =
∑

j ajαj ∈ Δ+, then [γ : αj ] := aj is called the αj-height of γ.

Suppose that κ(γ) = 1, i.e., there is a unique αi ∈ Π such that γ−αi ∈ Δ+.
Let li denote the semisimple subalgebra of g whose set of simple roots if
Π \ {αi}. All the roots with a fixed αi-height form the set of weights of
a simple li-submodule inside g [10, 2.1]. Therefore, for each value � 2 of
αi-height, there is a unique root γ with the property that κ(γ) = 1. Hence,
the number of positive roots γ such that αi is the only simple root that
can be subtracted from γ equals mi − 1. Thus, #{γ ∈ Δ+ | κ(γ) = 1} =∑n

i=1(mi − 1) = h− 1− n.

(iv) As is well known, the number of positive roots is K̂Δ+(1) = nh/2.
By [16, Theorem1.1], the number of edges of H(Δ+) equals n(h− 2) in the
simply laced case. That is, K̂′

Δ+(1) = n(h− 2). Writing K̂Δ+(q) = n+ aq +
bq2 + cq3 and using the above two equalities, we obtain a = c.

(v) By parts (i) and (ii), deg(K̂Δ+ − ǨΔ+) � 2. It is also clear that
[q0](K̂Δ+ −ǨΔ+) = n−1. Since (q−1)2 divides this polynomial, the quotient
must be n− 1.

Formulae of the theorem, together with known values K̂Δ+(1) and
K̂′

Δ+(1), allow us to write down a closed formula for K̂Δ+ in the simply-
laced case:
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Corollary 3.2. In the A-D-E case, we have

K̂Δ+(q) = 1 + (h− 1− n)q +

(
nh

2
+ n− 2h+ 2

)
q2 + (h− 1− n)q3.

It is not hard to compute covering polynomials for the posets Δ+ in the

remaining cases, see Table 1.

Table 1: The covering polynomials for the root systems

Δ K̂Δ+(q) ǨΔ+(q)

An n+
(
n
2

)
q2 1 + (2n− 2)q +

(
n−1
2

)
q2

Bn,Cn n+ (n− 1)q + (n− 1)2q2 1 + (3n− 3)q

+ (n− 1)(n− 2)q2

BCn n+ nq + n(n− 1)q2 1 + (3n− 2)q + (n− 1)2q2

Dn n+ (n− 3)q + (
(
n
2

)
+

(
n−3
2

)
)q2 1 + (3n− 5)q + (

(
n−1
2

)
+

(
n−3
2

)
)q2

+ (n− 3)q3 + (n− 3)q3

E6 6 + 5q + 20q2 + 5q3 1 + 15q + 15q2 + 5q3

E7 7 + 10q + 36q2 + 10q3 1 + 22q + 30q2 + 10q3

E8 8 + 21q + 70q2 + 21q3 1 + 35q + 63q2 + 21q3

F4 4 + 7q + 12q2 + q3 1 + 13q + 9q2 + q3

G2 2 + 3q + q2 1 + 5q

Let ε1, . . . , εn be an orthonormal basis for V . Recall that

Δ(Bn) = {±εi ± εj (1 � i < j � n), ±εi (1 � i � n)},
Δ(Cn) = {±εi ± εj (1 � i < j � n), ±2εi (1 � i � n)}

and the unique non-reduced irreducible root system BCn is the union of

these two, i.e.,

Δ(BCn) = {±εi ± εj (1 � i < j � n), ±εi, ±2εi (1 � i � n)}.

The following observation reduces many questions about BCn to Bn+1 or

Cn+1.

Lemma 3.3. The poset of positive roots for BCn is isomorphic to the sub-

poset of non-simple positive roots for Bn+1 or Cn+1. The posets Δ+(Bn+1)

and Δ+(Cn+1) are isomorphic.
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Proof. An order-preserving bijection between Δ+(BCn) and either
Δ+(Bn+1) \Π or Δ+(Cn+1) \Π is given as follows:

Cn+1 BCn Bn+1

εi − εj+1 εi − εj εi − εj+1 (1 � i < j � n)
εi + εj εi + εj εi + εj+1 (1 � i < j � n)

εi + εn+1 εi εi (1 � i � n)
2εi 2εi εi + εi+1 (1 � i � n)

It is easily seen that this extends to an isomorphism between Δ+(Bn+1) and
Δ+(Cn+1).

Example 3.4. Consider two modifications of Δ+.
1. Replace Δ+ with Δ̃+ = Δ+ ∪ {0}, where {0} is regarded as the

unique minimal element in this new poset. Hence H(Δ̃+) gains n new edges
connecting {0} with the simple roots. Therefore

K̂
˜Δ+(q) = K̂Δ+(q) + n(q − 1) + 1,

Ǩ
˜Δ+(q) = ǨΔ+(q) + qn.

It follows that

D
˜Δ+(q) = DΔ+(q)− qn − nq + n− 1

(q − 1)2
= −(qn−2 + 2qn−3 + · · ·+ (n− 2)q).

2. Assume that n � 2 and consider Δ+ \ Π as subposet of Δ+. Then
the minimal elements of Δ+ \ Π are the roots of height 2. Here we obtain
K̂Δ+\Π(q) = K̂Δ+(q) − (n − 1)q2 − 1. But formulae for Ǩ depends on the
presence of a branching node in the Dynkin diagram, i.e., on the presence
of a simple root which is covered by three roots. More precisely,

ǨΔ+\Π(q)

= ǨΔ+(q)−
{
(n− 2)q2+2q, if Δ+ does not have a branching node;
q3+(n− 4)q2+3q, if Δ+ has a branching node.

Then

DΔ+\Π(q) =

{
n− 2, if Δ+ does not have a branching node;
q + n− 2, if Δ+ has a branching node.

Thus, the deviation polynomial of Δ+,Δ+∪{0}, and Δ+ \Π always has the
nonzero coefficients of the same sign.
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4. Covering polynomials for the poset of ad-nilpotent ideals

Let g be the simple complex Lie algebra corresponding to Δ (if Δ is reduced).
Fix a triangular decomposition g = u⊕t⊕u−, where t is a Cartan subalgebra
and the set of t-roots in u is Δ+. Then b = t⊕u is the fixed Borel subalgebra.

An ad-nilpotent ideal of b is a subspace c ⊂ u such that [b, c] ⊂ c. Then
c is a sum of certain root spaces in u, c =

⊕
γ∈I gγ . Here I is necessarily an

upper ideal of Δ+, and this shows that the poset of ad-nilpotent ideals of b
is isomorphic to the poset of upper ideals of Δ+. It will be denoted by Ad

or Ad(g). If I ∈ Ad is considered as a subset of Δ+, then κ(I) = #min(I)
and ι(I) = #max(Δ+ \ I). The elements of min(I) are called generators of
I. For γ ∈ max(Δ+ \ I), the passage I �→ I ∪{γ} is called an extension of I.
Thus, κ(I) (resp. ι(I)) is the number of generators (resp. extensions) of I.

Recall that Ad � J∗(Δ+) and KAd is the covering polynomial of Ad.
By Theorem 2.2, [qk]KAd equals the number of k-element antichains in Δ+.
Here degKAd = rkΔ = n. Explicit formulae for KAd for all simple Lie
algebras g can be found e.g. in [15, Section 6]. The polynomials KAd occur
in various contexts, see [1, 2, 15, 19]. There is a uniform expression (and
proof) for the number of all ad-nilpotent ideals, i.e., KAd(1), see [5]. Since
KAd is palindromic, K′

Ad(1) =
n
2KAd(1), which yields the expression for the

number of edges in H(Ad), see [16]. The coefficients of KAd are of great
interest; for instance, for Δ of type An, one obtains the classical Narayana
numbers. But no uniform approach to describing the coefficients of KAd is
known. For future use, we record the relation between the number of vertices
and edges in H(Ad):

(4.1)
#E(Ad)
#Ad

=
K′

Ad(1)

KAd(1)
=

n

2
=

#(Δ+)

h
.

There is no Lie algebra associated with the root system BCn, but one can
still consider the poset of upper ideals in Δ+(BCn), denoted by Ad(BCn).
By Lemma 3.3, #(Ad(BCn)) equals to the number of upper ideals in
Δ+(Bn+1) \Π. The latter is known to be equal to

(
2n+1
n

)
[21].

Proposition 4.1. The covering polynomial of Ad(BCn) is
∑
k�0

(
n
k

)(
n+1
k

)
qk.

Proof. The poset Δ+(BCn) is isomorphic to the trapezoidal poset T (n, n+
1) considered by Stembridge [23]. Therefore, the coefficient of qk in the
covering polynomial of Ad(BCn) equals the number of k-element antichains
in T (n, n + 1). By [23, Theorem 5.4], the latter is the same as the number
of k-element antichains in the rectangular poset R(n, n+1). It is easily seen
that the number of k-element antichains in R(n, n+ 1) is

(
n
k

)(
n+1
k

)
.
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Unlike the covering polynomial for the poset of upper ideals in a reduced

root system, this polynomial is not palindromic.

Corollary 4.2. The number of edges of H(Ad(BCn)) is equal to n
(
2n
n

)
=

(n+ 1)
(

2n
n+1

)
.

Proof.

d

dq

(∑
k�0

(
n

k

)(
n+ 1

k

)
qk

)∣∣∣∣
q=1

=
∑
k�0

k

(
n

k

)(
n+ 1

k

)
= (n+ 1)

∑
k�0

(
n

k − 1

)(
n

k

)
= (n+ 1)

(
2n

n+ 1

)
.

The poset Ad(BCn) can be regarded as a particular case of the following

series of examples. An ad-nilpotent ideal c is said to be strictly positive, if

c ⊂ [u, u]. The combinatorial counterpart is that an upper ideal I ⊂ Δ+ is

strictly positive, if I ∩Π = ∅. The corresponding sub-poset of Ad is denoted

by Ad0 or Ad0(g). Clearly, Ad0 � J∗(Δ+ \Π) is a distributive lattice.

By Lemma 3.3, Ad(BCn) � Ad0(Bn+1) � Ad0(Cn+1). This prompts

a natural question about Ad0(g) for the other root systems (simple Lie al-

gebras). A general formula for #Ad0(g), i.e., for KAd0(g)(1), is found by

Sommers [21]. In our setting, we are interested in the covering polynomial

KAd0(g). The answer for Ad0(Bn+1) and Ad0(Cn+1) is given in Proposi-

tion 4.1. The case of g = sln+1 is easy, because Δ+(An) \ Π � Δ+(An−1)

and hence KAd0(An) = KAd(An−1). The exceptional root systems can be han-

dled directly. For Dn, the answer is not easy to obtain.

Conjecturally, KAd0
can be expressed via Chapoton’s F-triangle as fol-

lows. Let Ck,l be the set of cones in the cluster complex of Δ spanned by k

positive roots and l negative simple roots, and fk,l = #(Ck,l). Here fk,l = 0

if k + l > n. Define the F-triangle by its generating function

F(Δ) = F(x, y) =
∑
k,l�0

fk,lx
kyl.

We refer to [7] for relevant definitions and other background. Then we con-

jecture that

KAd0
(q) =

∑
k�0

fk,0 q
k(1− q)n−k = (1− q)nF

(
q

1− q
, 0

)
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or

KAd0
(q) =

∑
k,l�0

fk,l(−1)l(q − 1)n−k = (q − 1)nF

(
1

q − 1
,−1

)
.

This gives the correct formula for KAd0
(q) whenever we can verify it. (Ex-

plicit formulae for the F-triangle can be found in [6] or [12].) We also no-

tice that the coefficients of KAd0
(q) give the “very positive H-vector” in

Chapoton’s terminology in [6]. For Dn, this yields the following conjectural

expression:

[qk]KAd0(Dn) =

((
n− 1

k

))2

+
k − 2

n− 1

(
n− 1

k

)(
n− 1

k − 1

)
.

The information for the exceptional Lie algebras is gathered in Table 2.

Table 2: The covering polynomials for Ad0(g), g being exceptional

Δ KAd0
(q)

E6 1 + 30q + 135q2 + 175q3 + 70q4 + 7q5

E7 1 + 56q + 420q2 + 952q3 + 770q4 + 216q5 + 16q6

E8 1 + 112q + 1323q2 + 4774q3 + 6622q4 + 3696q5 + 770q6 + 44q7

F4 1 + 20q + 35q2 + 10q3

G2 1 + 4q

Using these data and above information for the classical series, we obtain:

(4.2)
#E(Ad0)
#(Ad0)

=
K′

Ad0
(1)

KAd0
(1)

=
n

2
· h− 2

h− 1
=

#(Δ+ \Π)

h− 1
.

This equality has a striking similarity with (4.1), and it would be interesting

to find a conceptual explanation for it. More precisely, one can suggest a

general pattern behind (4.1) and (4.2). Let L be a graded poset such that the

maximal length of chains in L is r−1 (i.e., such a chain contains r elements).

These two equalities are manifestations of the following phenomenon:

For some “good” graded posets L, one has

#E(J∗(L))
#J∗(L) =

#L
r + 1

.

Besides Δ+ and Δ+ \ Π, the weight posets of some (finite-dimensional)

representations of g considered in [17] also have this property.
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5. Covering polynomials for the poset of abelian ideals

There is an interesting subposet of Ad, where the two covering polynomials
are different. An ad-nilpotent ideal c ⊂ b is abelian if [c, c] = 0. The combi-
natorial counterpart is that an upper ideal I ⊂ Δ+ is said to be abelian, if
γ′ + γ′′ 	∈ Δ+ for each pair γ′, γ′′ ∈ I. Let Ab = Ab(g) be the subposet of
Ad consisting of all abelian ideals. Clearly Ab is a graded meet-semilattice.
It follows that Ab is a (distributive) lattice if and only if there is a unique
maximal abelian ideal, which happens only for Cn and G2. In all other cases
the upper and lower covering polynomials are different.

Our next results rely on the relationship, due to D.Peterson, between
the abelian ideals and the so-called minuscule elements of the affine Weyl
group of g. Recall the necessary setup.

We have the real vector space V = ⊕n
i=1Rαi and ( , ) a W -invariant inner

product on V .
Q = ⊕n

i=1Zαi ⊂ V is the root lattice;
Q+ = {

∑n
i=1miαi | mi = 0, 1, 2, . . .} is the monoid generated by the

positive roots.
As usual, μ∨ = 2μ/(μ, μ) is the coroot for μ ∈ Δ and Q∨ = ⊕n

i=1Zα
∨
i is

the coroot lattice.

Letting V̂ = V ⊕ Rδ ⊕ Rλ, we extend the inner product ( , ) on V̂ so that
(δ, V ) = (λ, V ) = (δ, δ) = (λ, λ) = 0 and (δ, λ) = 1. Then

Δ̂ = {Δ+ kδ | k ∈ Z} is the set of affine (real) roots;

Δ̂+ = Δ+ ∪ {Δ+ kδ | k � 1} is the set of positive affine roots;

Π̂ = Π ∪ {α0} is the corresponding set of affine simple roots.

Here α0 = δ − θ. For αi (0 � i � n), let si denote the corresponding
reflection in GL(V̂ ). That is, si(x) = x− (x, αi)α

∨
i for any x ∈ V̂ . The affine

Weyl group, Ŵ , is the subgroup of GL(V̂ ) generated by the reflections si,
i = 0, 1, . . . , n. If the index of α ∈ Π̂ is not specified, then we merely write
sα. The inner product ( , ) on V̂ is Ŵ -invariant. The notation β > 0 (resp.
β < 0) is a shorthand for β ∈ Δ̂+ (resp. β ∈ −Δ̂+). The length function

on Ŵ with respect to s0, s1, . . . , sp is denoted by �. For w ∈ Ŵ , we set

N(w) = {ν ∈ Δ̂+ | w(ν) < 0}. Then #N(w) = �(w).

Definition 2 (D. Peterson). An element w ∈ Ŵ is said to be minuscule, if
N(w) = {δ − γ | γ ∈ I} for some subset I ⊂ Δ.

Then one can easily show that I ⊂ Δ+, I is an abelian ideal, and this
correspondence yields a bijection between the minuscule elements of Ŵ and
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the abelian ideals. Furthermore, if w is minuscule and w−1(α) = −μ + kδ

(α ∈ Π̂, μ ∈ Δ), then k � −1. (More generally, this holds for elements of

Ŵ corresponding to arbitrary ad-nilpotent ideals, see [4].) If w is minuscule,

then Iw denotes the corresponding abelian ideal. Conversely, given I ∈ Ab,

then wI stands for the corresponding minuscule element. If I ∈ Ab and

γ ∈ max(Δ+ \ I), then the ideal I ′ = I ∪ {γ} is not necessarily abelian.

In this section, we are interested only in abelian extensions, i.e., those with

abelian I ′.

Lemma 5.1. Suppose w ∈ Ŵ is minuscule and w−1(α) = −μ + 2δ, where

α ∈ Π̂ and μ ∈ Δ. Then μ = θ.

Proof. We have α = w(2δ − μ) = w(2δ − θ) + w(θ − μ). Here θ − μ ∈ Q+.

Hence both 2δ − θ and θ − μ do not belong to N(w). Therefore if θ 	= μ,

then one obtains a contradiction with the fact that α is simple.

For a minuscule w, consider the vector k = kw = (k0, k1, . . . , kn), where

ki is defined by the equality w−1(αi) = −μi + kiδ (μi ∈ Δ). Recall that

ki � −1 for all i.

Proposition 5.2. We have

(i) ki � 2 for all i;

(ii) there is at most one index i such that ki = 2. The corresponding simple

root αi is necessarily long.

(iii) k0 � 1; that is, k0 	= 2.

Proof.

(i) If w−1(αi) = −μi+kiδ and ki � 3, then w(2δ−μi) = −(ki−2)δ+αi <

0. Hence w is not minuscule.

(ii) If w−1(αi) = −μi + 2δ, then μi = θ by Lemma 5.1. Hence such i is

unique and ‖αi‖ = ‖θ‖, i.e., αi is long.

(iii) Suppose w−1(α0) = −μ0 + 2δ. Then μ0 = θ and w(2δ − θ) = δ − θ.

However, it is shown in [14, Prop. 2.5] that w(2δ − θ) ∈ Δ+ for any

non-trivial minuscule element w.

We shall say that kw is the shift vector of w or Iw. If w = wI (I ∈ Ab),

then we also write kI for this vector.

Theorem 5.3. Let (k0, k1, . . . , kn) be the shift vector of I ∈ Ab. Then

κ(I) = #{i | ki = −1} and ι(I) = #{i | ki = 1}.
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Proof. 1. It is shown in [14, Theorem2.2] that γ ∈ I is a generator if and
only if wI(δ − γ) = −αi ∈ −Π̂. That is, ki = −1 for the corresponding
coordinate i.

2. Suppose that ki = 1, i.e., w−1
I (αi) = −μi + δ. Then wI(−μi) =

αi − δ < 0. As wI is minuscule, μi must be positive. Next, N(siwI) =
N(wI) ∪ {w−1

I (αi)}. Hence siwI is again minuscule, and the corresponding

abelian ideal is Ĩ = I∪{μi}. Conversely, if I → I∪{γ} is an abelian extension
of I, then wĨ = siwI for some i ∈ {0, 1, . . . , n} and wĨ(δ − γ) = −αi [14,
Theorem2.4]. Then wI(δ − γ) = αi, i.e., ki = 1.

Since the minuscule elements (∼ abelian ideals) can be constructed re-
cursively, we obtain, as a consequence of this theorem, a method to compute
recursively the shift vector. One starts with the minuscule element 1 ∈ Ŵ
(or the empty ideal). The corresponding shift vector is k1 = (1, 0, . . . , 0).
The inductive step is to replace w = wI with siw for some i. However one
has to be careful while choosing si, otherwise siw may fail to be minuscule.

Proposition 5.4. Suppose that w ∈ Ŵ is minuscule. Then

• sjw is again minuscule if and only if (kw)j = 1.
• If (kw)j = 1, then
ksjw = kw − (the j-th column of the extended Cartan matrix of Δ)t.

Proof. The first claim is essentially proved in the second part of the above
theorem. The second claim follows from the assumption (kw)j = 1 and the
equalities:

(sjw)
−1(αi) = w−1(αi)− (αi, α

∨
j )w

−1(αj); i = 0, 1, . . . , n.
Recall that the extended Cartan matrix is the (n+1) × (n+1) matrix

with entries (αi, α
∨
j ), 0 � i, j � n.

Remark. Write θ =
∑n

i=1 ciαi and set c0 = 1. Then
∑n

i=0 ciαi = δ. Since

δ is Ŵ -invariant, the definition of ki’s implies that
∑n

i=0 ciki = 1 for any
shift vector. Hence kI is fully determined by k1, . . . , kn. Let z = zI ∈ V be
the unique point such that (zI , αi) = ki, i = 1, . . . , n. Then z ∈ Q∨. (Again,
this is true in the context of arbitrary ad-nilpotent ideals, see [5].) Note that
k0 = 1−(z, θ). The constraints of Proposition 5.2 show that −1 � (z, αi) � 2
for i = 1, . . . , n and 0 � (z, θ) � 2. Furthermore, a stronger result is valid.
It was shown by Kostant [11] that the mapping I ∈ Ab �→ zI ∈ V sets
up a bijection between the abelian ideals and the points z ∈ Q∨ such that
−1 � (z, γ) � 2 for all γ ∈ Δ+.

Let Δ+
l denote the set of long positive roots and Πl := Δ+

l ∩Π. In [14],

we constructed a disjoint partition of
o
Ab := Ab \ {∅} parametrised by Δ+

l .
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In other words, there is a natural surjective mapping τ :
o
Ab → Δ+

l . Given

I ∈
o
Ab and the corresponding minuscule element w ∈ Ŵ , we set τ(I) =

w(2δ − θ). By [14, Prop. 2.5], it is an element of Δ+
l . Then Abμ = τ−1(μ).

Remark. Using the above definition of the shift vector of an abelian ideal
and Lemma 5.1, one observes that (kI)i = 2 if and only if τ(I) = αi, i.e.,
I ∈ Abαi

.

One of the main results of [14] is that each Abμ has a unique maximal
and unique minimal element, and that the maximal elements of Ab are

exactly the maximal elements of Abα, α ∈ Πl. Let I ∈
o
Ab and τ(I) = μ.

By [14, Prop. 3.2], if I → I ′ is an extension, then τ(I ′) � τ(I). Hence I has
an extension outside Abμ only if μ 	∈ Π. Now we make that analysis more
precise by showing that the number of possible abelian extensions of I → I ′

such that I ′ 	∈ Abμ depends only on μ and not on I.

Theorem 5.5. For any μ ∈ Δ+
l \Π and any I ∈ Abμ, the number of abelian

extensions I → I ′ such that I ′ 	∈ Abμ equals the number of α ∈ Π such that
(μ, α) > 0. In particular, this number does not depend on I, and if Δ is
simply laced, then it is equal to κ(μ).

Proof. 1. Suppose (α, μ) > 0 and μ′ := sα(μ) = μ− nαα. Here nα ∈ N and
nα = 1 if and only if α is long. Anyway, μ′′ := μ − α is again a root, and
we will work with the sum μ = α+ μ′′. Then w−1

I (μ′′ + α) = 2δ − θ and, as
shown in the proof of Theorem 2.6 in [14], one has w−1

I (μ′′) = δ − γ′′ and
w−1
I (α) = δ− γ′ for some γ′, γ′′ such that γ′ + γ′′ = θ. This shows that w =

sαwI is minuscule, Iw = I ∪ {γ′}, and τ(Iw) = sαwI(2δ − θ) = sα(μ) = μ′.
2. Conversely, suppose I ∈ Abμ and I → I ′ is an extension. Then I ′ =

I ∪ {γ} for some γ ∈ Δ+ and wI′ = sαwI , where α ∈ Π is determined by
the equality wI(δ − γ) = α. The condition τ(I ′) 	= μ means sα(μ) 	= μ, i.e.,
(α, μ) 	= 0. To compute the sign, we notice that (α, μ) = (w−1

I (α), w−1
I (μ)) =

(δ − γ, 2δ − θ) = (γ, θ), which cannot be negative.

Corollary 5.6. The ideals having a unique abelian extension are the fol-
lowing:

(a) ∅;
(b) The maximal elements of posets Abμ, where μ 	∈ Π and the inequality

(α, μ) > 0 holds for a unique α ∈ Π;
(c) The ideals having a unique abelian extension inside Abα, α ∈ Πl.

It was noticed in [14] that each Abμ is a minuscule poset, i.e., there is a
simple Lie algebra l and a parabolic subalgebra p ⊂ l with abelian nilpotent
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radical pnil such that Abμ is isomorphic to the poset of abelian p-ideals in
pnil. The construction of l as a subalgebra of g is given in [14, Section 5]. Since
the structure of the minuscule posets is well known, Theorem 5.5 provides
an effective tool for computing the lower covering polynomial in the small
rank cases, e.g. for the exceptional Lie algebras.

We say that a root γ ∈ Δ+ is commutative, if the upper ideal generated
by γ is abelian. Clearly, the set of commutative roots forms an upper ideal.
A uniform description of this ideal (and its cardinality) is given in [16,
Theorem4.4]. In particular, if the Dynkin diagram has no branching node
then the number of commutative roots is n(n + 1)/2. A trivial but useful
remark is that any abelian ideal consists of commutative roots.

In the following assertion, we gather some information that is helpful in
practical computations of the covering polynomials.

Proposition 5.7.

(i) [q0]K̂Ab = 1, [q0]ǨAb = #(Πl);
(ii) [q]K̂Ab = the number of commutative roots;
(iii) deg K̂Ab � deg ǨAb. If these degrees are equal, say to m, then

[qm]K̂Ab � [qm]ǨAb;
(iv) K̂Ab(1) = ǨAb(1) = 2n;
(v) K̂′

Ab(1) = Ǩ′
Ab(1) = (n+ 1)2n−2.

Proof.

(i) These are the numbers of minimal and maximal elements of Ab.
(ii) Obvious.
(iii) Let I be an abelian ideal with m generators, say {γ1, . . . , γm}. Then

I \ {γ1, . . . , γm} has at least m extensions. Then take m = deg K̂Ab.
(iv) This is Peterson’s theorem on #(Ab), see e.g. [4, Theorem 2.9];
(v) This is the number of edges of H(Ab), which is computed in [16, The-

orem4.1].

Let m be the maximal size of an antichain of commutative roots. Then
deg ǨAb � m. But this bound may not be sharp, since the ideal having a
prescribed antichain as the set of either generators or minimal elements in
the complement can be non-abelian. However, in case E7 and E8 this bound
does give the exact value for both degrees, and we obtain degKAb(E7) =

degKAb(E8) = 4, where K is either K̂ or Ǩ.
Also, it follows from a result of Sommers [21, Theorem6.4] that the

number of generators of an abelian ideal is at most the maximal number of
pairwise orthogonal roots in Π. This provides an upper bound for deg K̂Ab.
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Since it is easy to find an abelian ideal with such a number of generators, one
actually obtains the exact value of the degree. For instance, deg K̂Ab(Dn) =[
n
2

]
+1 and deg K̂Ab(E6) = 3. If deg ǨAb � 3, then both covering polynomials

can be computed using Proposition 5.7. This applies to F4 and E6. For E7

and E8, it suffices to determine one more value (or coefficient) of K̂Ab and
ǨAb.

Example 5.8. g = E8.

(1) We use Corollary 5.6 to compute the coefficient [q]ǨAb(E8). Here the
number of roots μ such that κ(μ) = 1 is 21 (see Section 3). The posets Abαi

,
αi ∈ Π, have the cardinalities 1, 2, 3, 4, 5, 6, 8, 6. Furthermore, for E8, each
poset Abμ is totally ordered. Hence the contribution from part (c) of the
corollary is 0+1+2+3+4+5+7+5 = 27. Thus, [q]ǨAb(E8) = 1+21+27 = 49.

(2) Since each Abμ is a chain, any ideal I has at most one extension
inside its own poset Abμ. Because κ(μ) � 3 for all μ ∈ Δ+, Theorem 5.5
shows that

[q4]ǨAb(E8) =
∑

κ(μ)=3

#(Abμ)− 1.

We have #{μ ∈ Δ+ | κ(μ) = 3} = [q3]K̂Δ+(E8) = 21. Of these 21 roots,
there are

11 roots with #(Abμ) = 1 (these are exactly the roots μ with (θ, μ) 	= 0,
see [14, 5.1];

5 roots with #(Abμ) = 2;

3 roots with #(Abμ) = 3;

2 roots with #(Abμ) = 4.

Hence [q4]ǨAb(E8) = 17.

(3) Then using Proposition 5.7(iv),(v), we compute ǨAb(E8)(q) = 8 +
49q + 87q2 + 95q3 + 17q4.

6. Computing the covering polynomials for Ab(g), g being
classical

In this section, we prove four theorems for four classical series of simple Lie
algebras (root systems). Our proofs are based on an explicit presentation of
the upper ideal of commutative roots and understanding which ideals inside
it are really abelian. To this end, one has to know the generators of all
maximal abelian ideals, which are determined in [20] (see also [18, Table 1]).

Theorem 6.1. If g = sln+1, i.e., Δ is of type An, then
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(i) K̂Ab(q) =
∑

k�0

(
n+1
2k

)
qk;

(ii) ǨAb(q) =
∑

k�0

((
n

2k+1

)
+

(
n

2k−2

))
qk;

(iii) DAb(q) = −
∑

k�0

(
n−1
2k+1

)
qk.

Proof. The formula for K̂ (but not for Ǩ!) is implicit in [18, Section 3]. We

recall the necessary setup and then deduce the expressions (i) and (ii). Then

part (iii) is obtained via formal manipulations.

For g = sln+1, each positive root is commutative. The root εi − εj ∈
Δ+(sln+1) is identified with the pair (i, j). Suppose a ∈ Ab(sln+1) and

κ(a) = k. That is, a has k generators (minimal roots). If min(a) =

{(a1, b1), . . . , (ak, bk)}, where a1 < a2 < · · · < ak, then we actually have

1 � a1 < a2 < · · · < ak < b1 < · · · < bk � n + 1. Thus, any 2k-element

subset of [1, n+1] gives rise to an abelian ideal with κ(a) = k and vice versa.

This yields (i).

The edges of H(Ab) originating in a bijectively correspond to the maxi-

mal roots γ in Δ+ \ a such that {γ} ∪ a is again an abelian ideal. The set of

such maximal roots always contains {(a1+1, b2− 1), . . . , (ak−1+1, bk − 1)};
furthermore, if ak + 1 < b1, then two more roots are admissible: (1, b1 −
1), (ak + 1, n + 1). From this we deduce that ι(a) = k if and only if one of

the following two conditions hold:

(♦1) #min(a) = k + 1 and ak+1 + 1 = b1.

(♦2) #min(a) = k − 1 and ak−1 + 1 < b1.

In case (♦1) the ideal is determined by a sequence of 2k + 1 integers

1 � a1 < · · · < ak < ak+1 = b1 − 1 < b2 − 1 < · · · < bk+1 − 1 � n.

Hence there are
(

n
2k+1

)
such possibilities.

In case (♦2) the ideal is determined by a sequence of 2k − 2 integers

1 � a1 < · · · < ak−1 < b1 − 1 < b2 − 1 < · · · < bk−1 − 1 � n.

Hence there are
(

n
2k−2

)
such possibilities. This proves (ii).

(iii) It follows from parts (i) and (ii) that

K̂Ab(q)− ǨAb(q) = −
∑
k�0

((
n

2k + 1

)
−

(
n+ 1

2k

)
+

(
n

2k − 2

))
qk

= −
∑
k�0

((
n− 1

2k + 1

)
− 2

(
n− 1

2k − 1

)
+

(
n− 1

2k − 3

))
qk

= − (q − 1)2
∑
k�0

(
n− 1

2k + 1

)
qk.
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Theorem 6.2. If g = sp2n, i.e., Δ is of type Cn, then K̂Ab(q) = ǨAb(q) =∑
k�0

(
n+1
2k

)
qk.

Proof. The commutative roots are {εi+εj | 1 � i � j � n}. Since these roots
form the unique maximal abelian ideal, the poset Ab(sp2n) is a distributive
lattice and K̂Ab(q) = ǨAb(q). The explicit form of this polynomials stems
from the description given in [18, Section 3]: the ideals with k generators
(or with k extensions) are in a bijection with the the sequences 1 � a1 <
a2 < · · · < ak � b1 < · · · < bk � n. Hence there are

(
n+1
2k

)
possibilities for

them.

The poset of commutative roots for sp2n is represented by the triangular
Ferrers diagram with row lengths (n, n − 1, . . . , 1) (= triangle “of size n”).
In the following two theorems, such a triangle occurs as a subposet of the
poset of commutative roots for so2n+1 and so2n, which allows us to exploit
the formula of Theorem 6.2.

Theorem 6.3. If g = so2n+1, i.e., Δ is of type Bn, then

(i) K̂Ab(q) =
∑

k�0

(
n+1
2k

)
qk;

(ii) ǨAb(q) =
∑

k�0

((
n−1
2k+1

)
+

(
n

2k−1

)
+

(
n−1
2k−2

))
qk;

(iii) DAb(q) = −
∑

k�0

(
n−2
2k+1

)
qk.

Proof. Here the commutative roots are {εi + εj | 1 � i < j � n} ∪ {ε1 − εi |
2 � i � n} ∪ {ε1}.

Graphically, this set is represented by a skew Ferrers diagram with row
lengths (2n− 1, n− 2, n− 3, . . . , 1). See the sample figure for Δ of type B6,
where εij = εi − εj and εij = εi + εj .

ε12 ε13 ε14 ε15 ε16 ε1 ε16 ε15 ε14 ε13 ε12

ε26 ε25 ε24 ε23

ε36 ε35 ε34

ε46 ε45

ε56

Figure 1: The (po)set of commutative roots for so13.

In such a diagram, the maximal element (θ = ε12) appears in the north-
east corner and the smaller elements appear to the south and west. The
edges correspond to the pairs of boxes having a common side. The direc-
tion of arrows is either ‘→’ or ‘↑’. This Ferrers diagram consists of the tail
of length n and the triangle ‘of size n− 1’. The triangle itself represents an
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abelian ideal, and the structure of the set of ideals sitting inside this triangle
is the same as for sp2n−2.

(i) Let us compute the number of abelian ideals a with k generators.

• By Theorem 6.2, the number of such ideals inside the triangle is equal
to

(
n
2k

)
.

• Suppose that a has the tail of length m, m � 1, i.e., a has the generator
ε1−εn+2−m in the upper row. Then the rest of this row (to the right) is also
in the ideal, and the ideal is determined by its part lying in the triangle of
size n−2, in the rows from 2 to n−1. The condition of being abelian means
that a cannot have elements from m − 1 leftmost columns of the triangle.
(Formally: if ε1− εn+2−m ∈ a, then for all other roots εi+ εj ∈ a, 2 � i � j,
we must have j � n + 1 − m.) Hence as a degree of freedom for further
constructing a we have a triangle of size n−1−m, where an ideal with k−1
generators has to be chosen. The symplectic case shows that the number of
such possibilities equals

(
n−m
2k−2

)
.

Thus, the total number of abelian ideals with k generators equals(
n

2k

)
+

∑
m�1

(
n−m

2k − 2

)
=

(
n

2k

)
+

(
n

2k − 1

)
=

(
n+ 1

2k

)
.

(ii) Let us compute the number of all abelian ideals a with k extensions.
Here the argument is similar in the spirit, but more tedious.

• Suppose a lies in the triangle. The difficulty here is that a may have an
extension that does not fit in the triangle (namely, if the length of the first
row equals n − 1). Therefore the symplectic formula does not immediately
apply.

Let p � n − 1 be the length of the first row of a. Then a certainly
have the extension in the first row. The rest of a (in the second row and
below) sits in the triangle of size p− 1 and must have k − 1 extensions. By
the symplectic formula, the number of possibilities here is

(
p

2k−2

)
. Hence,

the total number of possibilities for the ideals inside the triangle equals∑
p�n−1

(
p

2k−2

)
=

(
n

2k−1

)
.

• Suppose an abelian ideal a has the tail of length m, m � 1. Let s be
the length of the second row of a. Then, as explained in the proof of part
(i), s � n−m− 1. Here one has to distinguish two cases.

(1) If s = n − m − 1, then a has no extensions in the first two rows.
Hence all k extensions must occur in row no. 3 and below. This part of a sits
in the triangle of size n−m− 2. Therefore one has

(
n−m−1

2k

)
possibilities for

constructing an ideal.
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(2) If s < n−m− 1, then a has extensions in both the first and second
row. Hence the lower part of a, in row no. 3 and below, must have k − 2
extensions. Since this lower part sits inside the triangle of size s − 1, one
has

(
s

2k−4

)
possibilities. Altogether, we obtain

∑
s�n−m−2

(
s

2k−4

)
=

(
n−m−1
2k−3

)
variants.

Thus, the total number of abelian ideals with k extensions equals(
n

2k − 1

)
+

∑
m�1

(
n−m− 1

2k

)
+

∑
m�1

(
n−m− 1

2k − 3

)
=

(
n

2k − 1

)
+

(
n− 1

2k + 1

)
+

(
n− 1

2k − 2

)
.

(iii) This follows from (i) and (ii) via a straightforward calculation.

Theorem 6.4. If g = so2n, i.e., Δ is of type Dn, then

(i) K̂Ab(q) =
∑

k�0

((
n+2
2k

)
− 4

(
n−1
2k−2

))
qk =

∑
k�0

((
n
2k

)
+

(
n−1
2k−1

)
+

(
n−2
2k−1

)
+(

n−2
2k−4

))
qk;

(ii) ǨAb(q) =
∑

k�0

((
n

2k+1

)
+

(
n

2k−2

))
qk;

(iii) DAb(q) = −
∑

k�0

((
n−2
2k+1

)
+

(
n−3
2k

))
qk.

Proof. Here the set of commutative roots is

{εi + εj | 1 � i < j � n} ∪ {ε1 − εi | 2 � i � n} ∪ {εi − εn | 2 � i � n− 1}.

This set is represented by a skew Ferrers diagram with row lengths (2n −
2, n − 1, n − 2, . . . , 2). See the sample figure for Δ of type D6, where εij =
εi − εj and εij = εi + εj . The roots ε1 − ε2, . . . , ε1 − εn−1 form the tail of
the Ferrers diagram for the set of commutative roots in type Dn.

ε12 ε13 ε14 ε15 ε16 ε16 ε15 ε14 ε13 ε12

ε26 ε26 ε25 ε24 ε23

ε36 ε36 ε35 ε34

ε46 ε46 ε45

ε56 ε56

Figure 2: The (po)set of commutative roots for so12.

To a great extent, convention from the proof of Theorem 6.3 applies
here. However, the notable distinction of this diagram from Figure 1 is that
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here the pairs of roots in the two central columns (i.e., εin, εin for i < n) are
incomparable.

(i) Let us compute the number of abelian ideals a with k generators.
(♥1) Suppose that a has the tail of length m, m � 1, i.e., a has the

generator ε1 − εn−m in the upper row. Then the rest of this row (to the
right) is also in the ideal, and the ideal is determined by its part lying in
rows from 2 to n − 1. The condition of being abelian means that a cannot
have elements from m+ 2 leftmost columns in this lower part. (Formally: if
ε1 − εn−m ∈ a, then for all other roots εi + εj ∈ a, 2 � i � j, we must have
j � n− 1−m.) Hence as a degree of freedom for further constructing a we
obtain a triangle of size n−3−m, where an ideal with k−1 generators has to
be chosen. The symplectic case shows that the number of possibilities equals(
n−m−2
2k−2

)
. Thus, in this case we have

∑
m�1

(
n−m−2
2k−2

)
=

(
n−2
2k−1

)
possibilities.

(♥2) Suppose that an ideal a has no tail, i.e., ε1− εn−1 	∈ a. Consider all
the relevant variants.

1. ε1 − εn, ε1 + εn ∈ a. These two roots are generators of a, so that we
have to choose an ideal with k − 2 generators in the triangle of size
n− 3. This yields

(
n−2
2k−4

)
possibilities.

2. ε1 − εn 	∈ a. Here we have to choose an ideal with k generators in the
triangle of size n− 1. This yields

(
n
2k

)
possibilities.

3. ε1 + εn 	∈ a. This part is the same as the previous one, and we obtain(
n
2k

)
possibilities.

4. In items (2) and (3), we have counted twice the ideals that contain
neither ε1 − εn nor ε1 + εn, i.e., the ideals with k generators that fit
in the triangle of size n− 2. Therefore

(
n−1
2k

)
must be subtracted.

Thus, if a has no tail, one obtains the sum
(
n−2
2k−4

)
+

(
n
2k

)
+

(
n−1
2k−1

)
.

Combining (♥1) and (♥2) yields the coefficients of qk presented as the sum
of four summands. It is a good exercise to transform this sum into the second
expression in the formulation.

(ii) Counting the ideals with k extensions is even more tedious. Our approach
yields 6 cases and 10 binomial coefficients, which sum luckily up to the two
summands in the formulation. We only list all the possibilities for the Ferrers
diagram and the corresponding number of ideals:

• the ideal has the tail (of length �1) –
(
n−3
2k+1

)
+

(
n−3
2k−2

)
• the length of the first row is �n−3 –

(
n−2
2k−1

)
• the length of the first row is n−2 –

(
n−2
2k−4

)
• ε1 − εn 	∈ a, ε1 + εn ∈ a –

(
n−2
2k

)
+

(
n−2
2k−3

)
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• ε1 − εn ∈ a, ε1 + εn 	∈ a –
(
n−2
2k

)
+

(
n−2
2k−3

)
• ε1 ± εn ∈ a –

(
n−3
2k

)
+

(
n−3
2k−3

)
• the ideal has the tail (of length �1) –

(
n−3
2k+1

)
+

(
n−3
2k−2

)
.

(iii) This follows from (i) and (ii) via a straightforward calculation.

Finally, we present the table with complete information about the cov-
ering and deviation polynomials for Ab(g).

Table 3: The covering and deviation polynomials for Ab(g)

g K̂Ab(g) ǨAb(g) −DAb(g)

An

∑
k�0

(
n+1
2k

)
qk

∑
k�0

((
n

2k+1

)
+

(
n

2k−2

))
qk

∑
k�0

(
n−1
2k+1

)
qk

Bn

∑
k�0

(
n+1
2k

)
qk

∑
k�0

((
n−1
2k+1

)
+

(
n

2k−1

) ∑
k�0

(
n−2
2k+1

)
qk

+
(
n−1
2k−2

))
qk

Cn

∑
k�0

(
n+1
2k

)
qk

∑
k�0

(
n+1
2k

)
qk 0

Dn

∑
k�0

((
n+2
2k

)
− 4

(
n−1
2k−2

))
qk

∑
k�0

((
n

2k+1

)
+

(
n

2k−2

))
qk

∑
k�0

((
n−2
2k+1

)
+

(
n−3
2k

))
qk

E6 1 + 25q + 27q2 + 11q3 6 + 21q + 20q2 + 17q3 5 + 6q

E7 1 + 34q + 60q2 + 30q3 + 3q4 7 + 35q + 40q2 + 43q3 + 3q4 6 + 13q

E8 1 + 44q + 118q2 + 76q3 + 17q4 8 + 49q + 87q2 + 95q3 + 17q4 7 + 19q

F4 1 + 10q + 5q2 2 + 8q + 6q2 1

G2 1 + 3q 1 + 3q 0

Some observations related to Table 3:
1. For A2n, we have deg ǨAb − deg K̂Ab = 1. For all other cases the

degrees are equal. Perhaps, the reason is that the Coxeter number is odd if
and only if Δ is of type A2n.

2. One may observe that there are several regularities in Table 3. For all
classical series, both covering polynomials satisfy the recurrence relation

(6.1) KAb(Xn)(q) = 2KAb(Xn−1)(q) + (q − 1)KAb(Xn−2)(q),

where X ∈ {A,B,C,D} and K is either K̂ or Ǩ. Furthermore, the sequence
E3 = A2 ×A1, E4 = A4,E5 = D5, E6, E7,E8 can be regarded as the ‘ex-
ceptional’ series, and for this series the same recurrence relation is satisfied
for K̂ (but not for Ǩ). Here one might wonder about the possible meaning
of the polynomial K̂ corresponding to “E9”.
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It also follows from (6.1) that KAb(Xn)(1) = 2KAb(Xn−1)(1), which “ex-
plains” the equality #Ab(Xn) = 2n.

3. The upper covering polynomials for An,Bn,Cn are the same. But
the lower covering polynomial distinguishes these series. Furthermore, if the
Dynkin diagram has no branching nodes, then K̂Ab(g) depends only on n.
That is, the upper covering polynomial for F4 (resp. G2) is equal to that
for A4 (resp. A2).

On the other hand, the lower covering polynomials are equal for An and
Dn, and the deviation polynomial for Bn is equal to that for An−1.

It would be interesting to find an explanation of these coincidences.

Remark. For the non-reduced root system BCn, one can also consider
combinatorial abelian ideals. However, these are exactly the same as in the
symplectic case.

7. Some questions and open problems

1o. Is there a combinatorial interpretation of the values K̂P(−1) and
ǨP(−1)? Specifically, for the posets Ad, Ad0, and Ab, one might expect
some characteristics of the corresponding root system.

2o. Various examples considered in the paper show that in many cases the
deviation polynomial of a poset has the nonzero coefficients of the same
sign. It would be interesting to find a general pattern for this phenomenon.
Of course, it is not always the case. For instance, if DP1

(resp. DP2
) has

positive (resp. negative) coefficients, then Lemma 2.1(ii) shows that the de-
viation polynomial of P1 × P2 may have coefficients of both signs. It is not
hard to produce a concrete example. However, I conjecture that the following
is true:

Suppose that P = J∗(L), and let P(�m) be the subposet of upper ideals of
L whose cardinality is at most m. Then DP(�m) has non-positive coefficients
for all m.

In the special case of J∗(L) \ {1̂}, this is verified in Example 2.5.

3o. Using Table 3, one can compute the values −DAb(1). In the serial cases,
these values are quite simple:

2n−2 for An, n � 2; 2n−3 for Bn, n � 3; 0 for Cn, n � 1; 2n−3 + 2n−4

for Dn, n � 4.
Hopefully, there could be a uniform general description for them. One may
notice that if the Dynkin diagram has no branching nodes, then this value
equals 2m with m = #(Πl)− 2; or 0, if #(Πl) = 1. (The case of G2 and F4

is included here.) But I have no idea how to explain the values for series D
and E.
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