
Journal of Combinatorics

Volume 2, Number 4, 575–592, 2011

The Erdős-Lovász Tihany Conjecture and
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The Erdős-Lovász Tihany Conjecture [Theory of Graphs (Proc.
Colloq., Tihany, 1966), Academic Press, 1968] states that for any
pair of integers s, t ≥ 2 and for any graph G with chromatic num-
ber equal to s+ t− 1 and clique number less than s+ t− 1 there
are two disjoint subgraphs of G with chromatic number s and t,
respectively. The Erdős-Lovász Tihany Conjecture is still open ex-
cept for a few small values of s and t. Given the same hypothesis
as in the Erdős-Lovász Tihany Conjecture, we study the problem
of finding two disjoint subgraphs of G with complete minors of
order s and t, respectively. If Hadwiger’s Conjecture holds, then
this latter problem might be easier to settle than the Erdős-Lovász
Tihany Conjecture. In this paper we settle this latter problem for
a few small additional values of s and t.

Keywords and phrases:Graph colouring, graph decompositions, com-
plete minors.

1. Introduction

In this paper we study certain relaxed versions of the Erdős-Lovász Tihany
Conjecture [12] (Conjecture 1.1). The study documented here is a continu-
ation of that initiated in [18, 27].

First a bit of standard notation and terminology. All graphs considered
in this paper are assumed to be simple and finite.1 Let G denote a graph. An
independent k-set of G is an independent set of G of size k. The complete
graph on k vertices is referred to as a k-clique, and the 3-clique is also referred
to as a triangle. Given a vertex v in G, the open neighbourhood N(v) of v
in G is the set of vertices in G adjacent to v, and the closed neighbourhood
N [v] of v in G is the set N(v) ∪ {v}. Given a subset S of the vertices of G,
the subgraph of G induced by the vertices of S is denoted G[S]. Given two

1The reader is referred to [5] for definitions of any graph-theoretic concept used
but not explicitly defined in this paper.
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graphs G and H, we say that H is a minor of G (and that G contains an H
minor) if there is a collection {Vh | h ∈ V (H)} of non-empty disjoint subsets
of V (G) such that the induced graph G[Vh] is connected for each h ∈ V (H),
and for any two adjacent vertices h1 and h2 in H there is at least one edge
in G joining some vertex of Vh1

to some vertex of Vh2
. The sets Vh are called

the branch sets of the minor H of G. We may write H ≤ G or G ≥ H, if G
contains H as a minor. Given an edge e = uv of a graph G, we denote by
G/e the graph obtained from G by contracting the edge e into a new vertex
ve which in G/e is adjacent to all the former neighbours of u and of v in G.
A graph G contains H as a minor if and only if some graph F isomorphic to
H can be obtained from G by a series of edge contractions and deletions of
edges and vertices. The Hadwiger number η(G) is the largest integer k for
which G contains a Kk minor, while the Hajós number h(G) is the largest
integer � for which G contains a subdivision of K�.

Conjecture 1.1 (Erdős-Lovász Tihany Conjecture [12]). For any pair of
integers s, t ≥ 2 and any graph G with ω(G) < χ(G) = s + t − 1 there are
two disjoint subgraphs G1 and G2 of G with χ(G1) ≥ s and χ(G2) ≥ t.

Conjecture 1.1 holds for (s, t) equal to (2, 2), (2, 3), (2, 4), (3, 3), (3, 4),
and (3, 5) (see [6, 25, 31, 32]). Kostochka and Stiebitz [21] proved it to be
true for line graphs of multigraphs, while Balogh et al. [4] proved it to be
true for quasi-line graphs and for graphs with independence number 2.

Given integers s, t ≥ 2 with s ≤ t, an (s, t)-graph is a connected (s +
t− 1)-chromatic graph which does not contain two disjoint subgraphs with
chromatic number s and t, respectively. In terms of (s, t)-graphs, the Erdős-
Lovász Tihany Conjecture states that every (s, t)-graph contains an (s+ t−
1)-clique. Inspired by Hadwiger’s Conjecture [16] — which states that every
k-chromatic graph contains a Kk minor — and the Erdős-Lovász Tihany
Conjecture, we propose the following conjectures.

Conjecture 1.2. Every (s, t)-graph contains a Ks+t−1 minor.

Conjecture 1.2 is weaker than the Erdős-Lovász Tihany Conjecture, since
in Conjecture 1.2 we only require a Ks+t−1 as a minor, not as a subgraph.
Hence Conjecture 1.2 is settled in the affirmative for all values of (s, t) for
which the Erdős-Lovász Tihany Conjecture is settled in the affirmative. Con-
jecture 1.2 is also weaker than Hadwiger’s Conjecture. Hence Conjecture 1.2
is settled in the affirmative for all graphs for which Hadwiger’s Conjecture
is settled in the affirmative.

Any (s, t)-graph with s = 2 is referred to as a double-critical graph. The
Erdős-Lovász Tihany Conjecture with s = 2 is equivalent to the Double-
Critical Graph Conjecture which states that the complete graphs are the
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only double-critical graphs. (Conjecture 1.2 with s = 2 is referred to as the
Double-Critical Hadwiger Conjecture.)

In [18], we proved that every double-critical k-chromatic graph with k ∈
{6, 7} contains a Kk minor. In [27], it was proved that every double-critical
8-chromatic graph contains a K−

8 minor. (Here K−
8 denotes the complete

8-graph with one edge missing.) Here is yet another related conjecture.

Conjecture 1.3. For any pair of integers s, t ≥ 2 and any graph G with
ω(G) < χ(G) = s+ t− 1 there are two disjoint graphs G1 and G2 of G with
η(G1) ≥ s and η(G2) ≥ t.

Note that if both Hadwiger’s Conjecture and the Erdős-Lovász Tihany
Conjecture are true for a given class C of graphs, then Conjecture 1.3 is
true for all graphs of C as well. Hence it follows from theorems by Balogh
et al. [4] and Chudnovsky and Ovetsky Fradkin [8] that Conjecture 1.3 is
true for all quasi-lines graphs, that is, graphs in which the neighbourhood
of every vertex is coverable by two cliques.

Conjecture 1.3 is true for all 6-colourable graphs G. Here is an argument
for this claim. Let G denote a connected graph with ω(G) < χ(G) ≤ 6. If
χ(G) ≤ 5, then the desired conclusion follows immediately from the above-
mentioned results. Suppose χ(G) = 6. Then there are two possible values
for (s, t), namely, (2, 5) and (3, 4). If (s, t) = (3, 4), then the already settled
case (3, 4) of Conjecture 1.1 applies. Suppose (s, t) = (2, 5). If G contains
two disjoint subgraphs G1 and G2 such that χ(G1) ≥ 2 and χ(G2) ≥ 5, then
the desired conclusion follows from the fact that every 5-chromatic graph
contains a K5 minor (see Theorem 2.6). Otherwise G is double-critical, and
so, by a theorem presented in [18] (see Theorem 2.8), G contains a K6 minor.
The existence of this K6 minor in G and the fact that G does not contain a
6-clique implies that G contains a K2,5 minor. This completes the argument.

The following conjecture is Conjecture 1.3 restricted to (s, t)-graphs.

Conjecture 1.4. For any pair of integers s, t ≥ 2 and any (s, t)-graph G
with ω(G) < s + t − 1, there are two disjoint graphs G1 and G2 of G with
η(G1) ≥ s and η(G2) ≥ t.

2. Preliminaries

The following results will be useful in our search for disjoint complete minors.

Theorem 2.1 ((i) Bush [7]; (ii) Greenwood & Gleason [14]).

(i) Every graph on 6 vertices contains an independent 3-set or a 3-clique.
(ii) Every graph on 9 vertices contains an independent 3-set or a 4-clique.
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A vertex x in a graph G is said to be bisimplicial if the induced graph
G[N(x)] can be covered by two cliques, and an even hole is an induced cycle
of even length.

Theorem 2.2 (Addario-Berry et al. [1]). Every non-empty even-hole-free
graph G contains a bisimplicial vertex and satisfies χ(G) ≤ 2ω(G)− 1.

Vertex partitions with degree or colouring constraints

Theorem 2.3 (Stiebitz [33]). Let G denote an arbitrary graph. If δ(G) ≥
s+ t+1 for s, t ∈ {0} ∪N, then there are two disjoint subgraphs G1 and G2

such that δ(G1) ≥ s and δ(G2) ≥ t.

Theorem 2.4 (Stiebitz [34]). For any pair of integers s, t ≥ 2 and any
graph G with ω(G) < χ(G) = s+ t− 1 there are two disjoint subgraphs G1

and G2 of G with

either χ(G1) ≥ s and col(G2) ≥ t,

or col(G1) ≥ s and χ(G2) ≥ t.

Lemma 2.1 (Stiebitz [32, Corollary 3.2]). Every s-clique (t-clique) of an
(s, t)-graph G is contained in at least t−1 (s−1) cliques each of order s+1
(t+ 1).

Proof of Lemma 2.1 can also be found in [4].
The following result, which we shall use repeatedly, shows that every

(s, t)-graph with clique number at most s+ t− 2 has clique number at most
t− 1.

Lemma 2.2 (Stiebitz [32, Lemma 3.7]). If an (s, t)-graph contains a t-
clique, then it contains an (s+ t− 1)-clique.

As a convenience to the reader, we include a proof of Lemma 2.2.
Given any subset S of the vertex set of a graph G, let T (S : G) denote

the set of vertices in V (G) \S which are adjacent to every vertex of S in G.

Proof of Lemma 2.2. Let G denote an (s, t)-graph. According to Lemma 2.1,
every t-clique X of G is contained in at least s − 1 (t + 1)-cliques; hence
|T (V (X) : G)| ≥ s− 1.

Suppose ω(G) ≥ t, and let X0 denote the vertex set of a t-clique of G
with vertices labelled x1, . . . , xt. Let y1, . . . , yr denote a longest sequence of
pairwise distinct vertices of V (G) \X0 satisfying:
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(1) for each i ∈ [r], Xi := {y1, . . . , yi, xi+1, . . . , xt} induce a t-clique in G,
and

(2) for each i ∈ [r], yi ∈ T (Xi−1 : G).

Now, the set {x1, . . . , xr} induces an r-clique in G, and so, in particular,
χ(G[{x1, . . . , xr}]) = r. The graph G − {x1, . . . , xr} contains the t-clique
G[Xr], and so, in particular, χ(G − {x1, . . . , xr}) ≥ t. Thus, since G is an
(s, t)-graph, r can be at most s − 1. Suppose T (Xr : G) contains some
vertex y not in {x1, . . . , xr}. Then y is adjacent to every vertex of Xr =
{y1, . . . , yr, xr+1, . . . , xt}, y is distinct from y1, . . . , yr, and y ∈ V (G) \ X0.
This contradicts the fact that y1, . . . , yr was chosen as a longest sequence of
pairwise distinct vertices of V (G) \ X0 for which (1) and (2) are satisfied.
This shows that T (Xr : G) is a subset of {x1, . . . , xr}, in particular, |T (Xr :
G)| ≤ r. According to Lemma 2.1, |T (Xr : G)| ≥ s − 1, since G[Xr] is a
t-clique. Hence s− 1 ≤ |T (Xr : G)| ≤ r ≤ s− 1, in particular, r = s− 1 and
T (Xr : G) = {x1, . . . , xr}. This shows that the vertex set Xr∪{x1, . . . , xs−1}
induces a (t+ s− 1)-clique in G, and so the proof is complete.

Proposition 2.1 (Kawarabayashi, Pedersen & Toft [18]). Suppose G is a
non-complete double-critical k-chromatic graph. Then

(i) G has minimum degree at least k + 1,
(ii) G has clique number at most k − 2, and
(iii) the endvertices of any edge in G have at least k−2 common neighbours.

Complete minors in k-chromatic graphs

König [19, 20] observed that a graph is 2-colourable if and only if it does not
contain an odd cycle. This immediately implies the following observation.

Observation 2.1. Every 3-chromatic graph contains an odd cycle.

Theorem 2.5 (Hadwiger [16]; Dirac [10, 11]). Every graph of minimum de-
gree at least 3 contains a subdivision of K4, in particular, every 4-chromatic
graph contains a subdivision of K4.

The following theorem, which states that Hadwiger’s Conjecture is true
for 5-chromatic graphs, follows from Wagner’s Theorem [37] and the Four
Colour Theorem [2, 3, 30].

Theorem 2.6. Every 5-chromatic graph contains a K5 minor.

Theorem 2.7 (Robertson, Seymour & Thomas [29]). Every 6-chromatic
graph contains a K6 minor.
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The Four Colour Theorem is also applied in the proof of Theorem 2.7,
but it is not applied in the proof of the following theorem.

Theorem 2.8 (Kawarabayashi, Pedersen & Toft [18]). If G is a double-
critical k-chromatic graph with k ∈ {6, 7}, then G contains a Kk minor.

Complete minors in graphs with many edges

Theorem 2.9 (Mader [24]). For any positive integer p less than 8, any
graph G with m(G) ≥ (p− 2)n(G)−

(
p−1
2

)
+ 1 and n(G) ≥ p contains a Kp

minor.

The results for p = 5 and p = 6 of Theorem 2.9 were also obtained,
independently, by Győri [15].

Theorem 2.10 (Jørgensen [17]). Every graph G with m(G) ≥ 6n(G) − 19
and n(G) ≥ 8 contains a K8 minor.

Theorem 2.11 (Jørgensen [17, Remark following Theorem 4]). Every graph
on at most 11 vertices and with minimum degree at least 6 contains a K6

minor.

3. Good values for (s, t)

It is straightforward to see that the conclusion of the Erdős-Lovász Tihany
Conjecture holds for s = ω(G) or t = ω(G) (see also Lemma 2.1). Motivated
by this observation and the difficulty in settling the Erdős-Lovász Tihany
Conjecture for arbitrary values of s and t, Bjarne Toft posed the following
problem.

Problem 3.1. Given an arbitrary graph G with ω(G) < χ(G), prove that
there are integers s, t ∈ N \ {1, ω(G)} with χ(G) = s + t − 1 such that G
contains two disjoint subgraphs G1 and G2 with χ(G1) ≥ s and χ(G2) ≥ t.

Problem 3.1 only asks for the existence of integers s, t ∈ N\{1, ω(G)} for
which the conclusion of the Erdős-Lovász Tihany Conjecture holds. Never-
theless, we expect Problem 3.1 to be very difficult, since a positive solution of
Problem 3.1 restricted to 6-chromatic graphs would imply a positive solution
to the Double-Critical Graph Conjecture for 6-chromatic graphs.

Observation 3.1. A positive solution to Problem 3.1 restricted to 6-chro-
matic graphs implies that K6 is the only double-critical 6-chromatic graph,
that is, the Double-Critical Graph Conjecture is true for 6-chromatic graphs.
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Proof. Suppose that we have a positive solution to Problem 3.1 restricted

to 6-chromatic graphs. We shall use this assumption to prove that K6 is

the only double-critical 6-chromatic graph. Let G denote a double-critical

6-chromatic graph, and assume that G is non-complete. Then, by Proposi-

tion 2.1 (ii-iii), ω(G) ∈ {3, 4}. Now, since in the case χ(G) = 6 there are

only two possible values of (s, t) (with s ≤ t), namely (2, 5) and (3, 4), the

positive solution to Problem 3.1 restricted to 6-chromatic graphs implies

that G contains two disjoint subgraphs G1 and G2 with χ(G1) ≥ 2 and

χ(G2) ≥ 5. This contradiction implies that G must be complete, and so, as

desired, G � K6.

Given Observation 3.1, we might ask whether there is some integer k

such that Problem 3.1 has a positive solution for all graphs with chromatic

number at least k.

Observation 3.2. Suppose G is a graph with χ(G) > ω(G) which contains

no isolated vertices. If G contains a maximal clique K of order different

from ω(G) and χ(G)− ω(G) + 1, then s := n(K) and t := χ(G)− n(K) + 1

are integers in N \ {1, ω(G)} such that χ(G) = s+ t− 1 and χ(K) = s and

χ(G− V (K)) ≥ t.

Thus, when considering Problem 3.1 we may assume that every maximal

clique of G has order 1, ω(G), or χ(G)− ω(G) + 1.

Proof of Observation 3.2. Suppose G is a graph with χ(G) > ω(G), δ(G) ≥
2, and a maximal clique K of order different from ω(G) and χ(G)−ω(G)+1.

Define s := n(K) and t := χ(G)− n(K) + 1.

Then χ(K) = n(K) = s and χ(G− V (K)) ≥ χ(G)− χ(K) = t− 1.

By assumption, s /∈ {1, ω(G), χ(G) − ω(G) + 1}. If t = ω(G) then s =

n(K) = χ(G)−ω(G)+ 1, a contradiction. If t = 1 then χ(G) = n(K) which

contradicts the assumption χ(G) > ω(G). Hence, t /∈ {1, ω(G)}.
If χ(G− V (K)) ≥ t we immediately obtain the desired conclusion, and

so we may assume χ(G−V (K)) = t−1. Let ϕ1 and ϕ2 denote an s-colouring

and a (t− 1)-colouring of K and G−V (K), respectively, using colours from

[s] and [s+t−1]\[s]. Then ϕ1 and ϕ2 can be combined into a vertex colouring

ϕ of G. Now, ϕ uses exactly χ(G) colours to colour G, and so each colour

class of G (under ϕ) contains a vertex adjacent to at least one vertex in each

of the other colour classes (see, for instance, [32, Lemma 3.1]), in particular,

some vertex x of colour s + 1 is adjacent to every vertex in V (K). This,

however, contradicts the assumption that K was a maximal clique, and so

the proof is complete.
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Observation 3.2 can be found — in a slightly different formulation —
in [4].

To the best of our knowledge, the Erdős-Lovász Tihany Conjecture re-
mains open for triangle-free graphs. Here we solve Problem 3.1 for triangle-
free graphs. For any positive integer k, there is a triangle-free k-chromatic
graph [26, 36] (see also, for instance, [5, p. 371] or [35, p. 239]), and so
Observation 3.3 describes a property of a non-trivial class of graphs.

Observation 3.3. If G is a triangle-free graph with χ(G) ≥ 5, then G
contains two disjoint subgraphs G1 and G2 such that χ(G1) = 3 and χ(G2) ≥
χ(G)− 2.

Proof. LetG denote a triangle-free graph with χ(G) ≥ 5, and letG1 denote a
shortest odd cycle inG. Let the vertices ofG1 be labelled cyclically v1, . . . , v�,
and let G2 denote the graph G−V (G1). We may assume χ(G2) = χ(G)−3.
Now, assign the colour 2 to all even numbered vertices of G1, and the colour
1 to all odd numbered vertices of G1, except v� which is assigned the colour
3 — this, of course, gives a proper 3-colouring of G1. Colour the vertices of
G2 with χ(G2) colours all distinct from 1, 2, and 3. We now have a proper
χ(G)-colouring of G, and so each colour class of G contains at least one
vertex which is adjacent to at least one vertex in each other colour class.
Let v denote such a vertex of V (G2). Since v� ∈ V (G1) is the only vertex of G
coloured 3, it follows that v is adjacent to v�. Since ω(G) = 2, it now follows
that v is adjacent to neither v1 nor v�−1. Hence v is adjacent to some even
numbered vertex ve (coloured 2) and some odd numbered vertex vo (coloured
1) in {v2, v3, . . . , v�−2}. Now the (ve, vo)-path P in G1 not containing v� has
odd length, in particular, |E(P )| ≤ � − 4, since neither v�−2v�−1, v�−1v�,
v�v1, nor v1v2 is in E(P ). Hence V (P ) ∪ {v} contains an induced odd cycle
of length at most (�− 4)+ 2, a contradiction. This completes the proof.

Problem 3.2. Prove that the Erdős-Lovász Tihany Conjecture holds for
triangle-free graphs.

4. Disjoint complete minors in 7-chromatic graphs

The Erdős-Lovász Tihany Conjecture remains unsettled for (4, 4)-graphs,
but it follows easily from the abovementioned theorems by Dirac (Theo-
rem 2.5) and Stiebitz (Theorem 2.4) that any (4, 4)-graph G with ω(G) < 7
contains two disjoint subgraphs G1 and G2 such that η(G1) ≥ 4 and η(G2) ≥
4.

Observation 4.1. Every 7-chromatic graph with clique number at most 6
contains a K4,4 minor.
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Proof. Let G denote a 7-chromatic graph with clique number at most 6. It
follows from Theorem 2.4 that G contains two disjoint subgraphs G1 and
G2 such that χ(G1) ≥ 4 and col(G2) ≥ 4, and so the desired result follows
directly from Theorem 2.5.

Corollary 4.1. Every 7-chromatic graph with clique number at most 6 con-
tains a K2,6, K3,5, and K4,4 as a minor.

Proof. Let G denote a 7-chromatic graph with clique number at most 6.
By Observation 4.1, G ≥ K4,4. By a theorem of Stiebitz [32], there are two
disjoint subgraphs G1 and G2 of G with χ(G1) ≥ 3 and χ(G2) ≥ 5. Hence, by
Observation 2.1 and Theorem 2.6, respectively, G1 ≥ K3 and G2 ≥ K5, that
is, G ≥ K3,5. Finally, we need to show G ≥ K2,6. If G contains two disjoint
subgraphs G1 and G2 with χ(G1) ≥ 2 and χ(G2) ≥ 6, then the desired
result follows Theorem 2.7. Hence we may assume that G is a (2, 6)-graph
with ω(G) < 7 = χ(G). This means that G is a non-complete double-critical
7-chromatic graph, and so, by Theorem 2.8, G ≥ K7. Let B denote a set
of seven branch sets which together form a K7 minor of G. If each branch
set of B consists of a single vertex, then G contains K7 as a subgraph, a
contradiction. Hence some branch set B ∈ B has size at least two. Now
B \ {B} form a K6 minor of G − B, while G[B] ⊇ K2, since |B| ≥ 2 and
G[B] is connected. Hence G ≥ K2,6.

5. Disjoint complete minors in 8-chromatic graphs

There are three values of (s, t) to consider for 8-chromatic graphs, namely
(2, 7), (3, 6), and (4, 5).

The case (s, t) = (2, 7) of Conjecture 1.3 remains unsettled, but at least
we are able to settle the case (s, t) = (2, 7) of Conjecture 1.4 in the affir-
mative. (Our proof method does not settle the case (s, t) = (2, 7) of Con-
jecture 1.3, since Hadwiger’s Conjecture remains unsettled for 7-chromatic
graphs.)

Theorem 5.1. Every (2, 7)-graph with clique number at most 7 contains a
K2,7 minor.

Proof. Let G denote a (2, 7)-graph with clique number at most 7. Then
G is a non-complete double-critical 8-chromatic graph. Now, according to
Proposition 2.1 (i), G has minimum degree δ(G) at least 9. Suppose δ(G) ≥
12. Then, according to Theorem 2.10, G ≥ K8. Let B denote a set of eight
branch sets which together form a K8 minor of G. If each branch set of B
consists of a single vertex, thenG containsK8 as a subgraph, a contradiction.
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Hence some branch set B ∈ B has size at least two. Now B \ {B} form a
K7 minor of G − B, and G[B] ≥ K2, since |B| ≥ 2 and G[B] is connected.
Hence we may assume δ(G) ∈ {9, 10, 11}, and let x denote a vertex of G of
minimum degree.

Suppose that V (G) \ N [x] is an independent set of G. We must have
χ(G[N(x)]) ≥ 7, since otherwise χ(G) ≤ χ(G−N(x))+χ(G[N(x)]) ≤ 1+6 <
χ(G). Since δ(G) ≥ 9 and ω(G) < 8 = χ(G), it follows that there is some
vertex y ∈ N(x) which has at least one neighbour, say z, in V (G) \ N [x].
Define S′ := N(x) \ {y} and S := S′ ∪ {x}. Then χ(G[S′]) ≥ 6, since
χ(G[N(x)]) ≥ 7. Hence, according to Theorem 2.7, G[S′] ≥ K6. This implies
G[S] ≥ K7. Moreover, G − S ≥ K2, since y, z ∈ V (G) \ S with yz ∈ E(G),
and so the desired partition exists.

Suppose that G[V (G) \N [x]] contains at least one edge. We show that
the induced subgraph G[N(x)] has minimum degree at least 6. Given any
vertex y ∈ N(x), let A(y) denote the set of vertices of N(x) \ {y} which are
not adjacent to y, and let B(y) denote the set of common neighbours of x
and y. Then, clearly,

deg(x,G) = |A(y)|+|B(y)|+1 and |A(y)| = |N(x)|−1−deg(y,G[N(x)]).

According to Proposition 2.1 (iii), |B(y)| ≥ 6, since G is a non-complete
double-critical 8-chromatic graph. Hence

deg(x,G) ≥ (deg(x,G)− 1− deg(y,G[N(x)])) + 7

which implies deg(y,G[N(x)]) ≥ 6. Since, in addition, |N(x)| ≤ 11, it now
follows from Theorem 2.11 that the induced subgraph G[N(x)] contains aK6

minor. Hence G[N [x]] contains a K7 minor, and so, since G−N [x] contains
at least one edge, G ≥ K2,7, as desired.

Corollary 5.1. If Hadwiger’s Conjecture is true for all 7-chromatic graphs,
then every 8-chromatic graph with clique number at most 7 contains a K2,7

minor.

Proof. Let G denote an arbitrary but fixed 8-chromatic graph with clique
number at most 7. If G is a (2, 7)-graph then, by Theorem 5.1, G ≥ K2,7.
Otherwise, there are two disjoint subgraphs G1 and G2 of G such that
χ(G1) ≥ 2 and χ(G2) ≥ 7. Obviously, G1 ≥ K2 and, by assumption,
G2 ≥ K7. Hence G ≥ K2,7.

Theorem 5.2. Every 8-chromatic graph with clique number at most 7 con-
tains a K4,5 minor.
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Proof. In order to obtain a contradiction, suppose that the statement is
false, and let G denote a counterexample with the least possible number of
vertices. Then G is vertex-critical, and so δ(G) ≥ χ(G)−1 = 7. If G contains
two disjoint subgraphs G1 and G2 such that χ(G1) ≥ 4 and χ(G2) ≥ 5, then
G1 ≥ K4 and G2 ≥ K5 by Theorem 2.5 and Theorem 2.6, a contradiction.
Hence we may assume that G is a (4, 5)-graph. In addition, ω(G) < 8 = χ(G)
and so, by Lemma 2.2, ω(G) ≤ 4.

Suppose δ(G) ≥ 10. Then, by Theorem 2.3, there are two disjoint sub-
graphs G1 and G2 of G such that δ(G1) ≥ 3 and δ(G2) ≥ 6, and so, by
Theorem 2.5 and Theorem 2.9, G1 ≥ K4 and G2 ≥ K5, a contradiction.
Hence we must have 9 ≥ δ(G) ≥ 7. Let u denote a vertex of G of minimum
degree.

Suppose δ(G) = 7, and let u1, . . . , u7 denote the neighbours of u. Since
ω(G) is at most 4, G[N(u)] contains at least two non-adjacent vertices. Let
u1 and u2 denote two non-adjacent vertices of G[N(u)], and let G′ denote
the graph obtained from G by contracting U := {u, u1, u2} into a single
vertex u′. Since G′ − u′ = G − {u, u1, u2} and χ(G − {u, u1, u2}) ≤ 7, it
follows that G′ is 8-colourable. Suppose G′ is 8-chromatic. Now, the fact
that G is a minimum counterexample implies that G′ must contain a clique
of order 8. This, however, implies ω(G) = 7 which contradicts the fact that
G has clique number at most 4. Hence χ(G′) ≤ 7. Let k := χ(G′), and let ϕ
denote a k-colouring of G′. We may assume ϕ(u′) = 1 and ϕ({u3, . . . , u7}) ⊆
{2, 3, 4, 5, 6}. Now, let ψ : V (G) → [7] denote the mapping defined as follows:
ψ(w) := ϕ(w) for all w ∈ V (G)\U , ψ(u1) := ψ(u2) := 1, and ψ(u) = 7. Then
ψ is a 7-colouring of G, which contradicts the fact that G is 8-chromatic.

Suppose δ(G) = 8. If G[N(u)] contains an independent 3-set, then we
obtain a contradiction as in the case δ(G) = 7. Hence α(G[N(u)]) = 2. Since
the graph G[N(u)] has 8 vertices and independence number 2, it follows
from Theorem 2.1 (i) that G[N(u)] contains a triangle, say Z ⊆ N(u) with
G[Z] � K3. Define Z ′ := Z ∪ {u}. Then G[Z ′] � K4 and χ(G[Z ′]) = 4.
Moreover, χ(G− Z ′) ≤ 4, since G is a (4, 5)-graph. In fact, χ(G− Z ′) must
be equal to 4, since χ(G[Z ′]) + χ(G − Z ′) ≥ χ(G) = 8. Let ϕ1 : Z ′ → [4]
denote 4-colouring of G[Z ′], and let ϕ2 : V (G − Z ′) → [8] \ [4] denote a 4-
colouring of G−Z ′. Let ϕ denote the 8-colouring of G obtained by combining
ϕ1 and ϕ2. Then, since χ(G) = 8, it follows that each colour class contains a
vertex adjacent to at least one vertex in each of the other colour classes (see,
for instance, [32, Lemma 3.1]), in particular, there is a vertex z of colour
5 adjacent to each of the vertices of colour 1, 2, 3, and 4. This means that
Z ′′ := Z ′ ∪ {z} induces a complete 5-graph in G, a contradiction.2 This

2We shall refer to this argument as the standard argument.



586 Ken-ichi Kawarabayashi et al.

completes the case δ(G) = 8.

Suppose δ(G) = 9. If G[N(u)] contains an independent 4-set, then we
obtain a contradiction as in the case δ(G) = 7. Now follows from Theo-
rem 2.1 (ii) that G[N(u)] contains a triangle, and we obtain a contradiction
as in the case δ(G) = 8 using the standard argument. This completes the
proof.

Theorem 5.3. Every 8-chromatic graph with clique number at most 7 con-
tains a K3,6 minor.

Proof. In order to obtain a contradiction, suppose that the statement of the
theorem is false, and let G denote a counterexample with the least possible
number of vertices. Then G is vertex-critical, and so δ(G) ≥ χ(G)−1 = 7. If
G contains two disjoint subgraphs G1 and G2 with χ(G1) ≥ 3 and χ(G2) ≥
6, then G1 ≥ K3 and G2 ≥ K6 by Observation 2.1 and Theorem 2.7, a
contradiction. Hence we may assume that G is a (3, 6)-graph. Moreover,
ω(G) < 8 = χ(G) and so, by Lemma 2.2, ω(G) ≤ 5. If G contains an even
induced cycle Ce, then χ(G− V (Ce)) ≥ χ(G)− χ(Ce) = 8− 2 = 6 in which
case we obtain a contradiction by Theorem 2.7 and the fact that Ce ≥ K3.
Hence G is an even-hole-free graph, and so, according to Theorem 2.2, G
contains a bisimplicial vertex, say u. If deg(u) ≥ 9, then G[N [u]] contains a
clique of order at least 6, a contradiction. Hence deg(u) ≤ 8. If deg(u) = 7
then we obtain a contradiction just as in the case δ(G) = 7 in proof of
Theorem 5.2. Hence deg(u) = 8 and G[N(u)] is coverable by two 4-cliques A
and B. Let the vertices of A and B be denoted a1, a2, a3, a4 and b1, b2, b3, b4,
respectively. No vertex of A (B) is adjacent to every vertex of B (A), since
that would imply that G contains a 6-clique.

(i) Suppose that there is at least one (A,B)-edge in G; we may, with-
out loss of generality, assume a3b4 ∈ E(G) and a4b4 /∈ E(G). We
contract the vertices a4, b4, and u into a single vertex u′, and let G′

denote the resulting graph. If χ(G′) ≥ 8, then χ(G′) = 8 and it follows
from the minimality of the counterexample G that ω(G′) = 8 and so
ω(G) ≥ 7, a contradiction. Hence χ(G′) ≤ 7. Define k := χ(G′) and let
ϕ : V (G′) → [k] denote a k-colouring of G′. We obtain a 7-colouring
of G, i.e. a contradiction, unless ϕ applies seven distinct colours to
a1, a2, a3, b1, b2, b3, and u′. We may assume ϕ(u′) = 7, and ϕ(ai) = i
and ϕ(bi) = i+ 3 for i ∈ [3]. If, for some i ∈ [3], there is no (3, i+ 3)-
Kempe chain starting at a3 and containing bi, then we may exchange
the colours 3 and i+3 in a (3, i+3)-Kempe chain starting at a3 and so,
after the obvious assignment of colours, we obtain a 7-colouring of G,
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a contradiction. This means in particular that, for each i ∈ [3], there is
a (a3, bi)-path Qi in G with all internal vertices in V (G) \N [u]. Con-
tracting Q1−b1, Q2−b2, and Q3−b3 into a single vertex Q we obtain a
minor H of G in which {a1, a2, a4} induce a K3 and {b1, b2, b3, b4, Q, u}
induce a K6. (Here we use the fact that a3 is adjacent to b4 in G and
so Q is also adjacent to b4 in G.) This contradicts the assumption that
G is a counterexample.

(ii) Suppose that there is no (A,B)-edge in G. Since u is not a cutvertex of
G, G contains an (A,B)-path Q with all internal vertices contained in
V (G) \N [u]; we may, without loss of generality, assume Q∩A = {a3}
and Q ∩ B = {b4}. Now the argument from case (i) can be copied to
obtain a K3,6 minor in G, a contradiction. This contradiction implies
that no counterexample exists, and the proof is complete.

6. Disjoint complete minors in 9-chromatic graphs

Theorem 6.1. Every 9-chromatic graph with clique number at most 8 con-
tains K4,6 or K5,5 as a minor.

Proof. In order to obtain a contradiction, suppose that the statement of the
theorem is false, and let G denote a counterexample with the fewest possible
number of vertices. Then G is vertex-critical and so δ(G) ≥ χ(G)− 1 = 8. If
G contains two disjoint subgraphs G1 and G2 such that (a) χ(G1) ≥ 5 and
χ(G2) ≥ 5 or (b) χ(G1) ≥ 4 and χ(G2) ≥ 6, then we obtain a contradiction
by applying Theorem 2.5, Theorem 2.6, and Theorem 2.7. Hence we may
assume that G is a (4, 6)-graph and a (5, 5)-graph. Since ω(G) < χ(G) = 9,
it follows from Lemma 2.2 that ω(G) ≤ 4. If G contains a 4-clique K, then
by the standard argument — the one occurring in the proof of Theorem 5.2
— χ(G − V (K)) = 5, and so G contains a 5-clique, a contradiction. Hence
ω(G) ≤ 3.

Suppose δ(G) ≥ 12. Then it follows from Theorem 2.3 that there is a
partition (S, T ) of V (G) such that δ(G[S]) ≥ 3 and δ(G[T ]) ≥ 8. Now, by
Theorem 2.9, G[S] ≥ K4 and G[T ] ≥ K6, a contradiction. Hence we must
have 11 ≥ δ(G) ≥ 8. Let u denote a vertex of G of minimum degree.

If δ(G) = 8, then we obtain a contradiction as in the case δ(G) = 7 in
the proof of Theorem 5.2.

Suppose δ(G) = 9. If, in addition, α(G[N(u)]) ≥ 3, then we again ob-
tain a contradiction as in the case δ(G) = 7 in the proof of Theorem 5.2.
Hence α(G[N(u)]) = 2, and so, by Theorem 2.1 (ii), ω(G[N(u)]) ≥ 4, a
contradiction. A similar argument applies in the case δ(G) = 10.
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Suppose δ(G) = 11. If α(G[N(u)]) ≥ 5, then we obtain a contradiction
as in the case δ(G) = 7 in the proof of Theorem 5.2. Hence α(G[N(u)]) ≤
4, and so, since χ(G[N(u)]) ≥ 11/α(G[N(u)]), we obtain χ(G[N(u)]) ≥
3. This, of course, implies χ(G[N [u]]) ≥ 4, and so we may assume that
χ(G − N [u]) ≤ 5. Suppose G[N(u)] contains an even induced cycle Ce.
Then we obtain χ(G[V (Ce) ∪ {u}]) = 3, G[V (Ce) ∪ {u}] ≥ K4, and χ(G −
(V (Ce) ∪ {u})) ≥ χ(G) − χ(G[V (Ce) ∪ {u}]) = 6 and so, by Theorem 2.7,
G− (V (Ce) ∪ {u}) ≥ K6, a contradiction. Hence G[N(u)] contains no even
induced cycle, and so, by Theorem 2.2, χ(G[N(u)]) ≤ 2ω(G[N(u)])− 1 ≤ 3.
Altogether, χ(G[N(u)]) = 3. The fact that G is 9-chromatic and G[N(u)] is
3-colourable implies that G−N [u] is non-empty, in particular, χ(G−N(u))
is equal to χ(G−N [u]). Thus,

χ(G−N [u]) = χ(G−N(u)) ≥ χ(G)− χ(G[N(u)]) = 9− 3 = 6

and so we have a contradiction. This completes the proof.

7. Subdivisions, complete minors and vertex partitions

What happens if we replace the chromatic number χ by the Hadwiger num-
ber η in the premise and conclusion of the Erdős-Lovász Tihany Conjecture?
Then the corresponding statement is true whenever s = 2, but false in gen-
eral. For instance, any subdivision of K5 which is not isomorphic to K5 has
Hadwiger number 5, clique number at most 4, but does not contain two dis-
joint K3 minors, since such a graph does not contain two disjoint cycles. One
way of excluding such counterexamples would be to require the Hadwiger
number η to be strictly greater than the Hajós number h, which gives us
the following statement.

(
) For any pair of integers s, t ≥ 2 and any graph G with h(G) < η(G) =
s+ t− 1 there are disjoint subgraphs G1 and G2 of G with η(G1) ≥ s
and η(G2) ≥ t.

The statement (
) is also not true in general. Figure 1 shows counterexamples
for the cases (s, t) = (3, 5) and (s, t) = (4, 4). The statement (
) is, of course,
true for s = 2, but it is also true for (s, t) ∈ {(3, 3), (3, 4)}.

In case (s, t) = (3, 3), we are looking for two disjoint (that is, vertex-
disjoint) cycles in a graph. The question of whether a graph contains two
disjoint cycles was studied already by Dirac, Erdős, and Pósa [9, 13, 28] in
the early 1960s. For instance, Pósa [28] and Dirac (unpublished, see [13, p.
4]) proved that if G is a graph with n(G) ≥ 6 and m(G) ≥ 3n(G)− 5 then
G contains two disjoint cycles.
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Figure 1: The graphs H0 and H1 are counterexamples to statement (
) for
(s, t) = (3, 5) and (s, t) = (4, 4), respectively.

Lovász [22] obtained a complete characterisation of the graphs without
two disjoint cycles (see also [23, p. 425]). Suppose G is a graph with no two
disjoint cycles. We remove all vertices of degree one and “suppress” vertices
of degree 2, then the resulting multigraph G′ is one of the following types:
G′ − v is a tree for some vertex v ∈ V (G′); a triangle T – possibly with
multiple edges – and an arbitrary number of vertices joined to all three
vertices of T ; a cycle C with each vertex of C joined by one or more edges
to an extra vertex; the complete 5-graph; and subgraphs of the already
mentioned graphs. The case (s, t) = (3, 3) of (
) follows from this.

The following observation shows that (
) is true for (s, t) = (3, 4).

Observation 7.1. Any graph with Hadwiger number 6 and Hajós number
at most 5 contains two disjoint subgraphs G1 and G2 such that η(G1) ≥ 3
and η(G2) ≥ 4.

To the best of our knowledge, no characterisation of the graphs with-
out two disjoint complete minors of order 3 and 4, respectively, have been
published.

Proof. Suppose G is a counterexample with the minimum number of edges.
Let B denote the set of branch sets of a K6 minor of G. Then each branch
set from B induces a tree in G and there is exactly one edge between any
pair of branch sets of B. We choose the branch sets in B such that each
vertex of G is in some branch set from B. The fact that G is a minimum
counterexample implies that G contains no vertices of degree less than 3.

Suppose that G[B] with B ∈ B is not a singleton; then G[B] contains at
least two leaves. Since δ(G) ≥ 3, each leaf � of G[B] is adjacent to vertices
v� ∈ B′

� and w� ∈ B′′
� with B′

�, B
′′
� ∈ B \ B. This, however, implies the

existence of a leaf of G[B] with degree exactly 3 in G. Using this latter
fact, it is easy to see that G contains the desired subgraphs G1 and G2; a
contradiction. Hence each induced subgraph G[B] with B ∈ B is a singleton,
and so G � K6. This is a contradiction.
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[28] Pósa L. (1963). On the circuits of finite graphs. Magyar Tud. Akad.
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