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Tree-minimal graphs are almost regular
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For all fixed trees T and any graph G we derive a counting formula
for the number N̂T (G) of homomorphisms from T to G in terms
of the degree sequence of G.

As a consequence we obtain that any n-vertex graph G with
edge density p = p(n) � n−1/(t−2), which contains at most (1 +
o(1))pt−1nt copies of some fixed tree T with t ≥ 3 vertices must
be almost regular, i.e.,

∑
v∈V (G) | deg(v)− pn| = o(pn2).

1. Introduction

For graphs F and G, let NF (G) denote the number of labeled copies of F
in G. A well-known conjecture, due to Erdős and Simonovits (see [8]) and
Sidorenko [6, 7], asserts that for every bipartite graph F and every p > 0, if
an n-vertex graph G contains at least p

(
n
2

)
edges, then

(1) NF (G) ≥ (1− o(1))peFnvF .

This conjecture is known to hold for several classes of graphs F , including
forests, even cycles, and complete bipartite graphs [7], Boolean cubes [5] and
bipartite graphs F which contain a vertex that is connected to every vertex
in the other vertex class [3].

The bound in (1) is asymptotically best possible, as for example the
random graph G(n, p) and, more generally, quasi-random graphs of density p
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show (see, e.g. [2, 10]). Skokan and Thoma [9] asked to what extent the
converse holds, and posed the following problem: if F is a bipartite graph,
but not a forest, and if NF (G) ≤ (1+ o(1))peFnvF , does G have to be quasi-
random, in the sense of [2]? It is believed that the answer to this question
is positive, and this is known as the forcing conjecture for quasi-random
graphs.

The exclusion of forests F in the forcing conjecture is clearly neces-
sary, as there are examples of regular graphs G which (therefore) minimize
NF (G) but which are not quasi-random. We study this case and address the
following problem:

What structure on G is enforced when NT (G) ≤ (1 + o(1))pt−knt

for a forest T with t vertices and k components?

Since NT (G) = (1 + o(1))NT ′(G) ·NT ′′(G), when T is the (vertex) disjoint
union of T ′ and T ′′, it suffices to consider connected graphs T only. Moreover,
the case when T consists of only one edge is rather uninteresting, as in this
case NT (G) = 2|E(G)|. Consequently, from now on we restrict ourselves to
trees T with at least three vertices.

For an n-vertex graph G = (V,E) and v ∈ V , let dv denote the degree
of v in G and let d = d(G) = 1

n

∑
v∈V dv denote the average degree of

G. Clearly, if |E| ≥ p
(
n
2

)
, then d(G) ≥ p(n − 1). It is easy to see that for

every tree T , and every p = p(n) � 1/n, the following holds: if G = (V,E)
is an almost regular n-vertex graph, that is,

∑
v∈V |dv − d| ≤ o(pn2) and

|E| = p
(
n
2

)
, then NT (G) ≤ (1 + o(1))pt−1nt. Our first result provides a

converse.

Theorem 1. For all ε ∈ (0, 1] and integers t ≥ 3, there exists δ > 0 so that
whenever p � n−1/(t−2), the following statement holds. Let T be a tree with
t vertices, and let G = (V,E) be a graph with n vertices and |E| = p

(
n
2

)
edges. If NT (G) ≤ (1 + δ)pt−1nt, then

∑
v∈V |dv − d| ≤ εpn2.

For the proof of Theorem 1 we consider not only copies of T , but more
generally, homomorphisms (edge-preserving maps) h : V (T ) → V (G). Let
N̂T (G) denote the number of such homomorphisms. Note that

(2) NT (G) ≤ N̂T (G) ≤ NT (G) +O(pnt−1).

To see the error term O(pnt−1) above, consider a non-injective homomorphic
image S of T in G. The image S contains at least one edge (of which there
are p

(
n
2

)
) and at most t− 3 other vertices (disjoint from the chosen edge).

The bound in (2) restricts the proof of Theorem 1 to p � n−1/(t−2). We
believe Theorem 1 is valid for much smaller values of p.
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Problem 2. Does Theorem 1 remain true as long as p � 1/n?

Theorem 1 is a consequence of the main result of the paper, which ex-
tends a result of Alon, Hoory and Linial [1] from paths to arbitrary trees.

Theorem 3. Let T be a tree with t ≥ 3 vertices, and let G = (V,E) be a
graph with n vertices and average degree d. Then,

N̂T (G) ≥ nd
∏
v∈V

d
(t−2)dv

nd
v .

We prove Theorem 3 in Section 3 using ideas from [1].

We believe that the counting formula for homomorphisms of T in G
given in Theorem 3 remains more or less valid for injective homomorphisms
of T in G (i.e. labeled copies of T in G), provided the minimum degree δ(G)
of G is sufficiently large.

Problem 4. Prove a lower bound for NT (G), the number of labeled copies of
a tree T in a graph G with sufficiently large δ(G), which would be analogous
to that proven for N̂T (G) in Theorem 3.

In fact, the proof of Theorem 3 can be altered to give such a result when
T is the path P3 with three edges. We will sketch the proof of Theorem 5
below in Section 5.

Theorem 5. Let P3 denote the path with 3 edges and let G be a graph with
n vertices, average degree d and minimum degree at least 3. Then

NP3
(G) ≥ nd

∏
v∈V

(dv − 2)
2dv
nd .

Problem 4 and Theorem 5 are related to a result of Erdős and Si-
monovits [4]. They proved that the number of walks of length � that are
not paths in G is a negligible proportion of the total number of walks of
length � as the average degree d of G goes to infinity. In our notation,

N̂P�
(G)−NP�

(G) = o(N̂P�
(G)) as d → ∞.

Together with the special case of Theorem 3 when T = P�, which was earlier
proved in [1], the Erdős-Simonovits result implies that

(3) NP�
(G) ≥ (1− o(1))nd

∏
v∈V (G)

d
(�−1)dv

nd
v as d → ∞.
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The dependence of the o(1) term above on d was not very good (and not even
really made explicit in [4]). Theorem 5 can thus be viewed as an improvement
of (3) in the case � = 3.

2. Proof of Theorem 1

In this section, we deduce Theorem 1 from Theorem 3. For that, we will also
use the following consequence of Jensen’s inequality.

Lemma 6. Let G = (V,E) be a graph with |V | = n vertices and average
degree d = d(G). Suppose

1

n

∑
v∈V

dv log dv <
γ2

γ + 2
d+ d log d(4)

for some γ > 0. Then
1

n

∑
v∈V

∣∣∣∣dvd − 1

∣∣∣∣ < γ.

For completeness, we include a proof of Lemma 6 at the end of the
section and first we deduce Theorem 1 from Theorem 3 and Lemma 6.

Proof of Theorem 1. Let ε ∈ (0, 1] and t ≥ 3 be given. With γ = ε, let
δ = γ2/(3(γ+2)), and let p � n−1/(t−2). Let T be a tree with t vertices and
let G = (V,E) be a graph with |V | = n vertices, with |E| = p

(
n
2

)
edges, and

average degree d = p(n− 1). Suppose

NT (G) ≤ (1 + δ)pt−1nt.

From Theorem 3 and (2), we infer

∏
v∈V

d
(t−2)dv

nd
v ≤ N̂T (G)

nd
≤ 1

nd

(
(1 + δ)pt−1nt +O(pnt−1)

)
.

Since p � n−1/(t−2), we have pt−1nt � pnt−1, and therefore,

∏
v∈V

d
(t−2)dv

nd
v ≤ (1 + 2δ)

nd
pt−1nt ≤ (1 + 3δ)dt−2.

Taking natural logarithms then yields

t− 2

nd

∑
v∈V

dv log dv ≤ 3δ + (t− 2) log d,

which implies,
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(5)
1

n

∑
v∈V

dv log dv ≤ 3δ

t− 2
d+ d log d ≤ γ2

γ + 2
d+ d log d.

Therefore, Lemma 6 and our choice of constants yield

∑
v∈V

|dv − d| ≤ γdn ≤ εpn2 ,

which proves Theorem 1.

Proof of Lemma 6. We proceed by contradiction. In fact, since the RHS
of (4) is increasing in γ, we may assume

(6)
1

n

∑
v∈V

∣∣∣∣dvd − 1

∣∣∣∣ = γ.

Observe that (4) may be rewritten as

1

n

∑
v∈V

dv
d

log
dv
d

<
γ2

γ + 2
.

We show, however, that the assumption in (6) implies

(7)
1

n

∑
v∈V

dv
d

log
dv
d

≥ γ2

γ + 2
,

a contradiction. It remains to prove (7).
Set

W = {v ∈ V : dv > d},
and write, as usual, WC = V \ W for the complement. Since

∑
v∈V (dv −

d) = 0, it follows that

∑
v∈W

(
dv
d

− 1

)
=

∑
v∈WC

(
1− dv

d

)
.

Consequently, (6) implies that

(8)
∑
v∈W

(
dv
d

− 1

)
=

γn

2
=

∑
v∈WC

(
1− dv

d

)
.

Write α1 = |W |/n and α2 = 1− α1 = |WC |/n.
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Setting φ(x) = x log x (a convex function), Jensen’s inequality implies
that

1

|W |
∑
v∈W

φ
(dv
d

)
≥ φ

( 1

|W |
∑
v∈W

dv
d

)
(8)
= φ

(
1 +

γ

2α1

)
.

Similarly,

1

|WC |
∑

v∈WC

φ
(dv
d

)
≥ φ

( 1

|WC |
∑

v∈WC

dv
d

)
(8)
= φ

(
1− γ

2α2

)
.

From the two inequalities above, we obtain

(9)
1

n

∑
v∈V

dv
d

log
dv
d

≥ α1 φ
(
1 +

γ

2α1

)
+ α2 φ

(
1− γ

2α2

)
.

Now, set

(10) y1 = 1 +
γ

2α1
and y2 = 1− γ

2α2
,

and observe that α1y1 + α2y2 = 1. By Taylor’s theorem, there exist reals
ξ1 ∈ (1, y1) and ξ2 ∈ (y2, 1) such that for i = 1, 2, we have

φ(yi) = φ(1) + (yi − 1)φ′(1) +
(yi − 1)2

2
φ′′(ξi).

Since φ(1) = 0, φ′(1) = 1, and φ′′(ξi) = 1/ξi, we have

α1 φ(y1) + α2 φ(y2) =
α1

2ξ1
(y1 − 1)2 +

α2

2ξ2
(y2 − 1)2

>
α1

2y1
(y1 − 1)2 +

α2

2
(y2 − 1)2

(10)
=

γ2

4(γ + 2α1)
+

γ2

8α2

=
γ2(γ + 2)

8(γ + 2α1)(1− α1)
.(11)

The denominator is maximized with α1 = 1/2−γ/4, there equaling (γ+2)2.
Hence

1

n

∑
v∈V

dv
d

log
dv
d

(9)

≥ α1 φ(y1) + α2 φ(y2)
(11)

≥ γ2

γ + 2
,

proving (7).
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Figure 1: Tree labeling and orientation.

3. Proof of Theorem 3

Let T = (U,P ) be a tree with t ≥ 3 vertices, and let G = (V,E) be a graph
with |V | = n vertices and average degree d = d(G). We begin the proof by
describing some notation.

We will consider the digraph 	G = (V, 	E) obtained from G by including,
for each edge {v, v′} ∈ E, both arcs (v, v′) and (v′, v) into 	E.

Moreover, we will label the vertices and orient the edges of T . For that we
fix a leaf u1 of T and let u2 be the unique neighbor of u1 in T . Furthermore,
fix a labeling u3, . . . , ut of U \ {u1, u2} such that, for every i = 1, . . . , t, the
induced subgraph Ti = T [{u1, . . . , ui}] is connected. Let P = {p1, . . . , pt−1}
be the corresponding labeling of the edges of T defined by the property that
E(Ti) = {p1, . . . , pi−1} for every i = 2, . . . , t. For every edge p = {ui, uj}
with i < j, we denote by 	p the oriented pair (ui, uj). Note that, from these
definitions, it follows that, for every j = 1, . . . , t− 1, we have 	pj = (ui, uj+1)

for some i < j. Finally, we denote by 	T = (U, 	P ) the oriented tree with
	P = {	p : p ∈ P} (see Figure 1).

Now, let Ω = ΩT (G) denote the family of all homomorphisms ω : U → V
(so that |Ω| = N̂T (G)). We develop some notation for Ω. To begin, if
	p = (u, u′) ∈ 	P , 	e = (v, v′) ∈ 	E, and ω ∈ Ω, we write ω(	p) = 	e if
ω(u) = v and ω(u′) = v′. In this way, we may view the image of an el-
ement ω ∈ Ω as a (t − 1)-tuple ω = (ω(	p1), . . . , ω(	pt−1)). For 	e1 ∈ 	E,
define Ω�e1 ⊆ Ω to be the set of those homomorphisms ω ∈ Ω for which
ω(	p1) = 	e1. For ω ∈ Ω�e1 , we write ω− = (ω(	p2), . . . , ω(	pt−1)). For an arc

(v, v′) ∈ 	E, we shall sometimes abuse notation and write (v, v′) ∈ ω− to
mean (v, v′) ∈ {ω(	p2), . . . , ω(	pt−1)}, and we denote by mω−(v, v

′) the num-
ber of appearances of (v, v′) ∈ {ω(	p2), . . . , ω(	pt−1)}, i.e.,

mω−(v, v
′) = |{j = 2, . . . , t− 1: ω(	pj) = (v, v′)}|.
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We consider the following procedure for generating a random element
ω = {ω(	p1),. . . , ω(	pt−1)} ∈ Ω. Select 	e1 = ω(	p1) ∈ 	E uniformly at random.
For 2 ≤ j < t, suppose 	e1 = ω(	p1), . . . , 	ej−1 = ω(	pj−1) ∈ 	E have been

selected. Then, choose 	ej = ω(	pj) = (v, v′) ∈ 	E by selecting v′ uniformly at
random from the set of neighbors of v in G. Moreover, a random element
ω ∈ Ω�e1 is generated similarly, only that we condition on ω(	p1) = 	e1.

For fixed 	e1 = (v1, v2) ∈ 	E and fixed ω ∈ Ω�e1 , we denote by P�e1(ω)
the probability of P(ω = ω), for a random homomorphism ω from the
probability space Ω�e1 . It follows from the definition of Ω�e1 that for every

	e1 ∈ 	E and every ω = (	e1 = (v1, v
′
1), . . . , 	et−1 = (vt−1, v

′
t−1)) ∈ Ω, we have

(12) P�e1(ω) =

t−1∏
j=2

1

dvj

=
∏

(v,v′)∈ω−

(
1

dv

)mω− (v,v′)

.

We now estimate the quantity N̂T (G) = |Ω| =
∑

�e1∈ �E |Ω�e1 |. To that end,
observe that

|Ω|
nd

=
∑
�e1∈ �E

|Ω�e1 |
nd

=
∑
�e1∈ �E

∑
ω∈Ω�e1

P�e1(ω)

nd

(
1

P�e1(ω)

)
,

where
∑

�e1∈ �E

∑
ω∈Ω�e1

(P�e1(ω)/(nd)) = 1. Applying the Arithmetic-Geome-

tric Mean Inequality1 and using (12), we obtain

|Ω|
nd

=
∑
�e1∈ �E

∑
ω∈Ω�e1

P�e1(ω)

nd

(
1

P�e1(ω)

)

≥
∏
�e1∈ �E

∏
ω∈Ω�e1

(
1

P�e1(ω)

)
P�e1 (ω)/(nd)

(12)
=

∏
�e1∈ �E

∏
ω∈Ω�e1

∏
(v,v′)∈ω−

d
mω− (v,v′)P�e1 (ω)/(nd)
v .(13)

For a fixed 	e = (v, v′) ∈ 	E, we now collect the terms d
P�e1 (ω)/(nd)
v in the triple

product above. To that end, observe that a factor d
P�e1 (ω)/(nd)
v appears for

1The generalized AM-GM inequality states that for positive x1, . . . , xm and non-
negative c1, . . . , cm, where c1 + · · ·+ cm = 1,

m∑
i=1

cixi ≥
m∏
i=1

xci
i .
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every 	e1 ∈ 	E, ω ∈ Ω�e1 and 2 ≤ s ≤ t− 1 for which ω(	ps) = 	e. Set, therefore,

for s = 2, . . . , t− 1 and 	e = (v, v′) ∈ 	E

(14) gs(	e) =
1

nd

∑
�e1∈ �E

∑{
P�e1(ω) : ω ∈ Ω�e1 and ω(	ps) = 	e

}

so that (13) is equivalently

(15) |Ω| ≥ nd
∏

�e=(v,v′)∈ �E

d
∑t−1

s=2 gs(�e)
v .

In a moment, we prove that for a fixed 	e ∈ 	E and 2 ≤ s ≤ t− 1,

(16) gs(	e) =
1

nd
.

Applying (16) to (15) yields

|Ω| ≥ nd
∏

(v,v′)∈ �E

d
t−2

nd
v = nd

∏
v∈V

d
(t−2)dv

nd
v ,

as promised by Theorem 3. It remains to prove (16).

Proof of (16). Fix 	e ∈ 	E and an integer s between 2 and t − 1. We claim

that gs(	e) is the probability that 	e will appear at the s-th step of a randomly

generated ω ∈ Ω, i.e., gs(	e) = P(ω(	ps) = 	e) (where this probability occurs

in the space Ω). Indeed,

P(ω(	ps) = 	e) =
∑
�e1∈ �E

P
(
ω(	ps) = 	e

∣∣ω(	p1) = 	e1
)
P(ω(	p1) = 	e1)

=
1

nd

∑
�e1∈ �E

P
(
ω(	ps) = 	e

∣∣ω(	p1) = 	e1
)

=
1

nd

∑
�e1∈ �E

P�e1

(
ω(	ps) = 	e

)

=
1

nd

∑
�e1∈ �E

∑ {
P�e1(ω) : ω ∈ Ω�e1 and ω(	ps) = 	e

}

= gs(	e).(17)
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We prove (16) by induction on s. We can easily extend the definition of
gs(	e) for the case s = 1 by setting

(18) g1(	e) =
1

nd

∑
�e1∈ �E

∑{
P�e1(ω) : ω ∈ Ω�e1 and ω(	p1) = 	e

}

and, clearly, g1(	e) = 1/(nd), which establishes the base case.
Assume, for each 1 ≤ r < s and each 	e ′ ∈ 	E, that gr(	e

′) = 1/(nd).
Now, let 	ps = (ur, us+1) ∈ 	P , for some 1 ≤ r ≤ s. Consider the arc 	pr−1 =
(uq, ur) ∈ 	P , where 1 ≤ q ≤ r − 1. Observe that ω(	ps) = 	e = (v, v′) only if
ω(	pr−1) = 	e ′ = (v′′, v) for some vertex v′′ in the neighborhood ΓG(v) of v
in the undirected graph G. Thus,

gs(	e) = P(ω(	ps) = 	e)

=
∑

v′′∈ΓG(v)

P
(
ω(	ps) = 	e

∣∣ω(	pr−1) = (v′′, v)
)
P(ω(	pr−1) = (v′′, v)).

For every v′′ ∈ ΓG(v), the induction hypothesis gives

P
(
ω(	pr−1) = (v′′, v)

)
=

1

nd
,

and by the definition of the probability space Ω, we have

P
(
ω(	ps) = 	e |ω(	pr−1) = (v′′, v)

)
=

1

dv
.

Thus,

gs(	e) = |ΓG(v)| ·
1

dv
· 1

nd
=

1

nd
,

as desired.

4. Proof of Theorem 5

The proof is similar to the proof of Theorem 3 and we only outline the
differences here. We modify the probability space Ω to include only labeled
copies of P3:

(i) the first arc 	e1 = (v1, v2) is chosen uniformly at random in 	E;
(ii) the second arc 	e2 = (v2, v3) is selected uniformly among all arcs

(v2, v) ∈ 	E with v 	= v1;
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(iii) the third arc 	e3 = (v3, v4) is selected uniformly among all arcs (v3, v) ∈
	E with v 	∈ {v1, v2}.

Note that the minimum degree condition of G is necessary to guarantee that
the process above is feasible. Moreover, it is clear that |Ω| = NP3

(G), since
NP3

(G) denotes the number of labeled copies of P3 in G.
In order to bound |Ω|, we shall obtain an inequality along the lines of

(13). Let ω = (	e1 = (v1, v2), 	e2 = (v2, v3), 	e3 = (v3, v4)) ∈ Ω. Replacing (12)
by the obvious bound

P�e1(ω) ≥
1

dv2
− 2

· 1

dv3
− 2

,

we obtain (using the arithmetic-geometric mean as before) the following
analog of (13)

(19)
|Ω|
nd

≥
∏
�e1∈ �E

∏
ω∈Ω�e1

∏
(v′,v)∈ω−

(dv − 2)
P�e1

(ω)

nd ,

where this time ω− is the subpath (	e1, 	e2) of the path ω = (	e1, 	e2, 	e3). We
remark that, in (19), there is a subtle difference in how we organized the
products. In (19), the elements being multiplied are the degrees (minus two)
of the tail vertex of each arc besides 	e3, while in (13), they are the degrees
of the head vertex of each arc besides 	e1. The reason for this subtle change,
will become clear in a moment (see (20) below). Moreover, note that the
mω−(v′,v)-term in the exponent of (13) does not appear in (19), since by

definition of Ω no arc 	e ∈ 	E can appear more than once in ω.
Let gs(	e) for s = 1, . . . , 3, be defined as in (14) and (18). Note that the

right-hand side of (19) reduces to

∏
�e=(v′,v)∈ �E

(dv − 2)g1(�e)+g2(�e).

The reason for changing the definition of ω− and multiplying degrees of
tails instead of heads above is that, as we will show below,

(20) g1(	e) = g2(	e) =
1

nd

while g3(	e) may be different than 1/nd depending on the structure of G
(triangles in G may force g3(	e) 	= 1/nd). In fact, this is the reason the
current method does not seem to apply to paths of length four or larger.
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In order to verify (20), we first note that by definition of g1(	e) in (18),
we have g1(	e) =

1
nd . Moreover, (17) extends to this case here so that g2(	e) =

P(ω(	p2) = 	e) for every 	e ∈ 	E. The definition of Ω guarantees

P
(
ω(	p2) = 	e

∣∣ω(	p1) = (v′′, v′)
)
=

1

dv′ − 1

for every 	e = (v′, v) ∈ 	E with v 	= v′′. We therefore have

g2(	e) = P(ω(	p2) = 	e)

=
∑

v′′∈ΓG(v′)\{v}
P
(
ω(	p2) = 	e

∣∣ω(	p1) = (v′′, v′)
)
P
(
ω(	p1) = (v′′, v′)

)

= (dv′ − 1) · 1

dv′ − 1
· 1

nd
=

1

nd
,

which proves (20).
Combining (19) and (20) we obtain

|Ω| ≥ nd
∏

�e=(v′,v)∈ �E

(dv − 2)
2

nd = nd
∏
v∈V

(dv − 2)
2dv
nd ,

and Theorem 5 is proved.
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