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Apollonian circle packings of the half-plane∗

Michael Ching and John R. Doyle

We consider Apollonian circle packings of a half Euclidean plane.
We give necessary and sufficient conditions for two such packings to
be related by a Euclidean similarity (that is, by translations, reflec-
tions, rotations and dilations) and describe explicitly the group of
self-similarities of a given packing. We observe that packings with a
non-trivial self-similarity correspond to positive real numbers that
are the roots of quadratic polynomials with rational coefficients.
This is reflected in a close connection between Apollonian circle
packings and continued fractions which allows us to completely
classify such packings up to similarity.

AMS 2010 subject classifications: 52C26, 11A55.
Keywords and phrases: Apollonian circle packings, similarity, con-
tinued fractions.

1. Introduction

A circle packing in R2 is a set of circles in the plane whose interiors (suitably
interpreted) are mutually disjoint. An Apollonian circle packing P has
the property that for any three mutually tangent circles in P , the two circles
in the plane that are tangent to all three of them also lie in P . Note that
our notion of circle includes straight lines where we consider parallel lines
to be tangent at infinity.

These types of circle packings have been extensively studied by Graham,
et al. [3, 4, 5, 6], with a focus on those packings for which all the circles have
integer curvatures.

There are four basic shapes that an Apollonian packing may take, and
these are illustrated in Figure 1. A bounded Apollonian packing (Fig-
ure 1(a)) is a packing P for which a single circle in P bounds the entire
packing. Here the ‘interior’ of the bounding circle is the unbounded compo-
nent of its complement.

A half-plane packing (Figure 1(b)) is an Apollonian packing P for
which at least one of its circles is a straight line. The line partitions the
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Figure 1: Different boundedness properties for Apollonian packings.

plane into two half-planes: one is ‘packed’ by P , while the other is the
‘interior’ of the line. A special type of half-plane packing is a strip packing
(Figure 1(c)), in which two of the circles are (necessarily parallel) lines and
the remaining circles lie in the strip between them.

An unbounded packing (Figure 1(d)) is an Apollonian packing which
contains no bounding circle and no straight line.

Stereographic projection allows us to relate circle packings in the plane to
those on the sphere. The four possible configurations in Figure 1 correspond
to projection from (a) an interior point, (b) a point on only one circle, (c) a
tangency point, and (d) a point not on or inside any circle, respectively.

In this paper, we consider the similarity relation on Apollonian circle
packings. A similarity is a transformation of the Euclidean plane that pre-
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Figure 2: The generating triple for the packing Pα. The numbers α2 and 1
represent the curvatures of their respective circles, and L is a straight line.

serves ratios of lengths. Such a transformation is necessarily a composite
of a translation, rotation, reflection and/or dilation. Two packings P and
P ′ are similar if there is a similarity of the plane that takes circles in P
bijectively to circles in P ′. There may be non-trivial similarities from P to
itself, in which case we say that P is self-similar and we consider its group
of self-similarities.

Our results concern only half-plane packings. We give a necessary and
sufficient condition for two such packings to be similar, a classification of the
self-similar packings, and a description of all of the self-similarity groups.

We also answer the more specific question of whether two packings are
similar via an orientation-preserving similarity (that is, one with positive
determinant) or via an orientation-reversing similarity. Our classification
tells us which packings possess an orientation-reversing self-similarity.

We observe that any half-plane packing P is similar to a packing con-
taining three circles in the configuration shown in Figure 2, where L is the
x-axis, and α2 and 1 refer to the curvatures of the circles they label. For
α > 0, we define Pα to be the unique Apollonian circle packing containing
that configuration. Because each half-plane packing P is similar to such a
packing, we restrict our attention to studying the packings Pα, and we state
results in terms of this particular class of packings.

Our first result relates similarities of half-plane packings to elements of
the projective general linear group PGL2(Z). This is the quotient of the
group GL2(Z) of invertible 2 × 2-matrices with integer entries, by the sub-
group consisting of ±I where I denotes the identity matrix. We also refer to
the subgroup PSL2(Z) consisting of those elements whose underlying matri-
ces have determinant 1.
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Theorem 1.1. Let α, β > 0. There is a bijection between the set of similari-
ties preserving the x-axis that map Pβ to Pα and the set of elements

[
a b
c d

]
∈

PGL2(Z) such that aα+b
cα+d = β. The similarity is orientation-preserving if

and only if the corresponding element is in PSL2(Z). In particular, Pα and
Pβ are similar (resp. similar via an orientation-preserving similarity) if and
only if there exist integers a, b, c, d, with ad− bc = ±1 (resp. +1), such that
aα+b
cα+d = β.

Taking α = β in Theorem 1.1 helps us to calculate the self-similarity
groups. We write Symm(P) for the self-similarity group of the packing
P , and we write Symm+(P) for the subgroup of Symm(P) consisting of
orientation-preserving self-similarities of P .

Theorem 1.2. Let α > 0. Then:

(i) If α ∈ Q, then Pα is a strip packing and

Symm(Pα) ∼= D∞ × Z/2Z

with subgroup

Symm+(Pα) ∼= D∞,

where D∞ denotes the infinite dihedral group.
(ii) If α is quadratic over Q, then

Symm(Pα) ∼= Z.

Let D denote the discriminant of the primitive integral polynomial with
root α. Then the subgroup Symm+(Pα) is:

• equal to Symm(Pα) if the Pell equation x2 − Dy2 = −4 has no
integral solution for (x, y);

• the index 2 subgroup of Symm(Pα) if x2 −Dy2 = −4 does have
an integral solution.

(iii) Otherwise

Symm+(Pα) = Symm(Pα) = 1.

As one might imagine from the form of Theorem 1.2, there is a strik-
ing connection between half-plane Apollonian circle packings and continued
fractions which we describe in §4. In particular, we have the following result.

Theorem 1.3. Let α, β > 0. The packings Pα and Pβ are similar if and
only if the continued fraction expansions of α and β are eventually equal
(that is, become equal when initial segments, of possibly different lengths,
are removed from each).
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As a consequence of Theorem 1.3, we obtain the following classification

of the self-similar half-plane packings.

Theorem 1.4. The similarity classes of self-similar half-plane (non-strip)

packings are in a one-to-one correspondence with the finite, non-repeating se-

quences of positive integers, up to cyclic permutations. Here “non-repeating”

means that the sequence cannot be realized as a concatenation of multiple

copies of a shorter sequence. The packing has an orientation-reversing self-

similarity if and only if the length of the corresponding sequence is odd.

In Figures 11–14, at the end of the paper, we show the self-similar half-

plane packings corresponding to the sequences (1), (2), (3) and (1, 2).

Here is a quick outline. In §2 we give a precise definition of Apollonian

circle packings and establish some of their basic properties. The main part

of that section is then to describe a labelling system for the circles in a half-

plane packing that are tangent to the x-axis. In §3 we relate those labels to

the curvatures of the circles and use this relationship to prove Theorems 1.1

and 1.2. In §4 we examine the connection between half-plane packings and

continued fractions which we use to prove Theorems 1.3 and 1.4.

2. Apollonian circle packings

We begin with a precise definition of an Apollonian circle packing.

Definition 2.1. For the purposes of this paper, a circle in R2 is either a

circle or a straight line, together with a choice of one of the components of its

complement which we refer to as the interior of the circle. Note that what

we refer to as the interior of a circle may be the unbounded component of its

complement, and the interior of a straight line is one of the two half-planes

it determines.

An Apollonian circle packing is a collection P of circles in R2 with

disjoint interiors such that

(i) there exists a set of three mutually tangent circles in P ;

(ii) if a circle C is tangent to three mutually tangent circles that are in P ,

then C is also in P .

An Apollonian circle packing can be constructed recursively in the fol-

lowing way.

Definition 2.2. Let P(0) be a set of three mutually tangent circles in R2

with disjoint interiors. Given P(n), we define P(n+1) to be the set of circles
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Figure 3: The two dashed circles lie in the interstices bounded by the three
solid circles.

in R2 consisting of P(n) together with any circle that is tangent to three mu-
tually tangent circles in P(n). The Apollonian circle packing generated
by P(0) is

P :=

∞⋃
n=0

P(n).

It can be seen by an induction argument that the circles in P(n) have disjoint
interiors, and it follows that P is an Apollonian circle packing in the sense
of Definition 2.1.

Note that a theorem of Apollonius says that for three mutually tangent
circles in R2 with disjoint interiors, there are precisely two other circles
tangent to all three. Each of these two circles lies in an interstice formed by
the original three circles. See Figure 3.

Definition 2.3. Let A, B, and C be three mutually tangent circles in R2

with disjoint interiors. The complement of A ∪ B ∪ C in R2 consists of five
components—three of the components are the interiors of the respective
circles, and the other two are called the interstices formed by A, B, and C.



Apollonian circle packings of the half-plane 7

Lemma 2.4. Let P be an Apollonian circle packing. Then P is generated,

in the sense of Definition 2.2, by any set of three mutually tangent circles

in P.

Corollary 2.5. If P and P ′ are two Apollonian packings with a common

triple of mutually tangent circles, then P = P ′.

Proof of Lemma 2.4. Since P certainly contains the packing generated by

any set P(0) of three mutually tangent circles, it is sufficient to show that

there is no room for any other circles. In particular, this will be true if the

complement of the set of interiors of circles in P (called the residual set

of P) has Lebesgue measure zero. A proof of this fact may be found in [4,

Theorem 4.2].

For us, the point of the recursive construction of Apollonian circle pack-

ings is that some of our arguments proceed by induction on the stage at

which the circles are created in this process. We therefore make the follow-

ing definition.

Definition 2.6. Fix a generating triple P(0) for the packing P . The gen-

eration of a circle C ∈ P (with respect to P(0)), denoted by gen(C), is the

unique n ∈ Z≥0 such that C ∈ P(n) \ P(n−1).

We now narrow our focus to half-plane packings. Let P be a half-plane

packing, that is, a packing that contains at least one line L. We assume that

L coincides with the x-axis and that the remaining circles in P are in the

upper-half plane. (Any half-plane packing is similar to one that satisfies this

condition.)

Definition 2.7. Most of our analysis of half-plane packings can be done be

focusing on the circles in P that are tangent to the line L. We define

PL := {C ∈ P | C is tangent to L}.

The ‘mutually disjoint interiors’ requirement of circle packings ensures that

no two circles in PL may be tangent to L at the same point. This property

allows us to define a total ordering on the set PL. We say that C is to the

left of C ′, or C ≺ C ′, if the x-coordinate of the point of tangency between

C and L is less than the x-coordinate of the point of tangency between C ′

and L. In the case that P is a strip packing, with L′ the line in P which is

parallel to L, we consider the x-coordinate of the point of tangency between

L′ and L to be −∞; in other words, L′ ≺ C for all C ∈ PL with C �= L′.
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Figure 4: The larger dashed circle fills the unbounded interstice for X and
Y, and the smaller dashed circle fills the bounded interstice.

Definition 2.8. Let X and Y be two tangent circles in PL, neither of which

is a line. Then {X,Y, L} is a triple of mutually tangent circles in R2 and

therefore determines two interstices in the plane. One interstice is bounded,

and the other is unbounded; we refer to these as the bounded interstice

for X and Y and the unbounded interstice for X and Y respectively.

We say that the circle C fills the bounded (resp. unbounded) interstice

for X and Y if C is the unique circle in the bounded (resp. unbounded)

interstice for X and Y which is tangent to X, Y , and L (see Figure 4). Note

that, by Definition 2.1, C necessarily lies in P and hence also PL.

Remark. No circle in the bounded interstice for X and Y can be tangent to

a circle in the unbounded interstice for X and Y .

By Lemma 2.4 we can view the packing P as generated by the triple

{X,Y, L} in the sense of Definition 2.2 for any pair of tangent circles X,Y ∈
PL. For the remainder of this section, we fix a choice of X and Y and assume

that X ≺ Y , that is, X is to the left of Y . We also assume that X and Y

are actual circles, i.e., neither is a line.

Definition 2.9. It is convenient to divide up the circles in PL according to

which interstice they are contained in. We define

P+
L = {C ∈ PL | X 	 C 	 Y }
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and

P−
L = {C ∈ PL | C 	 X or Y 	 C}.

Geometrically, P+
L consists of X, Y , and those circles in PL that are in

the bounded interstice for X and Y , while P−
L consists of X, Y , and those

circles in PL that are in the unbounded interstice for X and Y . Note that

P+
L ∪ P−

L = PL and P+
L ∩ P−

L = {X,Y }.

Lemma 2.10. For each circle C ∈ P+
L , C �∈ {X,Y }, there exist circles A

and B in P+
L of generation strictly less than that of C such that C fills the

bounded interstice for A and B. (Recall that the generation of a circle in

a packing P depends on a choice of generating triple; in this case, P(0) =

{X,Y, L}.)

Proof. We work by induction on the generation of C. If C is generation 1,

then it must be the circle that fills the bounded interstice between X and

Y , so satisfies the lemma. Now suppose that gen(C) ≥ 2. Thinking about

when the circle C is added to the packing in the recursive construction of

Definition 2.2, we see that there are exactly three mutually tangent circles

of generation less than C that are tangent to C. One of these circles must be

the line L, so let A and B be the other two. It follows from the remark after

Definition 2.8 that A,B ∈ P+
L . Now C fills one of the interstices formed by

A and B. We need to show that it fills the bounded interstice.

Now exactly one of A and B must be of generation exactly one less than

C. (To see this, we recall the procedure for recursively building an Apollonian

packing. This procedure implies that as soon as A and B have been added,

the circle C will be added in the very next generation. On the other hand,

no two circles of the same generation are tangent since they fill different

interstices.) Suppose this is B, so that we have gen(C) > gen(B) ≥ 1. By

the induction hypothesis, B fills the bounded interstice formed by two other

circles of generation less than it. One of those must be A and let the other

be D. But now we see that D fills the unbounded interstice for A and B.

Since gen(D) < gen(B) < gen(C), we cannot have D = C. It follows then

that C must fill the bounded interstice for A and B.

Our main tool for keeping track of the circles in a half-plane packing P
is a labelling for each circle in PL by a pair of integers (a, b). The remainder

of this section is devoted to the construction and properties of this labelling.

In §3 we relate this labelling to the curvatures of the circles in P and use it

to deduce information about similarities between different packings.
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Figure 5: The relationship satisfied by the labels.

Definition 2.11. We define a labelling function �x = (x, y) : PL → Z2. We
define the labelling recursively starting with �x(X) = (1, 0) and �x(Y ) = (0, 1).
For the remaining circles in PL, the label is determined by the following rule:

If C is the circle that fills the bounded interstice for A and B, then

(2.12) �x(C) = �x(A) + �x(B).

At each stage of the construction of the packing from its generators, X, Y ,
and L, a new circle in PL fills either the bounded or unbounded interstice
for a pair of circles already present. The equation above determines a label
for each such new circle—see Figure 5.

The main result of this section, Proposition 2.21, tells us that the la-
belling function �x is one-to-one and that for each pair (a, b) of coprime
integers, exactly one of (a, b) and (−a,−b) is in the image of �x. It also gives
us a necessary and sufficient condition on the labels for two circles in PL to
be tangent. It is convenient to start with this condition, which is stated in
terms of the matrix formed by the labels of the two circles.

Lemma 2.13. Let A and B be a pair of tangent circles in PL such that
A ≺ B. Then ∣∣∣∣x(A) y(A)

x(B) y(B)

∣∣∣∣ = 1.

Proof. The proof will be by induction on gen{A,B} := max{gen(A), gen(B)}.
The base case is immediate: the generation zero circles form the pair {X,Y },
which are labeled (1, 0) and (0, 1) respectively. The corresponding matrix is
the identity, which has determinant 1.

Now suppose gen{A,B} = n ≥ 1. First, observe that we cannot have
gen(A) = gen(B) = n: if gen(A) = gen(B) = n ≥ 1, then A and B were
constructed to fill two disjoint interstices in P(n−1) and cannot therefore be
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tangent. Hence {A,B} contains a unique circle of generation n. Furthermore,
because a generation n circle is constructed to fill a single interstice in P(n−1),
it is necessarily tangent to exactly three circles of generation strictly less
than n. Therefore the circle of generation n (either A or B) is tangent to
L (generation zero), the circle in {A,B} of smaller generation, and a third
circle C of generation strictly less than n.

There are three possibilities for the position of C relative to A and B: C
can be to the left of both, to the right of both, or between the two. Moreover,
the generation n circle can be either A or B, so there are a total of six cases
to consider. We only give the proof in two cases—the other four are nearly
identical. To prove them, we use the fact that the matrix row operations
of row addition/subtraction are determinant-preserving and that switching
two rows switches the sign of the determinant. In each case, the final equality
holds by the induction hypothesis.

Case 1. Suppose C ≺ A ≺ B and gen(B) = n. Then �x(A) = �x(C) + �x(B),
and ∣∣∣∣�x(A)

�x(B)

∣∣∣∣ =
∣∣∣∣ �x(A)
�x(B)− �x(A)

∣∣∣∣ =
∣∣∣∣ �x(A)
−�x(C)

∣∣∣∣ = −
∣∣∣∣−�x(C)
�x(A)

∣∣∣∣ =
∣∣∣∣�x(C)
�x(A)

∣∣∣∣ = 1.

Case 2. Suppose A ≺ C ≺ B and gen(A) = n. Then �x(C) = �x(A) + �x(B),
and ∣∣∣∣�x(A)

�x(B)

∣∣∣∣ =
∣∣∣∣�x(A) + �x(B)

�x(B)

∣∣∣∣ =
∣∣∣∣�x(C)
�x(B)

∣∣∣∣ = 1.

Corollary 2.14. For any circle C ∈ PL, gcd(x(C), y(C)) = 1.

We now begin the proof that our labelling function �x is one-to-one. We
do this first for those circles in the bounded interstice for X and Y .

Lemma 2.15. For C ∈ P+
L we have x(C), y(C) ≥ 0 with equality only if

either C = X or C = Y .

Proof. This follows from (2.12) by induction on generation since, by Lem-
ma 2.10, the circle C fills the bounded interstice of two circles of strictly
smaller generation than it.

Corollary 2.14 and Lemma 2.15 tell us that every circle in P+
L is labeled

by a pair of nonnegative coprime integers. We now prove that every such pair
is the label of a unique circle in P+

L . At the same time, we prove the converse
of Lemma 2.13 for P+

L—that if circles A,B ∈ P+
L have the determinant of

the matrix formed by their labels equal to 1, then they are tangent with
A ≺ B. We first need the following elementary lemma.
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Lemma 2.16. Let a and b be positive, coprime integers. Then there exist
unique integers u and v that satisfy the following properties:

(i) au− bv = 1,
(ii) 0 < u ≤ b, and
(iii) 0 ≤ v < a.

Proof. Because a, b are coprime, we can find an integer solution (x, y) to the
equation

(2.17) ax− by = 1.

Given a particular solution (x0, y0) to (2.17), the entire solution set is

{(x, y) = (x0 + kb, y0 + ka) : k ∈ Z}.

There is then a unique k ∈ Z such that 0 < x0 + kb ≤ b. Let u := x0 + kb.
Then u satisfies property (ii). Setting v := y0 + ka, property (i) is also
satisfied, and property (iii) is a consequence of properties (i) and (ii).

Lemma 2.18. Let
[
a b
c d

]
be a determinant 1 matrix with nonnegative integer

coefficients. Then there exist unique circles C,C ′ ∈ P+
L such that �x(C) =

(a, b) and �x(C ′) = (c, d). Moreover, C and C ′ are tangent with C ≺ C ′.

Proof. The proof is by induction on max{a+b, c+d}. If max{a+b, c+d} = 1,
then necessarily

[
a b
c d

]
=

[
1 0
0 1

]
. By Lemma 2.15, all circles in P+

L different
from X and Y must have a+ b > 1, so there can be no circles in P+

L , other
than X and Y , labeled by the pairs (1, 0) and (0, 1).

Once we have proved that there is a unique circle with label (a, b), we
denote that circle by C(a,b). At this point, therefore, we can write C(1,0) = X
and C(0,1) = Y .

Now fix an integer n > 1 and suppose we have proved the lemma, and
hence constructed the circles C(a,b) and C(c,d), for any a, b, c, d as in the
statement of the lemma with max{a + b, c + d} < n. We then take a, b, c, d
with max{a+ b, c+ d} = n.

First of all, if a+ b = c+ d, then

(d− b)(a+ b) = d(a+ b)− b(a+ b) = d(a+ b)− b(c+ d) = ad− bc = 1,

so a+ b = 1. Since c+d = a+ b, this contradicts the fact that max{a+ b, c+
d} > 1. Therefore a+ b > c+ d or a+ b < c+ d. We prove the lemma in the
case where a+ b > c+ d; the proof of the other case is virtually identical.
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Since a+ b > c+ d ≥ 1, we have that 0 < (a− c) + (b− d) < a+ b and
therefore

max{(a− c) + (b− d), c+ d} < a+ b = n.

Since
∣∣ a−c b−d

c d

∣∣ = 1, we may apply the induction hypothesis to the matrix[
a−c b−d
c d

]
once we show that a− c ≥ 0 and b− d ≥ 0.

Since a+ b > c+ d, we must have a > c or b > d. If a > c > 0, then

ad− bc = 1 =⇒ cd < bc+ 1

=⇒ cd ≤ bc

=⇒ d ≤ b.

(Note that if c = 0, then ad = 1, so a = d = 1. It follows from the fact that
a+ b > c+ d that b ≥ 1 = d.) A similar argument shows that if we assume
instead that b > d, then also a > c.

Therefore we have both a − c ≥ 0 and b − d ≥ 0, so the induction
hypothesis tells us that there are unique circles C(a−c,b−d) and C(c,d) in P+

L

satisfying �x(C(a−c,b−d)) = (a − c, b − d) and �x(C(c,d)) = (c, d) and that,
moreover, these circles are tangent with C(a−c,b−d) ≺ C(c,d).

Now let C be the circle that fills the bounded interstice for C(a−c,b−d)

and C(c,d). Then

�x(C) = (a− c, b− d) + (c, d) = (a, b),

so there exists a circle C labeled by the pair (a, b), which by construction is
to the left of and tangent to C(c,d).

Finally, we must show that C is the only circle in P+
L that satisfies

�x(C) = (a, b). Suppose C ′′ is a circle with �x(C ′′) = (a, b). By Lemma 2.10,
C ′′ fills the bounded interstice for two circles A ≺ B in P+

L . Then �x(C ′′) =
�x(A) + �x(B), so we can write �x(B) = (v, u) and �x(A) = (a− v, b− u). Since
A and B are both in P+

L , Lemma 2.15 tells us that each of v, u, a− v, and
b− u is nonnegative, so 0 ≤ u ≤ b and 0 ≤ v ≤ a.

In fact, we have u �= 0 and v �= a. Indeed, we know from Lemma 2.15 that
if u = 0, then B = X. However, X 	 C ′′ ≺ B, so X �= B, which means we
cannot have u = 0. A similar argument shows that a− v �= 0, and so v �= a.
Therefore 0 < u ≤ b and 0 ≤ v < a, which are precisely properties (ii) and
(iii) from Lemma 2.16. That property (i) is satisfied follows by Lemma 2.13,
since C ′′ is tangent to and to the left of B. Since these three properties
uniquely determine (v, u), and since (c, d) satisfies these three conditions
by construction, we conclude that v = c and u = d. By the uniqueness
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Figure 6: The inversion circle I.

of C(a−c,b−d) and C(c,d) following from the induction hypothesis, we have

A = C(a−c,b−d) and B = C(c,d), and it follows therefore that C ′′ = C.

Definition 2.19. Lemma 2.18 implies that any pair (a, b) of coprime non-

negative integers is the label of a unique circle in P+
L . As in the proof of

Lemma 2.18, we denote that circle by C(a,b).

Lemma 2.18 yields a complete understanding of the labels of circles in

P+
L . We now define an operation which maps P+

L bijectively onto P−
L , and

use this to relate the labels of circles in P−
L to those of circles in P+

L .

Let I be the unique circle which contains the three points of tangency

among C(1,0), C(0,1), and L. (See Figure 6.) Define the map

ι : R2 ∪ {∞} → R2 ∪ {∞}

to be inversion with respect to I.
Let us pause to mention some of the relevant properties of I and the

map ι. Note that when we say that ι fixes a particular circle or set of circles,

we mean only as sets in R2, not pointwise.

(i) Inversion with respect to a circle is a bijection of order two; i.e., ι◦ ι =
id.

(ii) Since inversion maps circles to circles, ι maps Apollonian packings to

Apollonian packings.

(iii) The inversion circle I intersects each of C(1,0), C(0,1), and L orthog-

onally, and therefore ι fixes each of these three circles. Therefore, by

property (ii) and Corollary 2.5, ι fixes P (and hence PL since L is

fixed).



Apollonian circle packings of the half-plane 15

(iv) The interior of I contains the bounded interstice for C(1,0) and C(0,1),
and the exterior of I contains the unbounded interstice for C(1,0) and
C(0,1). Since ι maps the interior of I to the exterior of I, and vice

versa, and since property (iii) holds, it follows that ι maps P+
L to P−

L
and vice versa.

Because I intersects L orthogonally, the center of I lies on L. It makes
sense, then, to talk about a circle C ∈ PL lying to the left or right of I, by
which we mean that the point of tangency of C with L lies to the left or
right of the center of I. We now record two more properties of I and ι:

(v) If C lies to the left (resp. right) of I, then ι(C) also lies to the left
(resp. right) of I. Furthermore, if C ≺ C ′ both lie to the left (resp.
right) of I, then ι(C ′) ≺ ι(C) both lie to the left (resp. right) of I.

(vi) A circle C contains the center of I (that is, the point of tangency
between C and L is precisely the center of I) if and only if ι(C) is a
line parallel to L.

As mentioned above, the reason for introducing the inversion map ι is
to set up a one-to-one correspondence between P+

L and P−
L . The following

lemma establishes the connection between the labels of circles in P−
L and

their images under ι, which lie in P+
L .

Lemma 2.20. Let C ∈ P−
L , and let C(a,b) = ι(C) ∈ P+

L be the image of C
under the map ι. Then

�x(C) =

{
(a,−b) if C 	 C(1,0),

(−a, b) if C(0,1) 	 C.

Proof. We will prove the statement by induction on the generation of ι(C).
In the case that gen(ι(C)) = 0, we have ι(C) = C(1,0) or ι(C) = C(0,1). Since
C(1,0) and C(0,1) are fixed by ι (and since ι is one-to-one), it follows that
C = C(1,0) or C = C(0,1), and in both cases the statement holds.

Now suppose gen(ι(C)) ≥ 1. Then, since C(a,b) = ι(C) lies in P+
L and

is not equal to C(1,0) or C(0,1), Lemma 2.10 tells us that C(a,b) fills the

bounded interstice for two circles C(a1,b1), C(a2,b2) ∈ P+
L with gen(C(a1,b1)),

gen(C(a2,b2)) < gen(C(a,b)). Assume that C(a1,b1) ≺ C(a2,b2). By definition,
(a1, b1)+(a2, b2) = (a, b). Because inversion preserves tangencies, the circles
A = ι(C(a1,b1)) and B = ι(C(a2,b2)) are tangent to each other as well as to C
and L.

There are a total of seven cases to consider, each corresponding to the
position of the center of I with respect to the points of tangency of the
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Figure 7: Case 1 of Lemma 2.20. The point on the line L represents the
center of I.

circles C(a,b), C(a1,b1), and C(a2,b2) with the line L—the center of I could lie
on one of the three circles, it could lie between two of the circles, or it could
lie to the left or right of all three of the circles. We will prove the result for
two example cases; the proofs in the other cases are quite similar.

Case 1. Suppose that the center of I lies between the points of tangency of
C(a1,b1) and C(a,b) with L, as shown in Figure 7. In particular, C(a1,b1) is to
the left of I and C(a,b) ≺ C(a2,b2) are to the right. By property (v) above,
we may conclude that A is to the left of I and B ≺ C are to the right of I.
Because all three of the image circles necessarily lie in P−

L , it follows that
A 	 C(1,0) and C(0,1) 	 B ≺ C.

By the induction hypothesis, we know that �x(A) = (a1,−b1) and �x(B) =
(−a2, b2). Since A ≺ B ≺ C, it follows that �x(A) + �x(C) = �x(B), and so

�x(C) =
(
−(a1 + a2), b1 + b2

)
= (−a, b).

Case 2. Suppose that the center of I coincides with the point of tangency
between C(a,b) and L, as shown in Figure 8. Then A 	 C(1,0), C(0,1) 	 B,
and C is a line parallel to L, which means that C is to the left of every circle
in PL. By induction, we have �x(A) = (a1,−b1) and �x(B) = (−a2, b2). Since
C ≺ A ≺ B, we have �x(A) = �x(C) + �x(B). It follows that

�x(C) =
(
a1 + a2,−(b1 + b2)

)
= (a,−b).
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Figure 8: Case 2 of Lemma 2.20.

As mentioned above, the proofs of the other five cases are very similar
to these two.

Combining Lemmas 2.18 and 2.20 we obtain a complete understanding
of how the circles in PL are labeled and when two labeled circles are tangent
to one another.

Proposition 2.21. For any integers a and b with gcd(a, b) = 1, there is
either a unique circle in PL labelled by (a, b) or a unique circle labelled by
(−a,−b), but not both. If a and b are both nonnegative then the label is
(a, b). If C(a,b) and C(c,d) are the unique circles in PL with labels (a, b) and
(c, d) respectively, then C(a,b) is tangent to C(c,d) on the left if and only if∣∣ a b
c d

∣∣ = 1.

Proof. Lemmas 2.18 and 2.20, together with the fact that the inversion
operation ι acts as a bijection between P+

L and P−
L , imply the first claim.

Lemma 2.13 already tells us the ‘only if’ part of the second statement.
So consider circles C(a,b) and C(c,d) with ad − bc = 1. If all a, b, c, d are
nonnegative then Lemma 2.18 tells us C(a,b) and C(c,d) are tangent. If one
of a, b is negative, then the condition ad − bc = 1 implies that one of c, d
must be either negative or zero. But then Lemmas 2.18 and 2.20 imply that
the circles ι(C(a,b)) and ι(C(c,d)) are tangent. Since ι preserves tangencies,
it follows that C(a,b) and C(c,d) are also tangent. That C(a,b) is to the left of
C(c,d) follows from Lemma 2.13.
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3. Self-similar half-plane packings

We are now at a point where we may begin to describe the similarities
between two half-plane packings. First we recall exactly what is meant by a
similarity of R2.

Definition 3.1. The map Φ : R2 → R2 is called a similarity of R2 if there
exists some constant μ > 0 such that

‖Φ(x)− Φ(y)‖ = μ‖x− y‖

for all x, y ∈ R2.

Every similarity of the plane takes the form

Φ(x) = μAx+ b,

where μ > 0, A is an orthogonal matrix, and b ∈ R2. We say that Φ
is orientation-preserving if detA = +1, and orientation-reversing if
detA = −1.

The set of similarities of R2 forms a group under composition, called
the similarity group of R2, which we will denote by S. The orientation-
preserving similarities form a subgroup S+.

Similarities take circles to circles, and preserve tangency, so they take
Apollonian circle packings to Apollonian circle packings. A key fact about
the action of similarities on circle packings is the following.

Lemma 3.2. Let Φ be a similarity of R2, and let A, B, and C be three
mutually tangent circles with disjoint interiors. If A, B, and C have collinear
centers, then Φ is determined by the three circles Φ(A), Φ(B), and Φ(C),
up to a reflection in the line on which the centers of the image circles lie.
If A, B, and C have non-collinear centers, then Φ is completely determined
by Φ(A), Φ(B), and Φ(C).

Remark. Here we mean that the ‘center’ of a line L lies ‘at infinity’ orthog-
onal to L in the direction of its chosen interior. If one of the circles A,B,C,
say A, is a line, then the collinearity condition is satisfied if and only if
another of the circles, say B, is also a line, parallel to A. In this case Φ is
determined up to a reflection in the line through the center of C that is
orthogonal to A and B.

Proof. Since similarities form a group, it suffices to consider the similarities
that fix A, B, and C (as sets, not pointwise). If a similarity fixes the circles
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A, B and C, then it fixes their centers. A similarity that fixes three non-
collinear points must be the identity. One that fixes three distinct collinear
points is either the identity or a reflection in the line formed by them.

Definition 3.3. For Φ ∈ S and an Apollonian packing P , we write

Φ · P := {Φ(C) : C ∈ P}.

Two packings P and P ′ are similar if P ′ = Φ · P for some Φ ∈ S.
The group

Symm(P) := {Φ ∈ S | Φ · P = P}
is the self-similarity group of P . The subgroup of Symm(P) consisting
only of orientation-preserving similarities is the orientation-preserving
self-similarity group of P , denoted by Symm+(P). A packing P is self-
similar if Symm(P) is nontrivial.

In order to establish similarity between two packings, we look at the
curvatures of the circles involved.

Definition 3.4. For a circle C in R2, the curvature of C, denoted curv(C)
is the reciprocal of the radius of C. A straight line in R2 is considered to
have curvature zero.

Lemma 3.2 allows us to check similarity by looking only at the curvatures
in a triple of mutually tangent circles in each packing.

Lemma 3.5. The packings P and P ′ are similar if and only if they contain
triples of mutually tangent circles (A,B,C) and (A′, B′, C ′) respectively,
such that there exists μ > 0 with

curv(A′)=μ curv(A), curv(B′)=μ curv(B), curv(C ′)=μ curv(C).

Proof. If P and P ′ are similar via similarity Φ with scale factor μ, then take
any triple (A,B,C) and set A′ = Φ(A), B′ = Φ(B), C ′ = Φ(C). To prove
the converse, choose a similarity Φ of the plane that takes A to A′, B to B′

and C to C ′. (One can choose a translation composed with dilation to get A
to A′, add a rotation to get B to B′, then add a reflection if necessary to get
C to C ′.) By construction, P ′ and Φ(P) both contain the triple {A′, B′, C ′},
and therefore P ′ = Φ(P) by Corollary 2.5.

Turning now to half-plane packings, that is, those that have a straight
line for at least one of the circles, recall that we can focus on the following
packings.
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Definition 3.6. Let α ∈ R. Then Pα is the packing generated by a triple

{X,Y, L} of mutually tangent circles, where L is the x-axis in R2, X is a

circle of curvature α2 tangent to (and above) L at the origin, and Y is a

circle of curvature 1 resting on L and tangent (on the right) to X. The

generating triple is illustrated in Figure 2 in the Introduction.

Lemma 3.7. Every half-plane packing P is similar, via an orientation-

preserving similarity, to Pα for some α > 0.

Proof. Choose any two tangent circles in P that are tangent to a line but

are not themselves lines. Taking μ to be the ratio of their curvatures (in the

appropriate order), and α =
√
μ, this follows from 3.5.

The key to analyzing Apollonian circle packings is the following result,

due to Descartes. This describes the relationship between the curvatures of

four mutually tangent circles in the plane. A selection of proofs of this are

given in [9].

Theorem 3.8 (Descartes’ Circle Theorem). Let w, x, y, and z represent

the curvatures of four mutually tangent circles in the Euclidean plane. Then

2(w2 + x2 + y2 + z2) = (w + x+ y + z)2.

For half-plane packings, we apply this Theorem in the case where one of

the four circles is a line, i.e. has zero curvature. In this case, the quadratic

relationship boils down to a linear relationship between the square roots of

the curvatures of the circles.

Corollary 3.9. Let α2, β2 and γ2 represent the curvatures of three mutually

tangent circles all tangent to a line L, where α ≥ β ≥ 0 and γ ≥ 0. Then

(3.10) γ = α± β.

In particular, when the circle of curvature γ2 lies in the bounded interstice

formed by the others, we have

(3.11) γ = α+ β.

Proof. The proof of (3.10) follows from Theorem 3.8 by setting w = 0 and

applying the quadratic formula appropriately. The proof of (3.11) follows

from the fact that the circle in the bounded interstice has a curvature at

least as large as that of the two circles surrounding it.
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Figure 9: Descartes’ Theorem for circles in PL. The circles are labelled by
the square roots of their curvatures.

We illustrate (3.11) in Figure 9. Observe that the illustration of this
equation is virtually identical to the illustration in Figure 5, which shows
the recursive labelling process defined in §2. It is this linear relationship
between the curvatures of tangent circles that inspires that labelling. A key
consequence of this connection is Lemma 3.13 below.

Definition 3.12. Consider now some fixed real number α > 0 and recall
the packing Pα from Definition 3.6. We write Pα,L for the set of circles in
Pα that are tangent to the line L (that is, the x-axis). Let C(1,0) denote
the circle of curvature α2 that is tangent to L at the origin, and let C(0,1)

denote the circle of curvature 1 that is tangent to L and to C(1,0) on the
right. As described in the previous section, these choices determine a unique
label for each circle in Pα,L. When we need to specify the underlying α we
use a superscript, as in Cα

(a,b), but we often drop the α when context allows.

Lemma 3.13. The circle C(a,b) in Pα,L has curvature given by

curv(C(a,b)) = (aα+ b)2.

Moreover, aα+ b ≥ 0.

Proof. The proof is by induction on the generation of C(a,b) with respect
to the generating triple {L,C(1,0), C(0,1)}. The result is immediately seen to
hold for the generation zero circles C(1,0) and C(0,1), since they were chosen
to satisfy curv(C(1,0)) = α2 and curv(C(0,1)) = 1.

Now suppose gen(C(a,b)) = n ≥ 1. The circle C(a,b) was constructed to
fill an interstice bounded by three circles of generation strictly less than n;
since C(a,b) is tangent to L, L is necessarily one of those circles. Because
the other two circles are tangent to L as well, we can call them C(a1,b1) and
C(a2,b2) with C(a1,b1) ≺ C(a2,b2). We do the case where C(a,b) fills the bounded



22 Michael Ching and John R. Doyle

interstice between C(a1,b1) and C(a2,b2). The case where it fills the unbounded
interstice, either to the left or right, is similar.

By Definition 2.11, we have a = a1+a2 and b = b1+b2. By Corollary 3.9
then, we get

√
curv(C(a,b)) =

√
curv(C(a1,b1)) +

√
curv(C(a2,b2))

= a1α+ b1 + a2α+ b2

= aα+ b,

where the second equality holds by induction.

The following is an immediate consequence of Lemma 3.13:

Corollary 3.14. If α �∈ Q, then no two circles in Pα have the same curva-
ture.

Proof. Suppose curv(C(a,b)) = curv(C(a′,b′)). Then, by Lemma 3.13, we have
aα + b = a′α + b′. Since α is not rational, the only way for this equation
to hold is for a = a′ and b = b′ which, by the uniqueness statement in
Proposition 2.21, implies that C(a,b) = C(a′,b′).

We are now in a position to prove our first main result, identifying
the set of similarities between the two packings Pα and Pβ when α, β are
positive real numbers. This is Theorem 1.1 from the Introduction. We start
by showing how to associate a matrix to such a similarity.

Definition 3.15. Fix α, β > 0 and let Φ be a similarity of R2 such that
Φ · Pβ = Pα. Also assume that Φ(L) = L, where L is the x-axis, that is, the
chosen line in each packing. Then Φ takes tangent circles in Pβ,L to tangent
circles in Pα,L. In particular, we have

Φ(Cβ
(1,0)) = Cα

(a,b), Φ(Cβ
(0,1)) = Cα

(c,d)

for some integers a, b, c, d. By Lemma 2.13,

[
a b
c d

]

is an integer matrix of determinant ±1. The determinant is +1 if Cα
(a,b) ≺

Cα
(c,d), in which case Φ is orientation-preserving, and −1 if Φ is orientation-

reversing. We denote this matrix by A(Φ).
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Theorem 3.16. Let α, β > 0. The construction A of Definition 3.15 de-

termines a bijection between the set of similarities of R2 that take Pβ to Pα

(and fix the x-axis) and the set of matrices
[
a b
c d

]
in PGL2(Z) that satisfy

β =
aα+ b

cα+ d
.

Furthermore, the restriction of A to orientation-preserving similarities is

a bijection onto the set of elements of PSL2(Z) = SL2(Z)
/
{±1} with this

property.

Proof. We first show that A(Φ) satisfies the condition that β = aα+b
cα+d . Be-

cause Φ is a similarity, there exists some λ > 0 such that curv(Φ(C)) =

λ curv(C) for all C ∈ Pβ. Since curv(Cβ
(1,0)) = β2 and curv(Cβ

(0,1)) = 1, it

follows that curv(Cα
(a,b)) = λβ2 and curv(Cα

(c,d)) = λ. By taking square roots

and applying Lemma 3.13, we may conclude that

aα+ b =
√
λβ,

cα+ d =
√
λ,

which we may rewrite as aα+b
cα+d = β.

To show that A is injective, suppose A(Φ) = A(Φ′) in PGL2(Z). Then,

if Φ(Cβ
(1,0)) = Cα

(a,b) and Φ′(Cβ
(1,0)) = Cα

(a′,b′), we must have (a, b) = ±(a′, b′).

But, by Proposition 2.21, only one of (a, b) and (−a,−b) is the label of a

circle in Pα. Therefore, in fact (a, b) = (a′, b′) and so Φ(Cβ
(1,0)) = Φ′(Cβ

(1,0)).

Similarly Φ(Cβ
(0,1)) = Φ′(Cβ

(0,1)). Since also Φ(L) = Φ′(L), Lemma 3.2 tells

us that Φ = Φ′.
Now let

[
a b
c d

]
be an element of PGL2(Z) such that β = aα+b

cα+d . Because

the determinant of this matrix is ±1, Proposition 2.21 tells us that either

(a, b) or (−a,−b), but not both, is the label of a circle in Pα,L, and that the

same holds for (±c,±d). Furthermore, these circles are tangent. Because

we can multiply the matrix by −1 and not change it in PGL2(Z), we may

assume that (a, b) is the label for a circle in Pα,L. Now we need to show

that (c, d) is also the label of a circle in Pα,L. Suppose that (−c,−d), rather

than (c, d), is a label in Pα,L. Lemma 3.13 tells us that aα + b ≥ 0. This

statement, along with the fact that aα+b
cα+d = β > 0, implies that cα + d > 0,

and therefore (−c)α + (−d) < 0, which contradicts Lemma 3.13 applied to

the circle Cα
(−c,−d). We may therefore conclude that Cα

(a,b) and Cα
(c,d) form

a pair of tangent circles in Pα,L. Then, since the ratio of the curvatures of
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Cα
(a,b) and Cα

(c,d) is

(aα+ b)2

(cα+ d)2
= β2

which is the same as the ratio of the curvatures of Cβ
(1,0) and Cβ

(0,1), Lemma 3.5

determines a similarity Φ between Pα and Pβ such that

A(Φ) =

[
a b
c d

]
.

This shows that A is a bijection. We have already noted that A(Φ) ∈
PSL2(Z) if and only if Φ is orientation-preserving, which gives us the last
part of the Theorem.

We have the following corollaries.

Corollary 3.17. Pα is a strip packing if and only if α ∈ Q+.

Proof. First, we note that Pα is a strip packing if and only if it is similar to
the packing P1. By Theorem 3.16, this is true if and only if there is an integer
matrix

[
a b
c d

]
of determinant ±1 such that a·1+b

c·1+d = a+b
c+d = α. Certainly, if such

a matrix exists, then α is rational. Conversely, suppose α = p
q with p, q > 0

and gcd(p, q) = 1. Let a and c be positive integers that satisfy aq − cp = 1,
and set b = p−a, d = q−c. By construction,

∣∣ a b
c d

∣∣ = 1 and a+b
c+d = p

q = α.

Corollary 3.18. If Pα is self-similar, then α is the root of a quadratic
polynomial with rational coefficients.

Proof. If Pα is self-similar, then there is a nontrivial similarity Φ that maps
Pα to itself. By Theorem 3.16, this corresponds to a nontrivial element[
a b
c d

]
∈ PGL2(Z) such that aα+b

cα+d = α; i.e., such that

cα2 + (d− a)α− b = 0.

It is easy to check that the only way for all three coefficients to be zero is
for a = d = ±1, b = c = 0, which contradicts the fact that the matrix

[
a b
c d

]
is not the identity in PGL2(Z).

The rest of this section is concerned with proving the converse of Corol-
lary 3.18: if α is the root of a quadratic polynomial with rational coefficients,
then Pα is self-similar. This follows from Theorem 3.22 below, which is The-
orem 1.2 of the Introduction.

Theorem 3.22 goes beyond identifying which packings are self-similar.
We in fact calculate the self-similarity groups of all the packings. To do this
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we first show that, in the case β = α, the bijection of Theorem 3.16 is a

group isomorphism. This is the content of the following proposition.

Proposition 3.19. Let α > 0 be irrational. Then there are group isomor-

phisms

Symm(Pα) ∼= Stab(α) :=

{[
a b
c d

]
∈ PGL2(Z)

∣∣∣∣ aα+ b

cα+ d
= α

}
, and

Symm+(Pα) ∼= Stab+(α) :=

{[
a b
c d

]
∈ PSL2(Z)

∣∣∣∣ aα+ b

cα+ d
= α

}
.

Proof. Since α is not rational by assumption, Corollary 3.17 tell us that

Pα is not a strip packing, so the x-axis L is the unique line in the packing

Pα. Therefore every self-similarity of Pα maps L to L. If we take β = α,

then Theorem 3.16 states precisely that we have bijections of the above

forms given by the construction A. Now we show that when β = α, these

bijections are group isomorphisms.

Let Φ and Φ′ be elements of Symm(Pα). Say

A(Φ) =

[
a b
c d

]
and A(Φ′) =

[
a′ b′

c′ d′

]
.

We must show that A(Φ ◦ Φ′) =
[
a b
c d

][
a′ b′

c′ d′

]
=

[
aa′+bc′ ab′+bd′

ca′+dc′ cb′+dd′

]
. By Corol-

lary 3.14 and Lemma 3.2, it will suffice to show

curv((Φ ◦ Φ′)(C(1,0))) = ((aa′ + bc′)α+ (ab′ + bd′))2 and(3.20)

curv((Φ ◦ Φ′)(C(0,1))) = ((ca′ + dc′)α+ (cb′ + dd′))2.(3.21)

In fact, it will suffice to show only that (3.21) holds: since Φ◦Φ′ is a similarity,

we must have curv((Φ ◦ Φ′)(C(1,0))) = λ curv(C(1,0)) = λα2 and curv((Φ ◦
Φ′)(C(0,1))) = λ curv(C(0,1)) = λ for some λ > 0; therefore, if (3.21) is

satisfied, the fact that the product of the matrices is still an element of

Stab(α) will force (3.20).

The scale factor λ under the composition Φ ◦ Φ′ is the product of

the scale factors μ and μ′ under the maps Φ and Φ′ respectively. Since

curv(C(0,1)) = 1, it follows that

μ = curv(Φ(C(0,1))) = curv(C(c,d)) = (cα+ d)2 and

μ′ = curv(Φ′(C(0,1))) = curv(C(c′,d′)) = (c′α+ d′)2.
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Therefore we will have shown that A is a group homomorphism if we can
show that

(cα+ d)(c′α+ d′) = (ca′ + dc′)α+ (cb′ + dd′).

Indeed,

a′α+ b′

c′α+ d′
= α =⇒ c′α2 + (d′ − a′)α− b′ = 0

=⇒ cc′α2 + (cd′ − ca′)α− cb′ = 0

=⇒ cc′α2 + (cd′ + dc′ − ca′ − dc′)α− cb′ = 0

=⇒ cc′α2 + (cd′ + dc′)α = (ca′ + dc′)α+ cb′

=⇒ cc′α2 + (cd′ + dc′)α+ dd′ = (ca′ + dc′)α+ (cb′ + dd′)
=⇒ (cα+ d)(c′α+ d′) = (ca′ + dc′)α+ (cb′ + dd′).

Now we can prove the main result of this section.

Theorem 3.22. Let α > 0. Then:

(i) If α ∈ Q, then Pα is a strip packing and

Symm(Pα) ∼= D∞ × Z/2Z

with subgroup

Symm+(Pα) ∼= D∞,

where D∞ denotes the infinite dihedral group.
(ii) If α is quadratic over Q, then

Symm(Pα) ∼= Z.

Let D denote the discriminant of the primitive integral polynomial with
root α. Then the subgroup Symm+(Pα) is:

• equal to Symm(Pα) if the Pell equation x2 − Dy2 = −4 has no
integral solution for (x, y);

• the index 2 subgroup of Symm(Pα) if x2 −Dy2 = −4 does have
an integral solution.

(iii) Otherwise

Symm+(Pα) = Symm(Pα) = 1.

Proof. First of all, it follows immediately from Corollary 3.18 that, for any
α > 0 that is neither rational nor quadratic, Pα is not self-similar. Therefore
Symm(Pα) = Symm+(Pα) = 1 for all such α.
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Now suppose that α is rational. Then Corollary 3.17 tells us that Pα is
a strip packing. In this case, the full self-similarity group is generated by
a translation ‘along’ the strip, a reflection in a line perpendicular to the
strip, and a reflection that interchanges the two lines. The resulting group
is isomorphic to D∞ × Z/2Z where D∞ is the infinite dihedral group. The
subgroup of orientation-preserving self-similarities of Pα is generated by the
translation and the rotation given by combining the two reflections. This
subgroup is isomorphic to D∞.

The main focus of our work is the case where α is of degree precisely 2
over Q. We have already shown in Proposition 3.19 that

Symm(Pα) ∼=
{[

a b
c d

]
∈ PGL2(Z)

∣∣∣∣ aα+ b

cα+ d
= α

}

and that

Symm+(Pα) ∼=
{[

a b
c d

]
∈ PSL2(Z)

∣∣∣∣ aα+ b

cα+ d
= α

}
,

so it suffices to calculate these stabilizer groups.
It turns out that the elements of PGL2(Z) that fix α are closely related

to the solutions to the Pell equations

(3.23) x2 −Dy2 = ±4,

where D = q2 − 4pr is the discriminant of the primitive integer polynomial
f(x) = px2 + qx+ r satisfied by α, with p > 0.

Define the sets G and G+ as follows:

G :=

{
x+ y

√
D

2

∣∣∣∣∣ x, y ∈ Z, x2 −Dy2 = ±4

}

and

G+ :=

{
x+ y

√
D

2

∣∣∣∣∣ x, y ∈ Z, x2 −Dy2 = 4

}
,

where D is as in the previous paragraph. One can easily check that G is a
group under multiplication with subgroup G+. Furthermore, one can show
(see [8, Theorem 1.9], for example) that

(3.24) G ∼= Z× {±1}.
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Our proof of Theorem 3.22 is given by relating the stabilizer of α in
PGL2(Z) with the group G.

Recall that the integers p, q, r are the coefficients of the primitive integer
polynomial satisfied by α and that D = q2−4pr. We first construct a group
homomorphism

Γ : G →
{[

a b
c d

]
∈ PGL2(Z)

∣∣∣∣ aα+ b

cα+ d
= α

}
,

x+ y
√
D

2
�→

[x−yq
2 −yr

yp x+yq
2

]
.

The matrices in the image of Γ consist of integer entries because:

x± yq ≡ x2 − y2q2 (mod 2)

≡ x2 − y2(q2 − 4pr) (mod 2)

= x2 −Dy2 = ±4 ≡ 0 (mod 2).

These matrices stabilize α because:

pα2 + qα+ r = 0 =⇒ ypα2 + yqα+ yr = 0

=⇒ ypα2 +

(
x+ yq

2
− x− yq

2

)
α+ yr = 0

=⇒
x−yq
2 α− yr

ypα+ x+yq
2

= α,

and are invertible because∣∣∣∣x−yq
2 −yr

yp x+yq
2

∣∣∣∣ = x2 − y2q2

4
+ y2pr

=
1

4
(x2 −Dy2)

= ± 1,

where the sign is positive if and only if (x, y) satisfies x2 − Dy2 = +4. To
see that Γ is a group homomorphism, we check:

Γ

(
x+ y

√
D

2
· x

′ + y′
√
D

2

)
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= Γ

( xx′+Dyy′

2 + xy′+x′y
2

√
D

2

)

=

⎡
⎢⎣

xx′+yy′(q2−4pr)−xy′q−x′yq
4

−xy′r−x′yr+yy′qr−yy′qr
2

x′yp+xy′p+yy′pq−yy′pq
2

xx′+yy′(q2−4pr)+xy′q+x′yq
4

⎤
⎥⎦

=

[x−yq
2 −yr

yp x+yq
2

] [x′−y′q
2 −y′r

y′p x′+y′q
2

]

= Γ

(
x+ y

√
D

2

)
Γ

(
x′ + y′

√
D

2

)
.

Combining the map Γ with the isomorphism of Proposition 3.19 we have

now shown how to construct, for each solution to (3.23), a self-similarity

of Pα. To prove our Theorem, we calculate the kernel and image of the

homomorphism Γ. First, we show that Γ is surjective, which implies that

every self-similarity of Pα arises from a solution to (3.23) in the manner

described above. So suppose we are given a matrix A =
[
a b
c d

]
that stabilizes

α. In particular, it follows that

cα2 + (d− a)α− b = 0.

This polynomial is therefore an integer multiple of the primitive polynomial

px2 + qx+ r with root α. That is, there exists m ∈ Z such that

c = mp,

d− a = mq,

−b = mr.

Now set

x = a+ d,

y = m.

We clearly have x, y ∈ Z and

x2 −Dy2 = (a+ d)2 − (q2 − 4pr)m2

= (a+ d)2 − (a− d)2 − 4bc

= 4(ad− bc) = ±4,
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so x+y
√
D

2 ∈ G. (Moreover, this is in G+ if and only if A ∈ PSL2(Z).) It is

easy to check that Γ(x+y
√
D

2 ) = A as required.

Finally, x+y
√
D

2 is in the kernel of Γ if and only if

x− yq = x+ yq = ±2, yr = yp = 0.

Since p cannot be zero (α �∈ Q), it follows that y = 0, and therefore x = ±2.

In other words,

ker(Γ) = {±1}.

Putting together our various isomorphisms and using (3.24), we now

have

Symm(Pα) ∼= G/{±1} ∼= Z.

We have also seen that the orientation-preserving self-similarities correspond

under this isomorphism to the subgroup G+/{±1}. There are two possibil-

ities here. One is that the generator for G is in G+. In this case the groups

are equal and all the self-similarities of Pα are orientation-preserving. This

happens when there are no integer solutions to the equation

x2 −Dy2 = −4.

The other possibility is that the generator z = x0+y0

√
D

2 for G is not in G+.

But then, however, z2 is in G+ and so G+ is an index 2 subgroup of G. In
this case, Symm+(Pα) is an index 2 subgroup in Symm(Pα) as claimed.

Corollary 3.25. The half-plane packing Pα is self-similar if and only if α is

rational or quadratic over Q. In the quadratic case, Pα is self-similar via an

orientation-reversing self-similarity if and only if the equation x2−Dy2 = −4

has an integral solution (x, y), where D is the discriminant of the primitive

integral polynomial with root α.

4. Half-plane packings and continued fractions

In this section, our main goal is to describe how the continued fraction of a

positive real number α manifests itself geometrically in the half-plane pack-

ing Pα. Recall that the standard continued fraction expansion of a positive
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real number α is a representation of the form

α = a0 +
1

a1 +
1

a2 +
1

. . .

for some integers ak, with a0 ≥ 0 and ak > 0 for all k > 0. It is also standard
(and more practical typographically) to express this expansion simply as
α = [a0, a1, a2, . . .].

To begin, we recall the algorithm for computing the continued fraction
expansion of a positive real number α. The continued fraction expansion is
computed by successive iterations of the following algorithm, which we refer
to as the continued fraction algorithm. The input for the algorithm is
the number α0 = α. Each step of the algorithm takes αn and determines
αn+1.

(A) If αn ≥ 1, let αn+1 = αn − 1.
(B) If 0 < αn < 1, let αn+1 =

1
αn

.
(C) If αn = 0, halt.

Recording the sequence of steps obtained when applying this algorithm to
a positive real number α we get something like

ABAABAAC.

The positive integer ak from the continued fraction expansion corresponds
precisely to the length of the (k + 1)th string of consecutive A’s. For exam-
ple, the above sequence represents the application of the continued fraction
algorithm to α0 =

7
5 . The resulting continued fraction expansion is

[1, 2, 2] = 1 +
1

2 +
1

2

=
7

5
.

The sequence (αn) in this case is:

(4.1)
7

5

(A)
−−−→ 2

5

(B)
−−→ 5

2

(A)
−−−→ 3

2

(A)
−−−→ 1

2

(B)
−−→ 2

(A)
−−−→ 1

(A)
−−−→ 0.

Notice that the continued fraction expansion for αn is the same as that for
α, but with an ‘initial segment’ removed. For example, if α0 = [2, 3, 4, 5, 6, 7],
then we have
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α1 = [1, 3, 4, 5, 6, 7],

α2 = [0, 3, 4, 5, 6, 7],

α3 = [3, 4, 5, 6, 7],

α4 = [2, 4, 5, 6, 7],

α5 = [1, 4, 5, 6, 7],

α6 = [0, 4, 5, 6, 7],

α7 = [4, 5, 6, 7]

and so on.
Turning now back to Apollonian circle packings, we define a circle re-

placement algorithm. The input of this algorithm is an ordered pair
(X0, Y0), where X0 and Y0 are tangent circles in a half-plane packing P
that are also tangent to a chosen line L ∈ P . We also require that Y0 is
not itself a line. At the (n+ 1)th step of the algorithm, we replace the pair
(Xn, Yn) with a new pair of circles (Xn+1, Yn+1):

(A) If curv(Xn) ≥ curv(Yn), take Yn+1 = Yn and take Xn+1 to be the
circle that fills the unbounded interstice for Xn and Yn (in the sense
of Definition 2.8). Note that Corollary 3.9 implies that√

curv(Xn+1) =
√

curv(Xn)−
√

curv(Yn).

(B) If 0 < curv(Xn) < curv(Yn), take Xn+1 = Yn and Yn+1 = Xn.
(C) If curv(Xn) = 0, halt.

As with the continued fraction algorithm, we are interested in the se-
quence of steps involved when the algorithm is performed to a given starting
pair of circles. (For example, we might obtain the sequence AABABAAAAB
AAC.) Our main observation is then the following.

Lemma 4.2. Let α be a positive real number, and let (X0, Y0) be the two
circles used to construct the half-plane packing Pα: X0 and Y0 are tangent to
each other and to the x-axis L, and curv(X0) = α2, curv(Y0) = 1. Then the
sequence of steps (A, B, or C) performed in applying the continued fraction
algorithm to α is the same as the sequence of steps performed in applying
the circle replacement algorithm to (X0, Y0). Moreover, we have

αn =

√
curv(Xn)√
curv(Yn)

for all n ≥ 0.



Apollonian circle packings of the half-plane 33

Proof. The proof is by induction on n. For n = 0, this is the claim

α =

√
curv(X0)√
curv(Y0)

which is true by the choice of X0 and Y0.
Suppose that the claim holds for αn and (Xn, Yn). Then αn ≥ 1 if and

only if curv(Xn) ≥ curv(Yn) and αn = 0 if and only if curv(Xn) = 0.
This tells us that the next step (A, B, or C) will be the same for both
algorithms. So it remains only to verify that the formula still holds for αn+1

and (Xn+1, Yn+1).
Suppose that αn ≥ 1. Then we have αn+1 = αn − 1, so it is sufficient to

show that √
curv(Xn+1)√
curv(Yn+1)

=

√
curv(Xn)√
curv(Yn)

− 1.

We have Yn+1 = Yn, so it is enough to show that√
curv(Xn+1) =

√
curv(Xn)−

√
curv(Yn)

which follows from Corollary 3.9 as mentioned above.
Finally, suppose that 0 < αn < 1. Then

αn+1 =
1

αn
=

√
curv(Yn)√
curv(Xn)

=

√
curv(Xn+1)√
curv(Yn+1)

.

Figure 10 shows the circle replacement algorithm applied to the packing
Pα for α = 7

5 . The circles are labeled by the square roots of their curvatures.
Compare this to (4.1) as an illustration of Lemma 4.2.

Recall that the continued fraction expansion of a real number α deter-
mines a sequence of rational numbers pn

qn
that converge to α. These are the

convergents of α and are given by truncating the continued fraction expan-
sion of α. Thus if

α = [a0, a1, a2, . . . ]

then set
pn
qn

:= [a0, a1, . . . , an],

where pn and qn are nonnegative coprime integers. They satisfy the recur-
rence equations

(4.3) pn = pn−2 + anpn−1, qn = qn−2 + anqn−1.
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Figure 10: The circle replacement algorithm applied to the packing P 7

5
. The

circles are labeled by the square roots of their curvatures.

We now observe that the convergents of α appear in the labels (in the

sense of §2) of the circles in the circle replacement algorithm applied to the

packing Pα.

Lemma 4.4. Let α be a positive real number. Let (X0, Y0) = (C(1,0), C(0,1))

be the generating circles for the packing Pα. The sequence of distinct circles

in the sequence (Yj) defined by the circle replacement algorithm is

C(0,1), C(q0,−p0), C(−q1,p1), C(q2,−p2), C(−q3,p3), . . . .

In particular, if α �∈ Q, then

lim
j→∞

curv(Yj) = 0.

Proof. We have Y0 = C(0,1) and X0 = C(1,0). The first new Yj will appear

after the first application of step (B) of the algorithm, that is, after a0 + 1

steps. At this point we have

Ya0+1 = Xa0
= C(1,−a0) = C(q0,−p0)

and

Xa0+1 = Ya0
= C(0,1).
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Now suppose, inductively, that immediately after the nth application of
step (B) we have

YN = C(qn−1,−pn−1), XN = C(−qn−2,pn−2).

Running the algorithm until after the next application of (B), that is an+1
times, we have

YN+an+1 = XN+an
= C(−qn−2−anqn−1,pn−2+anpn−1) = C(−qn,pn)

and

XN+an+1 = YN+an
= YN = C(qn−1,−pn−1).

The first claim now follows by induction on n.
By Lemma 3.13, we have

curv(C(±qn,∓pn)) = (qnα− pn)
2 = q2n

(
α− pn

qn

)2

.

A basic fact about the convergents for continued fractions [7, Theorem 171]
is that ∣∣∣∣α− pn

qn

∣∣∣∣ < 1

q2n
so

curv(C(±qn,∓pn)) <
1

q2n
.

It follows from (4.3) that qn → ∞ as n → ∞, so the curvatures of the Yj
tend to zero.

Our goal is now to use this relationship between the circle replacement
and continued fraction algorithms to give new criteria for two packings to
be similar, and a new way to understand the self-similarities of a given
packing, both in terms of continued fraction expansions. To do this we have
to know that the circle replacement algorithm involves ‘enough’ of the circles
in the packing to be able to detect any similarity between two packings. The
following lemma is key to this.

Lemma 4.5. Let P be a half-plane packing (but not a strip packing). Fix an
ordered pair of circles (X0, Y0) as in the definition of the circle replacement
algorithm. Let X and Y be any pair of tangent circles in PL such that X0

and Y0 are contained in the bounded interstice formed by X and Y . Then
one of the pairs (X,Y ) and (Y,X) appears as (Xn, Yn) in the application of
the circle replacement algorithm to (X0, Y0).
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Proof. The second part of Lemma 4.4 implies that the radii of the circles
Xn and Yn increase without bound as n tends to infinity. Therefore there is
some smallest integer N such that XN does not lie in the bounded interstice
formed by X and Y . Since XN is tangent to XN−1, the remark following
Definition 2.8 implies that XN also cannot lie in the unbounded interstice
for X and Y . Hence XN is equal to one of X,Y , say Y without loss of
generality.

Now YN is either equal to Xn for some n < N , or is equal to Y0. Either
way, YN is in the bounded interstice formed byX and Y and so, in particular,
is smaller than XN . This tells us that the next step in the circle replacement
algorithm is (B); i.e., XN+1 = YN and YN+1 = XN = Y . Since YN+1

is larger than XN+1, we next repeat step (A) until XN+K is larger than
YN+K = YN+1 for some K ≥ 0. Then XN+K is not in the bounded interstice
formed by X and Y , but XN+1 is. This means we can find a smallest M
with N + 1 < M ≤ N +K such that XM is not in the bounded interstice
formed by X and Y . Since it is tangent to XM−1, this circle XM also cannot
be in the unbounded interstice, so must be one of X and Y . But it is not Y
since YM is. Therefore we have XM = X and YM = Y which completes the
proof.

We can now relate properties of the continued fraction expansion of
a positive real number α to geometric properties of the half-plane circle
packing Pα.

4.1. Strip packings

We already saw in Corollary 3.17 that Pα is the strip packing if and only if
α ∈ Q. This is now reflected in the fact that the continued fraction expansion
for α halts if and only if α ∈ Q. We can see from Lemma 4.2 that the
continued fraction expansion of α halts exactly when the corresponding circle
replacement algorithm produces a circle of curvature 0, that is, a straight
line. This is illustrated in the example of α = 7

5 displayed above.

4.2. Similar packings

We can determine whether the packings Pα and Pβ are similar by examining
the tails of the continued fractions of α and β.

Definition 4.6. Let us say that α and β have eventually equal continued
fraction expansions if there is some k,N ∈ Z such that an = bn+k for all
n ≥ N (where [ai] is the continued fraction expansion of α and [bj ] is the
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continued fraction expansion of β). For example, [1, 2, 3, 4, 4, 4, 4, . . . ] and
[2, 7, 4, 4, 4, 4, . . . ] are eventually equal. For the purposes of Theorem 4.7, we
say that two finite continued fraction expansions are eventually equal since
both expansions terminate.

It is easy to see that α and β have eventually equal continued fraction
expansions if and only if there existm,n ≥ 0 such that αn = βm (where these
are the sequences obtained by applying the continued fraction algorithm to
α and β). This observation yields the following classification of half-plane
packings up to similarity.

Theorem 4.7. For positive real numbers α, β, the circle packings Pα and
Pβ are similar if and only if α and β have eventually equal continued fraction
expansions.

Proof. A quick proof of this result follows by identifying each of the condi-
tions in the statement with the condition that there exist p, q, r, s ∈ Z with
ps − qr = ±1 and pα+q

rα+s = β. For the circle packings, this is Lemma 3.16;
for the continued fractions, it is [7, Theorem 175]. However, we give a more
interesting proof arising from the direct comparison between the continued
fraction and circle replacement algorithms.

First, note that α and β have finite continued fraction expansions if and
only if α and β are rational, which is equivalent by Corollary 3.17 to Pα and
Pβ both being strip packings, which are similar. We may therefore assume
that α and β are irrational.

Suppose α and β have eventually equal continued fraction expansions.
Then αn = βm for some m,n. This means that the ratio of the curvatures
of a pair of tangent circles in Pα, both tangent to L, is equal to the ratio
of the curvatures of a pair of tangent circles in Pβ, both tangent to L. It
follows by Lemma 3.5 that there is a similarity between Pα and Pβ.

To prove the converse, suppose Pα and Pβ are similar. Then there is a
pair of circles (X ′

0, Y
′
0) in Pα whose ratio of curvatures is equal to β2, in ad-

dition to the original pair of circles (X0, Y0) in Pα whose ratio of curvatures
is α2. The key step is the following claim: if we apply the circle replacement
algorithm to each of these pairs of circles, they will eventually coincide; that
is, there is some pair of circles (X,Y ) in Pα that appears both as (XM , YM )
and (X ′

N , Y ′
N ) for some M,N ∈ N. Note that the circle replacement algo-

rithm only sees ratios of curvatures and not the curvatures themselves, so
the circle replacement algorithm will generate the same numerical data for
(X ′, Y ′) as it would for the corresponding pair of circles in the packing Pβ.
From this claim, it follows that α and β have eventually equal continued
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fraction expansions since

αM =

√
curv(XM )√
curv(YM )

=

√
curv(X)√
curv(Y )

=

√
curv(X ′

N )√
curv(Y ′

N )
= βN .

Now let us prove that the circle replacement algorithms corresponding to
α and β eventually coincide in the sense described in the previous paragraph.
Let (Xn, Yn) be the pairs obtained from applying the circle replacement
algorithm to (X0, Y0), as defined in the previous paragraph. We suppose
without loss of generality that X0 ≺ Y0 and X ′

0 ≺ Y ′
0 . If one of the pairs

contained the other in its bounded interstice, say X0 	 X ′
0 ≺ Y ′

0 	 Y0, then
by Lemma 4.5 there would be M such that {XM , YM} = {X ′

0, Y
′
0}. Suppose

instead that

X0 ≺ Y0 	 X ′
0 ≺ Y ′

0 .

Suppose that there is no pair (Xn, Yn) that contains (X
′
0, Y

′
0) in its bounded

interstice. Then, for each n, one of the circles Xn and Yn, has its point of
tangency with the x-axis between the corresponding tangency points of Y0
and X ′

0. By the second part of Lemma 4.4, this means that there are arbi-
trarily large circles, all disjoint, with tangency points in this fixed interval.
A little geometry shows that if two disjoint circles of radii R and R′ are tan-
gent to the x-axis, then their points of tangency are at least 2

√
RR′ apart.

This gives us a contradiction and so we deduce that there is M such that
XM and YM contain both X ′

0 and Y ′
0 in their bounded interstice. But then

by Lemma 4.5, the pair {XM , YM} is equal to {X ′
N , Y ′

N} for some N . To
complete the proof that the algorithms eventually coincide, we need to show
that we can choose M and N such that XM = X ′

N and YM = Y ′
N .

Suppose instead that XM = Y ′
N and YM = X ′

N . We may assume that
XM is smaller than YM (otherwise, apply one more replacement to (XM , YM )
to replace XM with YM+1 and YM with XM+1). It follows that Y ′

N is
smaller than X ′

N , so that the next step of the algorithm, step (B), will
set X ′

N+1 = Y ′
N and Y ′

N+1 = X ′
N , and we therefore have XM = X ′

N+1 and
YM = Y ′

N+1.

4.3. Self-similar packings

We also have already seen (Theorem 3.22) that Pα is self-similar (but not
the strip packing) if and only if α is quadratic over Q. It is a well-known fact
that an irrational number α is quadratic over Q if and only if its continued
fraction expansion is infinite and periodic; i.e., if and only if
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α = [a0, . . . , an−1, c0, . . . , cm−1, c0, . . . , cm−1, . . .]

= [a0, . . . , an−1, c0, . . . , cm−1].

This fact, along with Theorem 4.7, yields the following classification of

self-similar half-plane packings (which are not strip packings):

Theorem 4.8. The similarity classes of self-similar half-plane (non-strip)

circle packings correspond bijectively to finite non-repeating sequences of pos-

itive integers, up to cyclic permutation. (A sequence is non-repeating if it

is not equal to the concatenation of multiple copies of the same smaller se-

quence.)

Proof. Pα is self-similar if and only if the continued fraction expansion for

α is periodic, as we mentioned above. We identify the similarity class of

Pα with the minimal periodic part of this expansion. For example, if α =√
2 = [1, 2, 2, 2, . . . ] then we identify [Pα] with the one term sequence (2). If

α =
√
3 = [1, 1, 2, 1, 2, 1, 2, . . . ], we identify [Pα] with (1, 2), or equivalently,

(2, 1). Conversely, the finite non-repeating sequence (a0, . . . , an−1) represents

the quadratic number α = [a0, . . . , an−1], so that every such sequence repre-

sents a similarity class of self-similar half-plane packings (namely, the class

including Pα). That each sequence represents exactly one similarity class

follows from Theorem 4.7, since two periodic continued fractions expansions

are eventually equal if and only if they have the same periodic part up to a

cyclic permutation.

Examples. Based on the classification in Theorem 4.8 we can give examples

of the simplest self-similar half-plane packings. In some sense, the simplest

such packing is given by α = [1, 1, . . . ] = 1+
√
5

2 . From the perspective of

Theorem 4.8, this is represented by the singleton sequence (1). The corre-

sponding circle packing Pα has a self-similarity constructed from a single

circle replacement. This is displayed in Figure 11.

The next simplest example is α = [2, 2, . . . ] = 1 +
√
2, represented by

the singleton sequence (2). The corresponding circle packing Pα has a self-

similarity obtained by doing two circle replacements. This appears in Fig-

ure 12.

There are two different self-similar packings for which a self-similarity

involves three circle replacements. Corresponding to the sequence (3), we

have α = [3, 3, . . . ] = 3+
√
13

2 . The packing Pα is shown in Figure 13. Cor-

responding to the sequence (1,2) we have α = [1, 2, 1, 2, . . . ] = 1+
√
3

2 . This

packing is shown in Figure 14.
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Figure 11: Eight generations of the packing Pα, where α = [ 1 ] = 1+
√
5

2 . The
circles corresponding to the circle replacement algorithm are shaded gray.
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Figure 12: Eight generations of the packing Pα, where α = [ 2 ] = 1 +
√
2.

The circles corresponding to the circle replacement algorithm are shaded
gray.
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Figure 13: Eight generations of the packing Pα, where α = [ 3 ] = 3+
√
13

2 .
The circles corresponding to the circle replacement algorithm are shaded
gray.
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Figure 14: Eight generations of the packing Pα, where α = [ 1, 2 ] = 1+
√
3

2 .
The circles corresponding to the circle replacement algorithm are shaded
gray.
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We have seen that the self-similarity of the packing Pα is reflected in
the continued fraction expansion of α. In fact, it turns out that every self-
similarity of Pα comes about from the periodicity of the continued frac-
tion expansion. In particular, the self-similarity groups of the packings in
Figures 11–14 are generated by those arising from the circle replacement
algorithm. We can make this more precise as follows.

Suppose for simplicity that α has a purely periodic continued fraction
expansion:

α = [a0, . . . , an−1, a0, . . . , an−1, a0, . . . ] = [a0, . . . , an−1].

(By Theorem 4.7, we lose no generality in doing so.) After performing N =
a0 + · · · + an−1 + n steps of the continued fraction algorithm, the initial
segment consisting of the periodic part of the continued fraction expansion is
removed; therefore αN = α. It follows by Lemma 4.2 that applying N steps
of the circle replacement algorithm to the pair (X0, Y0) = (C(1,0), C(0,1))
yields a pair (XN , YN ) whose curvatures are in the same ratio (i.e., α2) as
the original circles (X0, Y0). There is therefore a similarity of Pα that maps
X0 to XN and Y0 to YN by Lemma 3.5. (Note that if the continued fraction
expansion of α is not purely periodic, the above argument determines instead
a similarity mapping (XM , YM ) to (XN , YN ) for some M,N .) In fact, this
argument may be repeated to show that there is a similarity of Pα that maps
X0 to XkN and Y0 to YkN for each k ∈ Z≥0. The next lemma tells us that
every self-similarity of Pα arises from the continued fraction expansion of α
in this way.

Lemma 4.9. Suppose α is the positive real number with periodic continued
fraction expansion [a0, . . . , αn−1] and that this is the minimal periodic part.
Let Φ denote the generator of Symm(Pα) ∼= Z for which Φ has scale factor
greater than 1, and let (X0, Y0) = (C(1,0), C(0,1)) be the generators for Pα.
Then

Φk(X0) = XkN , Φk(Y0) = YkN

for each k ≥ 0, where N = a0+ · · ·+ an−1+n as above, and Φk denotes the
k-fold composition of Φ with itself (and Φ0 is the identity map on R2).

Proof. We have already argued that for each k ≥ 0 there is a self-similarity
Φk of Pα such that

Φk(X0) = XkN and Φk(Y0) = YkN .

Furthermore, if N does not divide m, then αm �= α, so that the only self-
similarities that correspond to the circle replacement algorithm are the Φk.
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Because the radius of Y0 is 1, the scale factor μk of Φk is equal to the
radius of Φk(Y0) = YkN , which increases as k increases by the definition of
the circle replacement algorithm. (Note that the YkN must necessarily be
distinct.) Similarly, since the scale factor for Φk is μk, with μ > 1, the scale
factor for Φk also increases as k increases. It will therefore suffice to show
that each self-similarity φ with scale factor greater than 1 satisfies

φ(X0) = Xm and φ(Y0) = Ym

for some m ≥ 1.
By Lemma 4.5, we may reduce this problem to showing that each of X0

and Y0 either lies in the bounded interstice for φ(X0) and φ(Y0) or is equal to
one of φ(X0) and φ(Y0). Because self-similarities preserve the basic structure
of the packing, X0 (resp. Y0) lies in the bounded interstice for φ(X0) and
φ(Y0) if and only if φ−1(X0) (resp. φ−1(Y0)) lies in the bounded interstice
for X0 and Y0. It is therefore enough to show that if ψ is a self-similarity of
Pα with scale factor less than 1, then ψ(X0) lies in the bounded interstice
for X0 and Y0. In that case ψ(Y0) will have to either be in the bounded
interstice, or be equal to X0 or Y0.

By the proof of Theorem 3.22, for any nontrivial self-similarity ψ of Pα,
we have

ψ(X0) = ψ(C(1,0)) = C( x−yq

2
,−yr),

ψ(Y0) = ψ(C(0,1)) = C(yp, x+yq

2 ),

where x and y are integers satisfying |x2 − Dy2| = 4 with y �= 0. Here
f(x) = px2 + qx+ r, p > 0, is the primitive integer polynomial satisfied by
α, and D = q2 − 4pr is the discriminant of f .

To show that ψ(C(1,0)) either lies in the bounded interstice for C(1,0) and
C(0,1), or is equal to C(0,1), it will suffice by Lemmas 2.15 and 2.20 to show
that

(4.10)
x− yq

2
> 0 and − yr > 0.

To see this, we first recall a result due to Galois [1, 2] concerning purely
periodic continued fractions. Because α has a purely periodic continued frac-
tion expansion, it is a reduced quadratic number; i.e., α > 1 and −1 < α′ <
0, where α′ is the quadratic conjugate of α. Since q = −p(α + α′) and
r = pαα′, and since p > 0, it follows that q, r < 0. It is now sufficient to
show that x > 0 and y > 0.
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First note that we cannot have both x, y < 0 since then the label on
ψ(C(1,0)) would consist of two negative numbers, which is impossible by
Proposition 2.21. We now show also that x and y cannot have different
signs.

Let μ′ be the scale factor of ψ which, by assumption, is less than 1. Since
curv(C(0,1)) = 1 and curv(ψ(C(0,1))) = (ypα+ x+yq

2 )2, it follows that

μ′ =
1(

ypα+ x+yq
2

)2 .
Therefore ∣∣∣∣ypα+

x+ yq

2

∣∣∣∣ > 1.

Since α has purely periodic continued fraction expansion, it is greater than

its conjugate, so we have α = −q+
√
D

2p . The above inequality then implies

|x+ y
√
D| > 2.

Now x2 − Dy2 = ±4, so x = ±
√

Dy2 ± 4. If x and y have different signs,
then this inequality becomes

|
√

Dy2 ± 4−
√

Dy2| > 2.

But |
√
t+ 4 −

√
t| ≤ 2 for all t ≥ 0, so in fact x and y must have the same

sign (and y �= 0 since we assumed that ψ was a nontrivial self-similarity).
This completes the proof.

Finally, we can also use continued fractions to see which packings have
orientation-reversing self-similarities.

Theorem 4.11. For a positive real number α, the circle packing Pα has
an orientation-reversing self-similarity if and only if the continued fraction
expansion of α has odd period.

Proof. We know from Lemma 4.9 that all self-similarities of Pα correspond
to periods in the continued fraction expansion of α. The self-similarity Φ
is orientation-reversing if the corresponding pairs of circles in the circle re-
placement algorithm, say (Xn, Yn) and (Xm, Ym), for which Φ(Xn) = Xm

and Φ(Yn) = Ym, satisfy Xn ≺ Yn, but Ym ≺ Xm. Since the orientation of
the circles Xk, Yk changes once for each case of step (B) in the algorithm,
that is, for each term in the continued fraction expansion, we see that Φ is
orientation-reversing if and only if it corresponds to an odd period.
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In the examples, we see that the circle packings Pα for α = [1̄], [2̄], [3̄] do
have orientation-reversing self-similarities, whereas that for α = [ 1, 2 ]does

not.
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