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The editing of a combinatorial object is the alteration of some
of its elements such that the resulting object satisfies a certain
fixed property. The edit problem for graphs, when the edges are
added or deleted, was first studied independently by the authors
and Kézdy [4] and by Alon and Stav [3]. In this paper, a general-
ization of graph editing is considered for multicolorings of the com-
plete graph as well as for directed graphs. Specifically, the number
of edge-recolorings sufficient to be performed on any edge-colored
complete graph to satisfy a given hereditary property is investi-
gated. The theory for computing the edit distance is extended using
random structures and so-called types or colored homomorphisms
of graphs.

AMS 2000 subject classifications: Primary 05C35; secondary 05C80.
Keywords and phrases: Edit distance, hereditary properties, local-
ization, split graphs, colored regularity graphs, LATEX.

1. Introduction

The combinatorial editing problem is, in general, the problem of finding
the smallest number of element-changes such that the resulting combinato-
rial object satisfies a certain fixed property. The simplest class of objects
for which the editing problem was considered is a set of sequences. In fact,
the first detailed algorithmic study of editing was motivated by bioinfor-
matics, where sequences over finite alphabets are considered and editing
corresponds to changes of the elements in the sequence depicting the mu-
tations in biomolecules. When the desired property consists of a single se-
quence, studying editing corresponds to investigating the Hamming distance
between sequences. The notion of graph editing was introduced by the au-
thors and Kézdy [4] and independently by Alon and Stav [3]. The question
considered was: “How many edges does one need to add or delete in a given
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graph, such that the result belongs to a given class of graphs?” The au-
thors showed in [4], that the answer to this question for hereditary classes
could be expressed in terms of the so-called binary chromatic number (also
called the colouring number) of the family. Alon and Stav [3] showed that
the largest distance from a hereditary property is achieved, asymptotically,
by an Erdős-Rényi random graph.

In this paper, the generalized theory is developed for editing of edge-
colored complete graphs and digraphs. The main result for edge-colored
graphs, Theorem 4, is in terms of two parameters: the so-called weak and
strong r-ary chromatic numbers. The main result for directed graphs, Theo-
rem 18 is in terms of two parameters: the weak and strong directed chromatic
numbers. In each case, the results come from more general theorems, The-
orems 8 and 23 respectively, which deal with generalizing the graph notion
of types for the above combinatorial objects. The analysis is based on using
a version of Szemerédi’s regularity lemma, which we state as Theorem 12
(see [5] for a proof of Theorem 12), and applying it to an Erdős-Rényi-type
random edge-colored graph or random digraph, respectively. General bounds
on the edit distance function are given, as well as some editing algorithms
and computing methods, all of which result from Theorems 8 and 23.

The paper is structured as follows. Section 2 deals with the case of
multicolorings of the edges of complete graphs. Section 3 deals with the case
of directed graphs. In each of these sections we provide definitions, editing
algorithms, examples as well as some general theory on the edit distance
function. Most proofs are presented in Section 2.9 and in Section 3.10.

2. Multicolorings of the complete graph

2.1. Basic definitions

An equipartition of a finite set is a partition in which each pair of partite
sets differ in size by at most one.

For a complete graph on vertex set V , and a finite set Q, we shall say
that a Q-coloring, or more specifically, a Q-edge-coloring of this graph is a
pair G = (V, c), where c :

(
V
2

)
→ Q. Since it is sufficient to let Q = {1, . . . , r}

for some integer r, we will refer to an {1, . . . , r}-edge coloring of a complete
graph as simply an r-graph. For any r-graph G, disjoint vertex sets Vi and
Vj and color ρ, ρ ∈ {1, . . . , r}, the expression Eρ(Vi) denotes the set of edges
colored ρ with both endpoints in G[Vi] and Eρ(Vi, Vi) denotes the set of edges
colored ρ with one endpoint in Vi and the other in Vj . The density vector

of Vi is an r-dimensional vector p = (p1, . . . , pr), where pρ = |Eρ(Vi)|/
(|Vi|

2

)
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for ρ = 1, . . . , r. The density vector of the pair (Vi, Vj) is an r-dimensional
vector p = (p1, . . . , pr), where pρ = |Eρ(Vi, Vj)|/(|Vi||Vj |) for ρ = 1, . . . , r.
Note that for such density vectors,

∑
ρ pρ = 1.

In this setting, a graph property is merely a set of r-graphs for some
positive integer r ≥ 2. If G = (V, c) and G′ = (V, c′) are r-graphs on n
labeled vertices, then

dist(G,G′)

is the proportion of edges on which the colors differ, i.e., the number of edges
on which the colors in G and G′ differ, divided by

(
n
2

)
. We may call this the

normalized edit distance between G and G′.
For any property H, a coloring G, an integer n, we define dist(G,H),

dist(n,H), and dist(H) as follows:

dist(G,H) := min
{
dist(G,G′) : V (G′) = V (G), G′ ∈ H

}
,

dist(n,H) := max{dist(G,H) : |V (G)| = n},
dist(H) := lim

n→∞
dist(n,H).

Note that dist(G,G′), dist(G,H), dist(n,H), dist(H) ∈ [0, 1].
The last parameter dist(H) is the limit of the largest proportion of the

edges necessary to be changed in a coloring of a complete graph to bring it
to a property H; we show the existence of this limit later.

A hereditary property of r-graphs (or, simply, hereditary property, where
the context is understood) is a set of r-graphs that is closed under vertex-
deletion and isomorphisms. Let an r-graph G′ be an induced coloring of an
r-graph G if G′ can be obtained from G by vertex-deletion.

For an r-graph, H, the family Forb(H) consists of all r-graphs that
have no (induced) copies of H. For every hereditary property, H, there is a
family, F(H), of r-graphs such that H =

⋂
H∈F(H) Forb(H). If F is a family

of r-graphs, then we use Forb(F) to denote
⋂

H∈F Forb(H).

2.2. The r-ary chromatic numbers

Definition 1. For a hereditary propertyH =
⋂

H∈F(H) Forb(H) of r-graphs,
a weakly-good tuple (a1, . . . , ar) is an r-tuple of non-negative integers such
that for some H ∈ F(H), the vertex set V (H) can be partitioned into sets
S1, . . . , Sr such that, for each i ∈ {1, . . . , r} with ai �= 0, the partition can be
further refined Si = Vi,1 ∪ · · · ∪Vi,ai

such that each Vi,j ∈ Si does not induce
an edge of color i. The weak clique spectrum of H is the set of all tuples
(a1, . . . , ar) that are NOT weakly-good. The weak r-ary chromatic number
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of H, χwk
r (H), is the maximum �+1 such that for some non-negative integers

a1, . . . , ar with a1 + · · ·+ ar = �, the tuple (a1, . . . , ar) is in the weak clique
spectrum of H.

For a hereditary property H, a strongly-good tuple (a1, . . . , ar) is an r-
tuple of non-negative integers such that for some H ∈ F(H), the vertex set
V (H) can be partitioned into sets S1, . . . , Sr such that, for each i ∈ {1, . . . , r}
with ai �= 0, the partition can be further refined Si = Vi,1 ∪ · · · ∪ Vi,ai

such
that each Vi,j ∈ Si has all edges of color i. The strong clique spectrum of H is
the set of all tuples (a1, . . . , ar) that are NOT strongly-good. The strong r-
ary chromatic number of H, χst

r (H), is the maximum �+1 such that for some
non-negative integers a1, . . . , ar with a1+ · · ·+ar = �, the tuple (a1, . . . , ar)
is in the weak clique spectrum of H.

If H = Forb(H), then we denote χwk
r (H) = χwk

r (H) and χst
r (H) =

χst
r (H).

Remark 2.

• The weak [strong] clique spectrum is a downset in the partially ordered
set of r-tuples ordered coordinatewise. That is, if (a1, . . . , ar) is in the
weak [strong] clique spectrum and (a′1, . . . , a

′
r) has the property that

0 ≤ a′i ≤ ai for i = 1, . . . , r, then (a′1, . . . , a
′
r) is also in that weak

[strong] clique spectrum.
• Informally, we can partition V (H) into χwk

r (H) pieces in which the
absent color in each piece is arbitrary, but there is some specification
of absent colors for which a χwk

r (H)− 1 piece partition is not possible.
• Similarly, we can partition V (H) into χst

r (H) pieces in which the re-
quired color in each piece is arbitrary, but there is some specification
of required colors for which a χst

r (H)−1 piece partition is not possible.
• For any r ≥ 2 and any hereditary property of r-graphs, H, χwk

r (H) ≤
χst
r (H).

• In the case of r = 2, notions of strong and weak colorings are iden-
tical. Further, if H = Forb(H), χ2(H) corresponds exactly to the bi-
nary chromatic number of H, introduced in [4]. This is also called the
“colouring number” in related literature such as Bollobás and Thoma-
son [7, 8].

2.2.1. Examples illustrating the r-ary chromatic numbers of a
hereditary family

(1) Let r = 3 and H be a family of {1, 2, 3}-colored complete graphs not
containing a triangle H1 with colors 1, 1, 2 on its edges and not containing
a triangle H2 with colors 2, 2, 3 on its edges. So, F(H) = {H1, H2}.
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First, the weak 3-ary chromatic number: Since r = 3, and F(H) contains
a triangle, any 3-tuple (a1, a2, a3) with a1+a2+a3 ≥ 3 must be weakly-good.
Indeed, each of H1 and H2 can be vertex-partitioned into three parts such
that each part is a single vertex, thus not inducing edges of any colors. Thus,
it is sufficient to consider the tuples with a1+a2+a3 ≤ 2. The tuple (1, 0, 0)
is weakly-good since we can partition the vertex set of H2 in one part not
containing edges of color 1. Similarly, (0, 0, 1) is good. By monotonicity, all
tuples (a1, a2, a3) with a1 ≥ 1 or a3 ≥ 1 are weakly-good.

However (0, 1, 0) is not weakly-good because both H1 and H2 contain
edges of color 2. But (0, 2, 0) is weakly-good because H1 can be vertex-
partitioned in two parts not containing edges of color 2. Thus, the weak
clique spectrum of H is {(0, 1, 0), (0, 0, 0)}. For the weak 3-ary chromatic
number, χwk

3 (H) = 2.
Second, the strong 3-ary chromatic number. Similar to the above, if

a1 + a2 + a3 ≥ 2, then either H1 or H2 can be partitioned into two parts
such that one part is an edge of a specified color and the other part is a
vertex. If a1 + a2 + a3 ≤ 1, then neither H1 nor H2 can be partitioned
into a single monochromatic clique. Thus, the the strong clique spectrum of
H is {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)} and for the strong 3-ary chromatic
number, χst

3 (H) = 2 also.

(2) Let r = 3 and H be a family of {1, 2, 3}-colored complete graphs not
containing a triangle H1 with colors 1, 1, 2 on its edges. So, F(H) = {H1}. If
we follow the previous example, it is easy to see that (a1, a2, 1) is weakly-good
for all a1, a2 ≥ 0. Moreover, (a1, a2, 0) is weakly good as long as a1 + a2 ≥
2. Hence, the weak clique spectrum of H is {(1, 0, 0), (0, 1, 0), (0, 0, 0)} and
χwk
3 (H) = 2.

For the strong clique spectrum, it is easy to see that (0, 0, 2) is in that
spectrum, but if a1 + a2 + a3 ≥ 3, then (a1, a2, a3) is strongly-good. Thus,
χst
3 (H) = 3.

(3) Let r = 2, which we can consider to be the graph case. As we have
observed, we may disregard the notions of “weak” and “strong” in our ter-
minology. Let H be a K5 colored with edges colored with colors 1 and 2
such that each color class is a 5-cycle. Let H be a family of colorings not
containing H, i.e., F(H) = {H}.

We need only consider 2-tuples (i.e., pairs) (a1, a2) with a1 + a2 ≤ 4.
It is relatively easy to see that (2, 1), (1, 2), (3, 0) and (0, 3) are good. The
pairs (2, 0), (0, 2) and (1, 1) are not good since H has no monochromatic
clique on more than 2 vertices, but has a total of 5 vertices. By monotonic-
ity, (1, 0) and (0, 1) are also not good. Thus the clique spectrum of H is
{(2, 0), (1, 0), (1, 1), (0, 2), (0, 1), (0, 0)}, and χ2(H) = 3.
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2.3. A simple editing algorithm

LetH be a hereditary property of r-graphs, such thatH =
⋂

H∈F(H) Forb(H).

Further, let � = χwk
r (H)− 1 and (a1, . . . , ar) be in the weak clique spectrum

with
∑r

i=1 ai = �.

Partition V into r sets S1, . . . , Sr and further refine the partition such
that Si = Vi,1 ∪ · · · ∪ Vi,ai

, for i = 1, . . . , r and then recolor the edges in
each Vi,j by recoloring the edges of color i with some other arbitrary color.
This new coloring does not contain any H ∈ F(H), otherwise the tuple
(a1, . . . , ar) would be good for some H.

If the sizes of the Vi,j-s differ by at most one; i.e., �n/�	 ≤ |Vi,j | ≤ 
n/��,
then the number of changes provided by this algorithm is at most �

(�n/��
2

)
.

Thus,

dist(H) ≤ lim
n→∞

�
(�n/��

2

)(
n
2

) =
1

�
=

1

χwk
r (H)− 1

.

2.4. Previous results and new main results

In [4], the authors and Kézdy provide a general bound for dist(H) in the
2-color case.

Theorem 3. [4] For any hereditary property of graphs, H, with binary chro-
matic number χ2 ≥ 2,

1

2(χ2 − 1)
≤ dist(H) ≤ 1

χ2 − 1
.

Furthermore, if H = Forb(H) such that H is self-complementary, then
dist(H) = 1

2(χ2(H)−1) .

Here, we show a similar result in the general case.

Theorem 4. Let H be a hereditary property of {1, . . . , r}-edge-colorings of
complete graphs. Let χwk

r = χwk
r (H) ≥ 2 and χst

r = χst
r (H) ≥ 2 be the weak

and strong (respectively) r-ary chromatic numbers of H. Then,

1

r(χst
r − 1)

≤ dist(H) ≤ 1

χwk
r − 1

.

Furthermore, if H = Forb(H) such that all color classes of H are isomor-
phic, then dist(H) ≤ 1

r(χwk
r (H)−1) .
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We prove Theorem 4 in Section 2.9. The upper bound is found in the
simple editing algorithm, but to get the lower bound, we need a more general
theory. This is Theorem 8 which is stated in Section 2.6. We also prove the
result for symmetric colorings in Corollary 10. Theorem 8 gives the basic
results that deal with computing the edit distance for given hereditary prop-
erties. To state these results, we need to provide some preliminary material.

2.5. The edit distance function

2.5.1. Preliminary definitions For an r-graph, G = (V, c), and some
color ρ ∈ {1, . . . , r}, let Eρ(G) denote the graph on vertex set V corre-
sponding to the edges with color ρ in c. For a positive integer r, recall that
a density vector p = (p1, . . . , pr) (we also refer to it as a probability vector)
is a nonnegative real vector with the property that

∑r
ρ=1 pi = 1. For any

density vector p = (p1, . . . , pr), and integer n, we denote1

distn(p,H)

= max
{
dist(G,H) : |V (G)| = n and |Eρ(G)| = pρ

(
n
2

)
, ρ = 1, . . . , r

}
.

In Theorem 8, we show that the following limit exists, which we call the edit
distance function:

dist(p,H) = lim
n→∞

distn(p,H).

Having the edit distance function at our disposal, we may also define
dist(H) = maxp dist(p,H), where the maximum is taken over all density
vectors.

2.5.2. Types of colorings In Section 2.6.1, we define two functions which
are described in terms of types of colorings, which allow us to compute the
edit distance function. In Section 2.6, we shall provide an algorithm to do
such computation. We define a notion which was called a colored regularity
graph (CRG) by Alon and Stav [3], but earlier called a type by Bollobás and
Thomason [7]. We adopt the latter terminology.

Definition 5. An r-type (or just, type, where the context is understood),
K, is a pair (U, φ), where U is a finite set of vertices and φ : U × U →

1Formally, the sizes of the partitions of the edge set should be integral, so we
can take the floor function for the sizes of, say Eρ for ρ = 1, . . . , r − 1 and the size
of Er is what remains. Since we fix pρ for ρ = 1, . . . , r and let n approach infinity,
this will make no appreciable difference.
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2{1,...,r} \ ∅, such that φ(x, y) = φ(y, x) and φ(x, x) �= {1, . . . , r}, for all
x, y ∈ U . Informally, we will view an r-type as a complete graph with a
coloring of both vertices and edges using nonempty subsets of {1, . . . , r},
where the whole set is a forbidden color on the vertices. The sub-r-type of
K induced by W ⊆ U is the r-type achieved by deleting the vertices U −W
from K.

We say that an r-graph H = (V, c) embeds in type K = (U, φ) if there
is a map γ : V → U such that c({v, v′}) = c0 implies c0 ∈ φ(γ(v), γ(v′)).
In other words, there is a mapping γ that brings each edge of color c0 to a
vertex or an edge containing c0 in its color set. If H embeds in type K, we
write H �→ K, otherwise we write H ��→ K. For every hereditary property
H, we let K(H) be the set of all r-types such that none of F(H) embeds in
that type, i.e.,

K(H) = {K : K is an r-type and H ��→ K, ∀H ∈ F(H)} .

We say that an r-graph G′ = (V, c) has type K = (U, φ) if G′ embeds
into K with mapping γ : V → U and γ is surjective.

Fact 6 generalizes the ideas underlying the simple editing algorithm in
Section 2.3.

Fact 6. If K is an r-type, G′ is of type K and H does not embed into K,
then H �⊆ G′.

2.6. Editing algorithm using types

Let p = (p1, . . . , pr) and w = (w1, . . . , wk) be density vectors; i.e., their
entries are nonnegative and sum to 1. They play different roles, however.
The vector p will represent a vector of densities, pρ. That is, the graph G
has pρ

(
n
2

)
edges of color ρ. The vector w will represent a vector of weights,

w1, . . . , wk, assigned to the vertices of an r-type with vertices u1, . . . , uk,
respectively.

Let G = (V, c) be an r-graph with edges having densities according to
the vector p = (p1, . . . , pr), and H be a hereditary property. In order to find
an upper bound on dist(G,H), it is sufficient to change G to an r-graph, G′,
such that, for all H ∈ F(H), H does not embed into the new coloring. In
particular, if the resulting coloring has type K ∈ K(H), then G′ is in H.

Algorithm 7. Fix a K = (U, φ) ∈ K(H) and bring G to a coloring of
type K by edge-recoloring. Let U = {u1, . . . , uk}. Partition the vertices of
G randomly into sets V1, . . . , Vk such that the probability of a vertex to be
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in a part Vi is wi. Consider an edge {x, y} of G, let x ∈ Vi, y ∈ Vj , for
i, j ∈ {1, . . . , k}. If c({x, y}) �∈ φ({ui, uj}), recolor {x, y} with a color from
φ((ui, uj)). This gives the new r-graph G′ which, according to Fact 6, does
not admit an embedding of any H ∈ F(H), thus G′ ∈ H.

Note that this generalizes the simple algorithm in Section 2.3. In that
algorithm, the type had restricted colorings only on the vertices (possibly of
different colors) but each edge receives the color 2{1,...,r}.

2.6.1. Analysis of the editing algorithm Consider Algorithm 7 ap-
plied with type K. Let G be a graph such that the number of edges of color
ρ are pρ for ρ = 1, . . . , r. The expected number of changes is

E[# changes] =

(
n

2

)
−

∑
x,y∈V, x 	=y

Pr({x, y} is not changed)

=

(
n

2

)
−

∑
x,y∈V, x 	=y

∑
1≤i,j≤k

Pr(x ∈ Vi, y ∈ Vj)1c({x,y})∈φ(ui,uj)

=

(
n

2

)
−

∑
1≤i,j≤k

wiwj

∑
x,y∈V, x 	=y

1c({x,y})∈φ(ui,uj)

=

(
n

2

)
−

∑
1≤i,j≤k

wiwj

∑
ρ∈φ(ui,uj)

pρ

(
n

2

)
.

Let MK(p) be a k× k matrix such that the (i, j)-th entry, MK(p)(i, j),
is 1−

∑
ρ∈φ(ui,uj)

pρ. Thus, if w = (w1, . . . , wk), then

E[# changes] = wTMK(p)w

(
n

2

)
.

Finally, we define two functions in terms of the matrix MK(p):

fK(p) =

(
1

k
1

)T

MK(p)

(
1

k
1

)
and gK(p) =

⎧⎨
⎩
min wTMK(p)w
s.t. wT1 = 1

w ≥ 0.

The f and g functions can be interpreted as follows: If the vertices of
an r-graph, G, are assigned randomly to parts corresponding to the vertices
of K, then fK(p) and gK(p) represent the expectation of the proportion of
times that the color of an edge does not map the set of colors in a corre-
sponding vertex or an edge of K. The function fk(p) is obtained from the
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uniform distribution, and gk(p) is obtained using the optimal distribution
(w1, . . . , wk) of the proportion of sizes of parts. Although the g function
provides a better bound for dist(p,H), the linearity of the f function helps
prove results from dist(p,H).

2.7. Basic results on r-graphs

Theorem 8 summarizes some facts about the edit distance function that gen-
eralize easily from results in both [6] and [14]. The proof is in Section 2.9.2.
Fix a density vector p = (p1, . . . , pr). Formally, the random r-graph of den-
sity p, or random r-graph where the context is clear, is denoted G(n,p). It
is a random variable that is an {1, . . . , r}-coloring of the edges of a labeled
Kn in which each edge, e, is colored independently such that e receives color
ρ with probability pρ.

Theorem 8. Let H be a hereditary property of r-graphs. Fix an r-dimensional
density vector p. Then the limit dist(p,H) := limn→∞ distn(p,H) exists.
Moreover,

1. dist(p,H) = infK∈K(H) fK(p) = infK∈K(H) gK(p);
2. for a fixed ε > 0, then with probability approaching 1 as n → ∞,

dist(p,H)− ε ≤ dist(G(n,p),H) ≤ dist(p,H);

3. dist(p,H) = limn→∞E[dist(G(n,p),H)];
4. dist(p,H) is continuous over the domain of r-dimensional density vec-

tors and is concave down;2

5. dist(p,H) achieves its maximum, dist(H), at some density vector p∗
H

(in fact, denote the set of all such vectors p∗
H) and so,

dist(H) = lim
n→∞

E[dist(G(n,p∗
H),H)];

6. Both p∗
H and dist(H) exist and p∗

H is a convex and closed set in
[0, 1]r−1.

Remark 9. Note that p∗
H typically consists of a single vector, but we abuse

notation by denoting the set of such vectors as p∗
H when the vector at which

the maximum is obtained is not unique.

2A function ψ(p) being concave down means for every pair of density vectors
p1,p2 and every real number t ∈ [0, 1], tp1 + (1 − t)p2 is a density vector and
ψ(tp1 + (1− t)p2) ≥ tψ(p1) + (1− t)ψ(p2).
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Corollary 10. Let H be a symmetric hereditary property; that is, one
that has the property such that if the r-tuple (a1, . . . , ar) is in the weak
clique spectrum of H, then for any permutation ϕ of {1, . . . , r}, the r-tuple
(aϕ(1), . . . , aϕ(r)) is also in the weak clique spectrum. Then,

dist(H) ≤ r−1

(
r∑

i=1

ai

)−1

.

In particular, if H = Forb(H) such that all color classes of H are isomor-
phic, then dist(H) ≤ 1

r(χwk
r (H)−1) .

Proof. Consider an arbitrary density vector p = (p1, . . . , pr) and without
loss of generality assume that p1 ≤ · · · ≤ pr. Choose a permutation of the
ai-s such that a1 ≥ · · · ≥ ar. Let K = (U, φ) be a r-type on � =

∑r
i=1 ai

vertices such that φ(ui, uj) = {1, . . . , r} if i �= j and there are exactly aj
vertices u such that φ(u, u) = {1, . . . , r} − {j}.

The off-diagonal entries of MK(p) are zero and so it is easy to see that
fK(p) = �−2

∑r
i=1 aipi. We can use a correlation inequality such as FKG [10]

to see that

fK(p) = �−2
r∑

i=1

aipi ≤ �−2r−1

(
r∑

i=1

ai

)(
r∑

i=1

pi

)
= r−1�−1.

To finish the proof observe that, in the case of H = Forb(H), � =
∑r

i=1 ai =
χwk
r (H)− 1.

2.8. Example: Triangles

Theorem 11 gives some basic results on examples of hereditary properties of
r-graphs defined by triangles. The proof is in Section 2.9.3.

Theorem 11. Let r = 3 and consider hereditary properties of r-graphs.

1. If F is a family that consists of a single monochromatic triangle, then
dist(Forb(F)) = 1/2.

2. If F is a family that consists of a single triangle with two edges colored
1 and one edge colored 2, then dist(Forb(F)) = 1/2.

3. If F is a family that consists of two monochromatic triangles of dif-
ferent colors, then dist(Forb(F)) = 1/2.

4. If F is a family that consists of all six bi-chromatic triangles, then
dist(Forb(F)) = 2/3.
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5. If F is a family that consists of a single rainbow triangle, then
dist(Forb(F)) = 1/3.

2.9. Proofs

2.9.1. Proof of Theorem 4 The upper bound for this theorem is proven
by the simple editing algorithm from Section 2.3.

For the lower bound, we apply part (1) of Theorem 8, which states that
dist(p,H) = infK∈K(H) fK(p). Consider an arbitrary K = (U, φ) ∈ K(H),

an r-type on k vertices. Let K̃ be an auxiliary graph with vertex set U such
that u and u′ are adjacent in K̃ if and only if φ(u, u′) = {1, . . . , r}. We
observe that K̃ has no clique on χst

r = χst
r (H) vertices, otherwise for some

H ∈ F(H), H �→ K. Using Turán’s theorem, the number of edges of K̃ is

at most χst
r −2

χst
r −1 · k2

2 .

Let p = 1
r1. Consider the matrix MK(p) and observe that every entry

is either zero or is a positive integer multiple of 1/r. The zero entries cor-
respond exactly to pairs with φ value equal to {1, . . . , r}. Thus, this matrix

MK(p) has at least k2−2(χ
st
r −2

χst
r −1 ·

k2

2 ) ≥
k2

χst
r −1 entries with value at least 1/r.

Therefore, fK(p) = 1
k21TMK(p)1 is at least 1

r(χst
r −1) . Since K was arbitrary,

this gives a lower bound for dist(p,H).

2.9.2. Proof of Theorem 8 Let f(p) = infK∈K(H) fK(p) and let g(p) =
infK∈K(H) gK(p).

A: Upper bound on dist(p,H).
Let G be an r-graph with the density of its i-th color class being pρ for
ρ = 1, . . . , r. Let K ∈ K(H). Apply the editing algorithm in Section 2.6 to
G using K. The analysis of the algorithm in Section 2.6.1 shows that the
expected number of changes is fK(p)

(
n
2

)
and so distn(p,H) ≤ f(p)

(
n
2

)
.

B: Equality of f and g.
By the definition of gK(p), it is easy to see that gK(p) ≤ fK(p) for every
density vector p. Therefore, g(p) ≤ f(p). For the other direction, we will use
K and its optimal weight vector w∗ = {w1, . . . , wk}, where wi corresponds
to vi ∈ V (K) in order to construct a sequence of CRGs, {K�} such that
lim�→∞ fK�

(p) = gK(p).

First, choose � large enough to ensure that wi� ≥ 2 for i = 1, . . . , k. Then,
for each vertex ui ∈ V (K), create �wi�	 copies of ui in the following sense:
Let u′i and u′′j be copies of ui and uj , respectively, where ui, uj ∈ V (K). Let φ
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be the coloring function of K and φ′ be the coloring function of K�. If i �= j,
then φ′(u′i, u

′′
j ) = φ(vi, vj). If i = j and v′i �= v′′i , then φ′(u′i, u

′′
i ) = φ(vi, vi).

Finally, φ′(v′i, v
′
i) = φ(vi, vi).

The (i, j)-th block is a �wi�	×�wj�	matrix and each entry of the (i, j)-th
block is the same as the (i, j)-th entry of MK(p).

If we denote the (i, j)-th entry of MK(p) by mij , then

fK�
(p) =

1

|V (K)|21
TMK�

(p)1 =

(∑
i

�wi�	
)−2∑

i,j

mij�wi�	�wj�	

≤ �2

(∑
i

�wi�	
)−2∑

i,j

mijwiwj = �2

(∑
i

�wi�	
)−2

gK(p)

≤ �2

(∑
i

(wi�− 1)

)−2

gK(p) =
�2

(�− k)2
gK(p).

Taking � → ∞, we see that lim�→∞ fK�
(p) ≤ gK(p). Consequently, for any

K ∈ K(H),

f(p) = inf
K̃∈K(H)

fK̃(p) ≤ lim
�→∞

fK�
(p) ≤ gK(p).

Take the infimum over all K ∈ K(H), and we have that f(p) ≤ g(p).

C: Lower bound on dist(p,H) using the random graph.
We apply Theorem 13, which is given in [5]. Theorem 13 is a corollary
of Theorem 12, a relatively straightforward generalization to r-graphs and
digraphs of a theorem by Alon, Fischer, Krivelevich and M. Szegedy [1],
which is suitable for induced graphs.

In an r-graph, the density vector of a pair of disjoint sets of vertices
(Vi, Vj) is simply d(Vi, Vj) := (d1(Vi, Vj), . . . , dr(Vi, Vj)). So we can state
the general version of the regularity lemma. For all definitions of regularity,
see [1].

Theorem 12. (Alon, et al. [1]) Fix r ≥ 2. For every m and function E with
E : N → (0, 1), there exist S = S12(r,m, E) and δ = δ12(r,m, E) with the
following property:

If G is a graph [r-graph, digraph] with n ≥ S vertices then there exist an
equipartition A = {Vi : 1 ≤ i ≤ k} of G and an induced subgraph [induced
r-subgraph, induced subdigraph] G′ of G, with an equipartition A′ = {V ′

i :
1 ≤ i ≤ k} of the vertices of G′ that satisfy:
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• S ≥ k ≥ m.
• V ′

i ⊂ Vi for all i ≥ 1, and |V ′
i | ≥ δn.

• In the equipartition A′, all pairs are E(k)-regular.
• All but at most E(0)

(
k
2

)
of the pairs 1 ≤ i < i′ ≤ k are such that

‖d(Vi, Vi′)− d(V ′
i , V

′
i′)‖∞ < E(0).

We use Theorem 12 in order to prove Theorem 13, which is the result
that we need.

Theorem 13. [5] Let G′ be an r-graph in hereditary property
H =

⋂
H∈F(H) Forb(H) and p = (p1, . . . , pr) be a density vector. Then,

there exists an r-type K ∈ K(H) such that H ��→ K for all H ∈ F(H) and
with probability going to 1 as n → ∞, dist(Gn,p,H) ≥ fK(p)

(
n
2

)
− o(n2).

The proof of Theorem 13 from Theorem 12 is straightforward and the
details are given in [5]. We begin with G distributed according to G(n,p)
and typical in the sense that any Szemerédi partition will have every pair
n−0.4-regular. Let G′ be the graph of smallest distance from G and apply
Theorem 12. The resulting partition A′ describes a type K which must be
in K(H). Furthermore, the number of changes required to ensure that G′

has partition A is very close to fK(p) because almost every pair in A has
the same density as in A′.

Using part A, we see that for any ε > 0, with probability approaching 1
as n → ∞,

(1) f(p)− ε/2 ≤ dist(G(n,p),H) ≤ dist(p,H) ≤ f(p).

We can now combine A, B and C. Take the limit of (1) as n → ∞,
and we obtain that for all ε > 0, f(p) − ε/2 ≤ dist(p,H) ≤ f(p). Hence,
dist(p,H) = f(p) = g(p). Moreover, we can replace the second term with
E[dist(G(n,p),H)] because that random variable is bounded (in [0, 1]) and
so (1) occurring with high probability implies that the random variable is
concentrated around its mean, which approaches dist(p,H). This verifies
parts (1), (2) and (3) of the theorem.

D: Continuity of f .
Because the set of r-types is countable, we can linearly order K(H) to be
K1,K2, . . .. For every density vector p, set m�(p) = mini≤� fKi

(p).
We want to show that each function m� is Lipschitz with coefficient 1

with respect to the L1 metric. Let p = (p1, . . . , pρ) and q = (q1, . . . , qρ) be
density vectors and define r-types Kp,Kq ∈ {K1, . . . ,K�} on kp, kq vertices,
respectively, such that m�(p) = fKp

(p) and m�(q) = fKq
(q). Then, using
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the matrix definition of f and the definition of m� as a minimum of linear
functions,

fKp
(p)− fKp

(q) ≤ fKp
(p)− fKq

(q) ≤ fKq
(p)− fKq

(q),(
1

kp
1

)T

MKp
(p− q)

(
1

kp
1

)
≤ fKp

(p)− fKq
(q)

≤
(

1

kq
1

)T

MKq
(p− q)

(
1

kq
1

)
.

Since each of the entries in matrices MKp
and MKq

is between zero and
one, and the number of entries in these matrices is k2p and k2q, respectively,
it is the case that ∣∣fKp

(p)− fKq
(q)

∣∣ ≤ ‖p− q‖1.

Since {m�}�≥1 is Lipschitz, Definition 7.22 from Rudin [18] says that
the sequence of functions is equicontinuous. The sequence is also pointwise
bounded above by fK1

(p) and below by 0. By Theorem 7.25(b) from [18] the
sequence {m�}�≥1 has a uniformly convergent subsequence. Since {m�}�≥1 is
an equicontinuous, each member is itself continuous. Theorem 7.12 from [18]
gives that the aforementioned uniformly convergent subsequence has a con-
tinuous limit. The monotonicity of {m�}�≥1 gives that the limit of any sub-
sequence is the same as the pointwise limit of the sequence itself, namely
lim�→∞m� = infK∈K(H) fK = dist(H).

E: Concavity.
Let p1 and p2 be density vectors and t ∈ [0, 1] be a real number. Observe
that tp1 + (1 − t)p2 is still a density vector and, hence, in the domain.
Furthermore,

f(tp1 + (1− t)p2) = inf
K∈K(H)

{fK (tp1 + (1− t)p2)}

= inf
K∈K(H)

{tfK(p1) + (1− t)fK(p2)}

≥ t

(
inf

K∈K(H)
{fK(p1)}

)
+ (1− t)

(
inf

K∈K(H)
{fK(p2)}

)
= tf(p1) + (1− t)f(p2).

This gives concavity.

Using D and E, we obtain part (4) directly and the fact that gH achieves
its maximum follows from continuity (and compactness) and Theorem 4.16
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from [18]. Let S be the set of density vectors p such that dist(p,H) =

dist(H). The set S must be a convex set, because if dist(p1,H) =

dist(p2,H) = dist(H), then by continuity and concavity, the line segment

that connects p1 and p2 must consist of vectors in S. The set S must be

closed because a corollary to Theorem 4.8 from [18] says that, under a contin-

uous mapping, the inverse image of a closed set is closed. Since dist(p,H) is a

continuous function and S is the inverse image of the closed set, {dist(H)},
then S is closed. This verifies parts (4), (5) and (6) of the theorem and

concludes the proof.

2.9.3. Proof of Theorem 11

(1) In order to destroy all copies of a monochromatic 1-colored triangle in an

arbitrary coloring of Kn, it is sufficient to split the vertex set into two parts

and recolor all edges within these parts in color 2. This requires at most 1
2

(
n
2

)
changes. To see the lower bound, consider Kn with all edges colored 1. After

all editing is done to ensure that color class 1 has no triangles, color class 1

is triangle-free, having at most n2

4 edges. Thus, at least n2

4 = 1
2

(
n
2

)
+ o(n2)

edges must have been changed.

(2) In order to destroy all such triangles, it suffices to equipartition the

vertex set into two parts and recolor all edges within these parts to color 3.

This requires at most 1
2

(
n
2

)
changes. To see the lower bound, consider Kn

on vertex set with equipartition V1 ∪ V2. Let all edges between V1 and V2

be colored 1 and let all edges within parts Vi, i = 1, 2 be colored 2. We

may assume that the only editing operations are recoloring an edge of color

1 into color 3 and recoloring an edge of color 2 into color 3 because this

editing will never create a forbidden triangle. Let c be such a recoloring not

containing triangles with two edges of color 1 and one edge of color 2. Let

G be an auxiliary graph corresponding to edges of color 3 in this coloring.

The complement of G can not have any triangles with vertices in both V1

and V2. It is easy to prove by induction on n that a graph with satisfying

such a condition could have at most 1
2

(
n
2

)
edges. Therefore G has at least

1
2

(
n
2

)
edges, and this corresponds to the number of changes made.

(3) Assume that F consists of a triangle with all edges colored 1 and of a

triangle with all edges colored 2. In order to destroy both of these triangles

in an any coloring, as in the previous case, it is sufficient to equipartition the

vertex set into two parts and recolor all edges within these parts in color 3.

This requires at most 1
2

(
n
2

)
changes.
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As to the lower bound, fix p = (1/2, 1/2, 0) and consider a 3-type, K ∈
K(H), on k vertices. Each of the vertices must have color 3. By Turán’s
theorem, at least

(
k
2

)
−�k2/4	 = 
(k2−2k)/4� edges cannot have color 1 and

at least 
(k2−2k)/4� edges cannot have color 2. Hence, if we consider the off-
diagonal entries ofMK(p), the sum is at least 1

2
(k2−2k)/4�+1
2
(k2−2k)/4�.

So, for any such K,

fK(p) ≥ 1

k2

[
k + 2

⌈
k2 − 2k

4

⌉]
≥ 1

2
.

As a result, infK∈K(H) fK(p) ≥ 1/2.

(4) It suffices to recolor edges of colors 1 or 2 into color 3. As a result,
all forbidden colored triangles will be destroyed via at most 2

3

(
n
2

)
changes.

In fact, for fixed p = (p1, p2, p3), at most (1 − max{p1, p2, p3})
(
n
2

)
changes

suffice.
To see the lower bound, consider a 3-type K ∈ K(H) on k vertices.

The vertices must be monochromatic and, in addition, the edges incident to
a vertex must share the color of that vertex. Otherwise, there would be a
bichromatic triangle H with H �→ K. This implies, however, that K must
be entirely monochromatic. Hence, gK(p) ≥ 1−max{p1, p2, p3}.

Note that this determines not only dist(H), but the entire function
dist(p,H) = 1−max{p1, p2, p3}.

(5) Observe that in order to destroy all rainbow triangles using colors 1, 2
and 3, it is sufficient to edit the smallest of these color classes, thus perform-
ing at most a min{p1, p2, p3} proportion of changes.

For the lower bound, simply observe that no edge in any K ∈ K(H) can
be trichromatic. Otherwise, that edge, together with any vertex to which
it is incident admits a mapping of a rainbow triangle. Hence, each entry
of MK(p) is at least min{p1, p2, p3} and so fK(p) ≥ min{p1, p2, p3}. Hence
dist(p,H) = min{p1, p2, p3} and dist(H) = 1/3.

3. Directed graphs

3.1. Basic definitions

We give a number of definitions that are similar to the case of r-graphs,
however, there are some important distinctions.

Definition 14. A simple directed graph or digraph is defined to be a pair
(V,E) where V is a labeled vertex set, E ⊆ (V )2 and (V )2 denotes the set
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V × V − {(v, v) : v ∈ V }. We will also view this as a coloring; that is, a
digraph is a pair (V, c) where c : (V )2 → {©,−,←,→} is a function which
has the property that, for distinct v, w,

• c(v, w) = c(w, v) if and only if c(v, w) ∈ {©,−} and
• c(v, w) =→ if and only if c(w, v) =←.

Let
←→A := {©,−,←,→}. Here we interpret the color c(v, w) = © to mean

that neither (v, w) nor (w, v) are in E, the color c(v, w) = − to mean that
both (v, w) and (w, v) are in E and the color c(v, w) =→ to mean that
(v, w) ∈ E and (w, v) �∈ E.

For any digraph G on fixed vertex set {v1, . . . , vn}, disjoint vertex sets

Vi and Vj and color ρ, ρ ∈ ←→A , the expression Eρ(Vi) denotes the set of pairs
{vi, v′i} with vi, v

′
i ∈ Vi, i < i′ and c(vi, v

′
i) = ρ. The expression Eρ(Vi, Vj)

denotes the set of pairs {vi, vj} with vi ∈ Vi, vj ∈ VJ and c(vi, vj) = ρ.
Hence, E←(Vi, Vj) = E→(Vj , Vi). As it happens, we will be able to assume,
as in the proof of Theorem 8, that our graphs are random. We will also be
able to assume that, among the pairs that have directed edges, a ← is as
likely as →. Hence, we will postpone the definition of a density vector for
directed graphs.

Definition 15. We say that P ⊆ ←→A is a palette if either none or both of
“→” and “←” are in P . There are 5 possible nontrivial palettes:

0. P0 =
←→A is the most general case.

1. Pcompl = {−,←,→} is the case of simple digraphs such that every pair
of vertices has at least one arc between them.

2. Porien = {©,←,→} is the case of oriented graphs ; that is, no pair of
vertices has two arcs between them.

3. Pundir = {©,−} is the case of simple, undirected graphs.
4. Ptourn = {←,→} is the case of tournaments.

The palette is the universe in which the editing takes place. That is, if
© is not in the palette, then no pair (v, w) can be changed to color © in
the editing process.

If P is a fixed palette and G = (V, c) and G′ = (V, c′) are digraphs with
colors in P , then dist(G,G′) is the proportion of edges on which the colors
differ; i.e., the number of edges on which the colors differ, divided by

(
n
2

)
.3

We may call this the normalized edit distance between G and G′. For any

3Here, we can talk about pairs because the color of the pair (v, w) determines
the color of the pair (w, v).
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property H, a simple digraph G with all edge-colors in palette P , an integer
n, we define dist(G,H), dist(n,H), and dist(H) similarly to the multicolor
case.

A hereditary property of digraphs with respect to palette P (or, simply,
hereditary property, where the context is understood) is a set of digraphs with
all edge-colors in P that is closed under vertex-deletion and isomorphisms.
Let a digraph G′ be an induced digraph of G if G′ can be obtained from
G by vertex-deletion. For a fixed palette, P and a digraph, H, the family
Forb(H) (the palette will be understood) consists of all digraphs with edge-
colors in P that have no (induced) copies of H. For every palette P and
every hereditary property H with respect to P , there is a family, F(H), of
digraphs such that H =

⋂
H∈F(H) Forb(H). If F is a family of digraphs, then

we use Forb(F) to denote
⋂

H∈F Forb(H).

3.2. The directed chromatic numbers

Definition 16. For a hereditary property H =
⋂

H∈F(H) Forb(H) and a
palette P , a weakly-good triple (a0, a1, a2) is a triple of non-negative integers
such that for some H ∈ F(H), the vertex set V (H) can be partitioned into
sets S0, S1, S2 such that, for each i ∈ {0, 1, 2} with ai �= 0, the partition can
be further refined Si = Vi,1 ∪ · · · ∪ Vi,ai

and

• each V0,j does not induce a nonedge (i.e., does not induce an edge of
color ©),

• each V1,j ensures that the directed edges induced by V1,j form an
acyclic digraph, and

• each V2,j does not induce a bidirectional edge (i.e., does not induce an
edge of color −).

The weak clique spectrum of H with respect to a palette P is the set of all
triples (a0, a1, a2) that are NOT weakly-good and such that a0 = 0 if© �∈ P ,
a1 = 0 if {→,←} ∩ P = ∅, a2 = 0 if − �∈ P . The weak directed chromatic

number, χwk,dir
P (H), of H with respect to a palette P is the maximum �+ 1

such that for some non-negative integers a0, a1, a2, with a0 + a1 + a2 = �,
the triple (a0, a1, a2) is in the weak clique spectrum of H. We merely use
χwk,dir(H) for the weak directed chromatic number if the palette is under-
stood.

For a hereditary property H =
⋂

H∈F(H) Forb(H) and a palette P , a
strongly-good triple (a0, a1, a2) is a triple of non-negative integers such that
for some H ∈ F(H), the vertex set V (H) can be partitioned into sets
S0, S1, S2 such that, for each i ∈ {0, 1, 2} with ai �= 0, the partition can
be further refined Si = Vi,1 ∪ · · · ∪ Vi,ai

and
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• each V0,j induces only nonedges (i.e., all edges are of color ©),

• each V1,j ensures that the directed edges induced by V1,j induce a

transitive tournament, and

• each V2,j induces only bidirectional edges (i.e., all edges are of color

−).

The strong clique spectrum of H with respect to a palette P is the set of

all triples (a0, a1, a2) that are NOT strongly-good and such that a0 = 0

if © �∈ P , a1 = 0 if {→,←} ∩ P = ∅, a2 = 0 if − �∈ P . The strong

directed chromatic number, χst,dir
P (H), of H with respect to a palette P is

the maximum �+1 such that for some non-negative integers a0, a1, a2, with

a0 + a1 + a2 = �, the triple (a0, a1, a2) is in the clique spectrum of H. We

merely use χst,dir(H) for the strong directed chromatic number if the palette

is understood.

Remark 17.

• The weak [strong] clique spectrum with respect to a given palette

is again a downset in the partially ordered set of r-tuples ordered

coordinatewise. That is, if (a0, a1, a2) is in the weak [strong] clique

spectrum and (a′0, a
′
1, a

′
2) has the property that 0 ≤ a′i ≤ ai for i =

0, 1, 2, then (a′0, a
′
1, a

′
2) is also in that weak [strong] clique spectrum.

• For any palette P and any hereditary property of digraphs, H,

χwk,dir
P (H) ≤ χst,dir

P (H).

• If the palette P ∈ {Pundir,Ptourn}, the weak and strong directed chro-

matic numbers are equal and so in those cases, we can use χdir
P =

χwk,dir
P = χst,dir

P .

• If the palette is Pundir = {©,−}, then χdir(H) is both the binary

chromatic number of hereditary property H.

• IfH = Forb(H) and the palette is Ptourn = {←,→}, the case of tourna-
ments, then χdir(H) is the fewest number of transitive subtournaments

into which V (H) can be partitioned.

3.3. A simple editing algorithm

Let P be a palette and let H be a hereditary property of digraphs such

that H =
⋂

H∈F(H) Forb(H) and each edge of each H ∈ F(H) has a color

in P . Further, let � = χwk,dir
P (H) − 1 and (a0, a1, a2) be in the weak clique

spectrum and
∑2

i=0 ai = �. Recall that if a color is not in the palette, then

its corresponding ai value must be set to zero.
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Partition V into 3 sets, S0, S1, S2 and further refine the partition such
that Si = Vi,1 ∪ · · · ∪ Vi,ai

, for i = 0, 1, 2 and then recolor the edges induced
by each Vi,j as follows:

• If i = 0, then recolor the edges colored © into some other arbitrary
color in the palette.

• If i = 1, then recolor the edges ← and → so that there are no directed
cycles among those directed edges.

• If i = 2, then recolor the edges colored − into some other arbitrary
color in the palette.

This new coloring does not contain any H ∈ F(H), otherwise the triple
(a0, a1, a2) would be weakly good for some H. As in the multicolor case, if
the partition into sets Vi,j is an equipartition, then

dist(H) ≤ 1

�
=

1

χwk,dir
P (H)− 1

.

3.4. Main results

In Section 2, we have seen a general bound in the r-graph case. Here, we
show a similar result in the directed case.

Theorem 18. Let P be a palette and H be a hereditary property of di-
graphs. Let χwk,dir

P = χwk,dir
P (H) and χst,dir

P = χst,dir
P (H) be the weak and

strong directed chromatic numbers, respectively, of H. Recall that if P ∈
{Pundir,Ptourn}, then χdir

P = χwk,dir
P = χst,dir

P . Then,

0.
1

4(χst,dir
P − 1)

≤ dist(H) ≤ 1

χwk,dir
P − 1

, if P = P0 = {©,←,→,−}.

1.
1

3(χst,dir
P − 1)

≤ dist(H) ≤ 1

χwk,dir
P − 1

, if P = Pcompl = {−,←,→}.

2.
1

3(χst,dir
P − 1)

≤ dist(H) ≤ 1

χwk,dir
P − 1

, if P = Porien = {©,←,→}.

3.
1

2(χdir
P − 1)

≤ dist(H) ≤ 1

χdir
P − 1

, if P = Pundir = {©,−}.

4. dist(H) =
1

2(χdir
P − 1)

, if P = Ptourn = {←,→}.

We prove Theorem 18 in Section 3.10. As in the multicolor case, the
upper bound is a consequence of the simple editing algorithm. The lower
bound comes from Theorem 23, stated below, which is the digraph version of
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Theorem 8 and deals with computing the edit distance for given hereditary
properties of digraphs. In order to do so, we need to investigate the so-
called edit distance function, which computes the edit distance of a digraph
such that nonedges, directed edges and undirected edges having a specified
density.

3.5. The edit distance function

3.5.1. Preliminary definitions For a digraph,G = (V, c) with c : (V )2 →←→A and c having the required symmetries as in Definition 14, partition (V )2
as follows:

• E©(G) is the set of all unordered pairs {v, w} such that c(v, w) = ©,
• E←(G) is the set of all ordered pairs (v, w) such that c(v, w) =←,
• E→(G) is the set of all ordered pairs (v, w) such that c(v, w) =→,
• E−(G) is the set of all unordered pairs {v, w} such that c(v, w) = −,

The definition of a density vector in the r-graph case does not translate well
to the directed case because of the asymmetry that results from directed
edges, so we have a new definition.

Given a palette, P , A directed density vector (p, q) with respect to P (or,
simply, density vector or probability vector where the context is understood)
is a nonnegative real vector with the property that p+2q ≤ 1. Furthermore,

1. If P = Pcompl = {−,←,→}, then p+ 2q = 1.
2. If P = Porien = {©,←,→}, then p = 0 and q ≤ 1/2.
3. If P = Pundir = {©,−}, then q = 0 and p ≤ 1. This is the r-graph case

where r = 2 or simply the case of undirected graphs. See [3] and [4].
4. If P = Ptourn = {←,→}, then p = 0 and 1− p− 2q = 0, so q = 1/2.

For any density vector (p, q), and an integer n, we denote4

distn((p, q),H) = max

⎧⎨
⎩dist(G,H) :

|V (G)| = n, |E−(G)| = p
(
n
2

)
,

|E→(G)| = q
(
n
2

)
, |E←(G)| = q

(
n
2

)
and |E©(G)| = (1− p− 2q)

(
n
2

)
⎫⎬
⎭ .

Observe that there are, in fact, four densities here; two are equal and all sum
to one. Thus, we only need two parameters. We choose parameter names as

4Formally, the sizes of the partitions of the edge set should be integral, so we
can take the floor function for the sizes of, say E−, E←, E→ and the size of E© is
what remains. Since we fix p and q and let n approach infinity, this will make no
appreciable difference.
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above because the case of q = 0 gives the classical case of undirected graphs,

as we see below. Later in the paper, we show that the following limit exits,

which we call the edit distance function:

dist((p, q),H) = lim
n→∞

distn((p, q),H).

Having the edit distance function, we see that dist(H) = max(p,q) dist((p,

q),H), where the maximum is taken over all density vectors that are valid

under the conditions imposed by the palette.

3.5.2. Types of colorings In Section 3.6.1, we define two functions which

are described in terms of dir-types, which allow us to compute the edit dis-

tance function. Later in the paper, we shall provide algorithms for such

computing.

Definition 19. For a palette P , a P-dir-type (or dir-type or type, where the

context and the palette are understood), K, is a pair (U, φ), where U is a

finite set of vertices and φ : U × U → 2P \ ∅, such that

• for distinct x, y and a ∈ {©,−}, φ(x, y) � a if and only if φ(y, x) � a

and

• for distinct x, y, φ(x, y) �→ if and only if φ(y, x) �← and

• φ(x, x) �= P . 5

The sub-dir-type ofK induced byW ⊆ U is the dir-type achieved by deleting

the vertices U −W from K.

We say that a digraph H = (V, c) embeds in type K = (U, φ) if there is

a map γ : V → U such that for all vertices v �= v′,

• if γ(v) �= γ(v′), then c(v, v′) ∈ φ(γ(v), γ(v′)),
• if c0 ∈ {©,−} and c0 �∈ φ(u, u), then γ−1(u) has no pair with color c0,

• if {←,→} ∩ φ(u, u) = ∅, then γ−1(u) has no directed edge, and

• if |{←,→} ∩ φ(u, u)| = 1, then γ−1(u) has no directed cycle.

In other words, there is a mapping γ that brings each edge of color c0 to

a vertex or an edge containing c0 in its color set, except that if a vertex

contains exactly one of {←,→} then the pre-image of that vertex can be

ordered transitively with respect to the oriented edges. If H embeds in type

K, we write H �→ K, otherwise we write H ��→ K. For every hereditary

5Note that it is possible that |{←,→} ∩ φ(x, x)| = 1.
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property H, we let K(H) be the set of all dir-types such that none of F(H)
embeds in that type, i.e.,

K(H) = {K : K is a dir-type, H ��→ K, ∀H ∈ F(H)} .

We say that a digraph G′ = (V, c) has type K = (U, φ) if G′ embeds
into K with mapping γ : V → U and γ is surjective.

We have Fact 20, also similar to the r-graph case, which generalizes the
ideas underlying the simple editing algorithm in Section 3.3.

Fact 20. If K is a dir-type, G′ is of type K and H does not embed into K,
then H �⊆ G′.

3.6. Editing algorithm using types

Let w = (w1, . . . , wk) be a density vector and let (p©, p←, p→, p−) be a
density vector. This latter vector will represent a vector of densities. The
number of ordered pairs (x, y) with color “−” will be p−(n)2 and the number
of ordered pairs with color “©” will be p©(n)2. The number of ordered pairs
with color “←” is p←(n)2 and the number of ordered pairs with color “→”
is p→(n)2. Consequently, p− + p© + p← + p→ = 1.

The vector w will represent a vector of weights, assigned to the vertices
of an dir-type with vertices u1, . . . , uk, respectively.

Let P ⊆ {©,←,→,−} be a palette, H be a hereditary property and
G = (V, c) be a digraph in P such that the density vector is (p©, p←, p→, p−).
In order to find an upper bound on dist(G,H), it is sufficient to change G
to a digraph such that, for all H ∈ F(H), H does not embed into the new
coloring. In particular, if the resulting coloring has type K ∈ K(H), then
this coloring is in H.

Algorithm 21. Fix such a K = (U, φ) ∈ K(H) and try to bring G to
a coloring of type K by edge-recoloring. Let U = {u1, . . . , uk}. Partition
the vertices of G randomly into sets V1, . . . , Vk such that the probability
of a vertex to be in a part Vi is wi. With an ordering of the vertices of G
and vertices x < y, consider an edge (x, y) of G, let x ∈ Vi, y ∈ Vj , for
i, j ∈ {1, . . . , k}. If i �= j and c(x, y) �∈ φ(ui, uj), recolor (x, y) with a color
from φ(ui, uj).

Next, consider the edges in Vi. If φ(ui, ui) contains exactly one of {←,
→}, then consider a random order of the vertices of Vi, call it σ. Let x < y
and both in Vi. If c(x, y) =←, then recolor (x, y) if and only if σ(x) < σ(y).
If c(x, y) =→, then recolor (x, y) if and only if σ(x) > σ(y). Note that this
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forces Vi to have no directed cycles. If φ(ui, ui) �� a for some a ∈ {©,−},
then recolor any edge with color “a” to a color in φ(ui, ui). This concludes
the algorithm.

Algorithm 21 is simply a directed graph version of Algorithm 7. We only
needed to address the editing of oriented edges.

3.6.1. Analysis of the editing algorithm Let us first consider a pair
(x, y). If c(x, y) ∈ {©,−}, then the probability that the color of (x, y) is
unchanged is ∑

1≤i,j≤k

wiwj1c(x,y)∈φ(ui,uj).

If c(x, y) ∈ {←,→}, then the probability that the color of (x, y) is unchanged
is

∑
1≤i<j≤k

wiwj1→∈φ(ui,uj) +

k∑
i=1

w2
i

|{←,→} ∩ φ(ui, ui)|
2

=
∑

1≤i,j≤k

wiwj
1

2
|{←,→} ∩ φ(ui, uj)| .

It doesn’t matter whether we consider the pair (ui, uj) or (uj , ui) in the last
term because |{←,→} ∩ φ(ui, uj)| is invariant whether i < j or i > j.

Now, the expected number of changes is

E[# changes] =

(
n

2

)
−

∑
x,y∈V, x<y

Pr((x, y) is not changed)

=

(
n

2

)
−

∑
1≤i,j≤k

wiwjp©

(
n

2

)
1©∈φ(ui,uj)

−
∑

1≤i,j≤k

wiwjp−

(
n

2

)
1−∈φ(ui,uj)

−
∑

1≤i,j≤k

wiwj
p← + p→

2

(
n

2

)
|{←,→} ∩ φ(ui, uj)|.

Let p = p−, q = p←+p→
2 and so 1 − p − 2q = p©. For K = (U, c), and

ρ ∈ {©,−}, the matrix Aρ is such that the (i, j)th entry is 1 if c(ui, uj) � ρ
and zero otherwise. The matrix A→ is a {0, 1}-matrix with the property
that

(A→)ij = |{←,→} ∩ c(ui, uj)| .
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With J denoting the k × k all-ones matrix, then we define

MK(p) = J− (1− p− 2q)A© − pA− − qA→.

Consequently, if w = (w1, . . . , wk), then E[# changes] = wTMK(p)w
(
n
2

)
.

As in the r-graph case, we define two functions in terms of the matrix

MK(p):

• fK(p) =
(
1
k1

)T
MK(p)

(
1
k1

)
and

• gK(p) = min
{
wTMK(p)w : wT1 = 1,w ≥ 0

}
.

Note 22. In the directed case, each ordered pair can receive one of 4 direc-

tions, but the density vectors only have two entries rather than three. This

is because the above computation shows that an upper bound on editing any

digraph is determined not by the pair (p←, p→) but only by q = (p←+p→)/2.

It is straightforward, by the same arguments as in the proof of Theorem 8,

to see that the lower bound for the maximum edit distance is asymptoti-

cally achieved by a random graph in which the probability of a forward arc

is equal to the probability of a backward arc.

3.7. Basic results on digraphs

Theorem 23 is a parallel to Theorem 8 and summarizes some facts about the

edit distance function. Recall that, depending on the palette, there may be

further restrictions on the density vector other than the necessary p+2q ≤ 1.

The dimension, r, of the palette, P , is the number of members of {©,→,−}
that P has.

Theorem 23. Let H be a hereditary property of digraphs and P a palette.

Fix a density vector with respect to P, p = (p, q). The limit dist(p,H) :=

limn→∞ distn(p,H) exists. Moreover,

1. dist(p,H) = infK∈K(H) fK(p) = infK∈K(H) gK(p);

2. Fix ε > 0, then with probability approaching 1 as n → ∞,

dist(p,H)− ε ≤ dist(G(n,p),H) ≤ dist(p,H);

3. dist(p,H) = limn→∞E[dist(G(n,p),H)];

4. dist(p,H) is continuous over the domain of density vectors with respect

to P and is concave down;
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5. dist(p,H) achieves its maximum, dist(H), at some density vector p∗
H

(in fact, denote the set of all such vectors p∗
H) and so,

dist(H) = lim
n→∞

E[dist(G(n,p∗
H),H)];

6. Both p∗
H and dist(H) exist and p∗

H is a convex and closed set in
[0, 1]r−1.

Note 24. Again, we abuse notation so that p∗
H can be a single vector or a

set.

3.8. Example: Tournaments

The case of tournaments is relatively straightforward. Because in tourna-
ments, there are no edges labeled © or −, there is only one density vector,
p = (0, 1/2). This means that we only need to consider tournaments that
are random, that each arc is forward independently with probability 1/2.
This leads to a rather simple expression for the edit distance:

Theorem 25. Let H be a nontrivial hereditary property of tournaments and
let P = Ptourn = {←,→}. Then,

dist(H) =
1

2(χdir
P (H)− 1)

.

Note that in the case of tournaments, the directed chromatic number
of tournament H, χdir

Ptourn
(H) is the smallest number of transitive subtour-

naments into which H can be partitioned. We prove Theorem 25 in Sec-
tion 3.10.3.

3.9. Example: Triangles

Theorem 26 gives some basic results on examples of hereditary properties of
digraphs defined by triangles. The proof is in Section 3.10.4.

Theorem 26. Consider hereditary properties of digraphs.

1. If F is a family that consists of a single directed triangle, then, regard-
less of the palette, dist(Forb(F)) = 1/2.

2. If F is a family that consists of a single transitive triangle and P =
Ptourn, the palette of tournaments, then Forb(F) is a trivial hereditary
property.



552 Maria Axenovich and Ryan R. Martin

3. If F is a family of that consists of a single transitive triangle, then, if
P is any palette other than Ptourn, then dist(Forb(F)) = 1/2.

4. If F is a family that consists of both a transitive and a directed triangle,
and P is any palette other than Ptourn, then dist(Forb(F)) = 1/2.

3.10. Proofs

3.10.1. Proof of Theorem 18 The upper bound for this theorem is
proven by the simple editing algorithm from Section 3.3.

Let r = |P|. For the lower bound, we apply part 1 of Theorem 23,
which states that dist(p,H) = infK∈K(H) fK(p). Consider an arbitrary K =

(V, φ) ∈ K(H), a P-dir-type on k vertices. Let K̃ be a graph with vertex
set V such that v and v′ are adjacent in K̃ if and only if φ(v, v′) = P .

We observe that K̃ has no clique on χst,dir
P vertices, otherwise for some

H ∈ F(H), H �→ K. Using Turán’s theorem, the number of edges of K̃ is

at most χst,dir
P −2

χst,dir
P −1

· k2

2 . Let p = 1
r1. Consider the matrix MK(p) and observe

that every entry is either zero or is a positive integer multiple of 1/r. The
zero entries correspond exactly to pairs with φ value equal to P . Thus, this

matrix MK(p) has at least k2−2
(
χst,dir

P −2

χst,dir
P −1

· k2

2

)
≥ k2

χst,dir
P −1

entries with value

at least 1/r. Therefore, fK(p) = 1
k21TMK(p)1 is at least 1/r(χst,dir

P − 1).
Since K was arbitrary, this gives a lower bound for dist(p,H).

3.10.2. Proof of Theorem 23 The proof of most of this theorem is
identical to that of Theorem 8, which is found in Section 2.9.2. The only
significant wrinkle is the upper bound. That is, if G is a digraph with p

(
n
2

)
edges with color “−” and (1− p− 2q)

(
n
2

)
edges with color “©”, then, with

p = (p, q),

dist(G,H)/
(
n
2

)
≤ inf

K∈K(H)
fK(p).

This follows directly from the analysis of the editing algorithm using
types from Section 3.6.

3.10.3. Proof of Theorem 25 In this case, p = (0, 1/2). Let H be
a hereditary property of tournaments and χdir = χdir

Ptourn
(H). In any type

K on k vertices, the vertices have color “→” and the edges either have
one direction or both. By the definition of the directed chromatic number,
H �→ K if K has a clique of order χdir such that every edge of K has color
set {←,→}.
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Similar to the argument in Section 3.10.1, we can use Turán’s theo-

rem to find a lower bound for fK(p). The bilinear form 1TMK(p)1 counts
1
2 |V (K)|+ 1

2 |E←(K)|+ 1
2 |E→(K)|, where Eρ(K) is the set of ordered pairs

with color ρ. Since |E{←,→}(K)|+ |E←(K)|+ |E→(K)| = k(k − 1), Turán’s

theorem gives that |E{←,→}(K)| ≤ χdir−2
χdir−1k

2. Consequently,

fK(p) =
1

k2
1TMK(p)1 =

1

k2

[
1

2
k +

1

2
k(k − 1)− χdir − 2

χdir − 1
k2
]
=

1

2(χdir − 1)
.

This concludes the proof of Theorem 25.

3.10.4. Proof of Theorem 26

(1) As to the upper bound, linearly order the vertices so that the number

of backward edges (i.e., pairs {vi, vj} such that i < j and c(vi, vj) =←)

is minimized. A greedy ordering results in at most half of such edges be-

ing present. Reorient such edges so that they become forward edges, hence

dist(Forb(F)) ≤ 1/2. Note that this corresponds to a K that consists of a

single vertex which has color →.

For the lower bound, consider an arbitrary K ∈ K(H) with vertex set

{u1, . . . , uk} and p = (0, 1/2). This means that MK(p) = J − 1
2A→. I.e.,

(MK(p))i,j = 1− 1
2 |c(ui, uj) ∩ {←,→}|.

Here we use an approach due to Sidorenko [19]. See also [14, 15, 17, 16].

For the optimal solution, w∗ to the quadratic program gK(p) =

min
{
wTMK(p)w : wT1 = 1,w ≥ 0

}
, the vector MK(p)w∗ is a constant

vector, equal to gK(p)1.

Observe that there can be no entry (MK(p))ii = 0 because that means,

for the corresponding vertex ui, that c(ui, ui) ⊇ {←,→} and a directed tri-

angle maps to such a vertex. Suppose there is some entry (MK(p))ij = 0.

This implies that there are a pair of vertices, ui and uj such that c(ui, uj) ⊇
{←,→}. We observe that |c(ui, ui) ∩ {←,→}| = |c(uj , uj) ∩ {←,→}| = 0,

otherwise the directed triangle would map to these two vertices of K. Conse-

quently, (MK(p))ii = (MK(p))jj = 1. Moreover, for every � ∈ {1, . . . , k} −
{i, j}, we have (MK(p))i� + (MK(p))j� ≥ 1. If not, then without loss of

generality, we have a triangle {ui, uj , u�} in K such that two edges con-

tain {←,→} and the third contains one of {←,→}. It is easy to see that a

directed triangle maps to three such vertices. But then,



554 Maria Axenovich and Ryan R. Martin

∑
�

(MK(p))i� · w� +
∑
�

(MK(p))j� · w�

≥ (1− wi − wj) + (MK(p))ii · wi + (MK(p))ij · wj

+ (MK(p))ji · wi + (MK(p))jj · wj

= (1− wi − wj) + wi + 0 + 0 + wj = 1.

Since each sum on the left hand side must be equal to gK(p), it must be
that gK(p) ≥ 1/2.

Finally, if there is no zero entry in the i-th row of MK(p), then∑
�(MK(p))i�w� ≥ 1/2. Thus, in all cases, gK(p) ≥ 1/2.

(2) Here we make the easily verified observation that any tournament with
at least 4 vertices has a transitive subtournament of size 3. So, the hereditary
property consists of no tournaments of size 4 or more.

(3) As to the upper bound, equipartition the vertex set arbitrarily and
recolor an each edge inside either part to have a color other than one in
{←,→}. Hence, dist(Forb(F)) ≤ 1/2. Note that this corresponds to a K
that consists of two vertices colored with some nonempty subset of {©,−}
and an edge colored P .

For the lower bound, simply let G be a transitive tournament. After
editing G to make G′, there can be no triangles from G that remain and so
Mantel’s theorem gives that

dist(G,G′) ≥ 1(
n
2

) ((n
2

)
−
⌊
n2

4

⌋)
=

1

2
−O

(
1

n

)
.

(4) Here we can use the trivial fact that if H is the hereditary property that
forbids both directed and transitive triangles and H′ is the larger hereditary
property in (3) which forbids only the transitive triangle, then dist(H) ≥
dist(H′) = 1/2. But the example above of a type K that consists of two
vertices with none of {←,→} in its color set is in K(H) in this case as well.
Hence, fK(p) = 1/2 and so dist(H) = 1/2.

References

[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing
of large graphs, Combinatorica 20(4) (2000), 451–476. MR1804820

[2] N. Alon and J. Spencer, The Probabilistic Method. Third edition. With
an appendix on the life and work of Paul Erdős. Wiley-Interscience
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