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Two further generalizations of the Calkin–Wilf tree

Toufik Mansour and Mark Shattuck

In this paper, we consider two further analogues of the Calkin–
Wilf tree and of the Calkin–Wilf sequence. We first consider (p, q)-
versions of these whereby we show that a two-variable generaliza-
tion of the latter is given, equivalently, in terms of a generaliza-
tion of the former. In particular, we show that the sequence of
(p, q)-generating functions counting the hyperbinary expansions of
n according to the total number of distinct powers used and the
number of powers used twice arises as the sequence of numerators
for the rational functions which label the vertices of our (p, q)-
Calkin–Wilf tree. We also define a k-dimensional q-generalization
of the Calkin–Wilf tree and of the Calkin–Wilf sequence. Having
defined the n-th term of the latter in terms of the generating func-
tion counting the hyper k-expansions of n according to the number
of powers that are used exactly k times, we show that it is given
equivalently in terms of the former.
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1. Introduction

The Calkin–Wilf tree is a binary tree in which each vertex is assigned a
positive rational number. It is defined recursively as follows: The root of the
tree is 1, and each vertex a

b has two children, namely a
a+b (the left child)

and a+b
b (the right one). See Figure 1 below.

Calkin and Wilf [5] have shown that each positive rational number ap-
pears exactly once in this tree, as a fraction in lowest terms. Reading the
tree line-by-line and left-to-right, the Calkin–Wilf sequence starts with
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Reznick [9] mentioned that this sequence was investigated by Stern [10] as
early as 1858, and Newman (see Knuth [8]) found that this sequence satisfies
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Figure 1: The first four levels of the Calkin–Wilf tree.

the somewhat unusual recurrence

(1) xn+1 =
1

2 �xn�+ 1− xn
, n ≥ 1,

with initial condition x1 = 1.
The Calkin–Wilf sequence has many interesting properties. For example,

the sequence of numerators gives the number of hyperbinary representations
of all the nonnegative integers (see [5]). It can be used as a model for the
game Euclid, first formulated by Cole and Davie [6] (see also Hofmann et al.
[7]). Alkauskas and Steuding [2] considered several statistical properties of
the Calkin–Wilf tree, and Bates and Mansour [4] have recently presented a
q-version of it.

If k ≥ 2, then a hyper k-expansion of the number n is one consisting of
powers of k in which a given power can appear at most k times. Hyperbinary
will describe the case k = 2. We consider two related sequences of polyno-
mials. The first, denoted f(n; p, q), is the sequence of generating functions
counting the hyperbinary expansions of n according to the total number
of distinct powers used and the number of powers used twice. The second,
denoted fk(n; q), is the sequence of generating functions counting the hyper
k-expansions of n according to the number of powers that are used exactly
k times, where k ≥ 2 is fixed. Note that the former sequence of polynomials
reduces to the number of hyperbinary expansions of n when p = q = 1, while
the later reduces to it when k = 2 and q = 1.

We show that the sequence of fractions
{

f(n;p,q)
f(n+1;p,q)

}
provides a (p, q)-

generalization of the Calkin–Wilf sequence, which may be expressed, equiv-
alently, in terms of a (p, q)-Calkin–Wilf tree wherein each vertex is assigned
instead a rational function in p and q, see Theorem 2.2 below. We also present
a (p, q)-generalization of (1) above which reduces to it when p = q = 1. Fur-
thermore, we consider a k-dimensional q-analogue of the Calkin–Wilf tree in
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Figure 2: The first three levels of the (p, q)-Calkin–Wilf tree.

which each vertex is now labelled by a vector of fixed length k whose entries
are polynomials in the indeterminate q and show in Theorem 3.2 below that
this tree gives the sequence of polynomials fk(n; q).

In what follows, we let N0 and N denote the nonnegative and positive
integers, respectively. Let R denote the set of real numbers and R

+ its pos-
itive members. Empty sums take the value zero and empty products the
value one, with 00 = 1.

2. The (p, q)-Calkin–Wilf tree and sequence

The following definition of the (p, q)-Calkin–Wilf tree extends the definition
of the Calkin–Wilf tree found in Bates et al. [3].

Definition 2.1 ((p, q)-Calkin–Wilf tree). The (p, q)-Calkin–Wilf tree is a
binary tree with root 1

p . Each vertex a
b from level 1 onwards is a parent to

two children: a left child pa
pqa+b and a right child pqa+b

pb , where p and q may

either be regarded as indeterminates or as elements of R+. Each of these
children is located one level below its parent on the tree.

Figure 2 shows the first three levels of the (p, q)-Calkin–Wilf tree.
Clearly, by induction on j, the leftmost and rightmost vertices in level j

of the (p, q)-Calkin–Wilf tree are, respectively,

pj−1

p+ (p+ p2 + · · ·+ pj−1)q
and

pj−1(1 + q + · · ·+ qj−1)

pj
.

We next define (p, q)-generalizations for the concepts of hyperbinary
expansion and sequence.

Definition 2.2 ((p, q)-hyperbinary expansions). The hyperbinary expan-
sion of a number n is an expansion of n as a sum of powers of 2, each power
being used at most twice. We denote the set of all hyperbinary expansions
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of n by Hn, the number of powers that are used exactly twice in the hy-
perbinary expansion x ∈ Hn by hn(x), and the total number of distinct
powers that are used in the hyperbinary expansion x ∈ Hn by dn(x). The
(p, q)-hyperbinary expansion of x is defined as pdn(x)qhn(x).

Definition 2.3 ((p, q)-Calkin–Wilf sequence). Let f(n; p, q) be the poly-
nomial consisting of the sum of (p, q)-hyperbinary expansions of n with
f(0; p, q) = 1 and f(−1; p, q) = 0. Then we will call the sequence

{f(n; p, q)}n∈N0
= 1, p, p+ pq, p2, p+ (p+ p2)q, p2(1 + q),

p2(1 + q + q2), p3, p+ (p+ p2 + p3)q, . . .

the (p, q)-hyperbinary sequence and call the sequence{
f(n; p, q)

f(n+ 1; p, q)

}
n∈N0

=
1

p
,

p

p(1 + q)
,
p(1 + q)

p2
,

p2

p+ (p+ p2)q
,

p+ (p+ p2)q

p2(1 + q)
,

p2(1 + q)

p2(1 + q + q2)
, . . .

the (p, q)-Calkin–Wilf sequence.

Example 2.1. The hyperbinary expansions of 6 are 4 + 2, 4 + 1 + 1 and
2+2+1+1. Thus, the (p, q)-hyperbinary expansions of 6 are p2q0, p2q and
p2q2 and, accordingly, f(6; p, q) = p2 + p2q + p2q2.

Following [3, 4], we may define branches and diagonals of the (p, q)-
Calkin–Wilf tree as below.

Definition 2.4 (Branches and diagonals). Let v be any vertex of the (p, q)-
Calkin–Wilf tree and j ∈ N. The set of all vertices that is generated when
an infinite number of right (left) movements proceeding from the left (right)
child of v will be denoted by Lv (Rv) and will be called the left (right) branch
of v. The set Lv (Rv) includes the left (right) child of v.

The j-th left (right) diagonal Lj (Rj) of the (p, q)-Calkin–Wilf tree is
the set of all vertices found at the j-th leftmost (rightmost) position in each
level of the tree beginning at level �log2 j�+ 1.

Example 2.2. We have

L1 =

{
pj−1

p+ (p+ p2 + · · ·+ pj−1)q

}
j≥1

,

R 1

p
=

{
pj−1(1 + q)

p2 + (p2 + p3 + · · ·+ pj−1)(q + q2)

}
j≥2

,
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R1 =

{
pj−1(1 + q + · · ·+ qj−1)

pj

}
j≥1

,

L2 =

{
p+ (p+ p2 + · · ·+ pj−1)q

p2 + (p2 + p3 + · · · pj−1)q

}
j≥2

,

and

R2 =

{
pj−1(1 + q + · · ·+ qj−2)

pj−1(1 + q + · · ·+ qj−1)

}
j≥2

.

A proof of the following theorem when p = q = 1 can be found in [5] and

an inductive proof is given in Aigner and Ziegler [1]. Recently, Bates et al.

[3] offered another proof based on branching in the tree which can be readily

generalized to establish the following theorem for the (p, q)-Calkin–Wilf tree.

Theorem 2.1. Let the concatenation of successive levels of the (p, q)-Calkin–

Wilf tree form a sequence. Then the denominator of the i-th term of this

sequence is the numerator of the (i+ 1)-st term for all i.

Remark. The sequence described in Theorem 2.1 is of the form

{
g(n; p, q)

g(n+ 1; p, q)

}
n∈N0

for some function g with g (0; p, q) = 1 and g (1; p, q) = p. The left and right

children of {
g(n; p, q)

g(n+ 1; p, q)

}

are, respectively,

{
g(2n+ 1; p, q)

g(2n+ 2; p, q)

}
and

{
g(2n+ 2; p, q)

g(2n+ 3; p, q)

}
.

The next result shows how the (p, q)-Calkin–Wilf sequence is related to

the (p, q)-Calkin–Wilf tree.

Theorem 2.2. The (p, q)-Calkin–Wilf sequence is the concatenation of suc-

cessive levels of the (p, q)-Calkin–Wilf tree. That is, for all n ∈ N0,

g(n; p, q) = f(n; p, q).
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Proof. By the preceding remark and Definition 2.1, we obtain the recur-
rences

g(2n+ 1; p, q) = pg(n; p, q),(2)

g(2n+ 2; p, q) = pqg(n; p, q) + g(n+ 1; p, q),

for all n ∈ N0, with g(0; p, q) = 1. Now suppose x is any hyperbinary ex-
pansion of the integer m. If m = 2n+ 1, then the hyperbinary expansion x
must contain exactly one power of 20 = 1. Subtracting this and reducing all
of the other powers of 2 by one in x gives a hyperbinary expansion of the
integer n (note that all such expansions of n arise uniquely in this manner).
If m = 2n + 2, then x either contains no copies of the power 20 (in which
case, simply reduce each power of 2 by one) or exactly two copies of 20 (in
which case, first subtract 2 before dividing by it). This yields the following
set of recurrences:

f(2n+ 1; p, q) = pf(n; p, q),(3)

f(2n+ 2; p, q) = f(n+ 1; p, q) + pqf(n; p, q),

for all n ∈ N0, with f(0; p, q) = 1. The result now follows from (2) and
(3).

Definition 2.5. The generating function for the (p, q)-hyperbinary sequence
{f(n; p, q)}n≥0 is defined by

F (x, p, q) =
∑
n≥0

f(n; p, q)xn.

Theorem 2.3. The generating function F (x, p, q) is given by

F (x, p, q) =
∏
j∈N0

(
1 + px2

j

+ pqx2
j+1

)
.

Proof. By recurrence (3), we have

F (x, p, q) = 1 +
∑
n≥0

f(2n+ 1; p, q)x2n+1 +
∑
n≥0

f(2n+ 2; p, q)x2n+2

= 1 + p
∑
n≥0

f(n; p, q)x2n+1 +
∑
n≥0

f(n+ 1; p, q)x2n+2

+ pq
∑
n≥0

f(n; p, q)x2n+2
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= (1 + px+ pqx2)
∑
n≥0

f(n; p, q)x2n,

which implies

F (x, p, q) =
∑
n≥0

f(n; p, q)xn =
(
1 + px+ pqx2

)
F (x2, p, q)

=
(
1 + px+ pqx2

) (
1 + px2 + pqx4

)
F (x4, p, q)

= · · ·

=
∏
j∈N0

(
1 + px2

j

+ pqx2
j+1

)
,

as required.

One may provide explicit formulas for the sequences of left and right
descendants starting from any point.

Theorem 2.4. We have

L a

b
=

{
pk−1(pqa+ b)(1 + q + · · ·+ qk−1) + pk+1qka

pk(pqa+ b)

}
k≥0

and

R a

b
=

{
pk(pqa+ b)

pb+ q(pqa+ b)(p+ p2 + · · ·+ pk)

}
k≥0

.

Proof. From Definitions 2.1 and 2.4, we have

L a

b
=

pa

pqa+ b
,
p2qa+ pqa+ b

p2qa+ pb
,
p3q2a+ p2q2a+ pqb+ p2qa+ pb

p3qa+ p2b
, . . . ,

and, by induction, the k-th term of this sequence, k ≥ 1, is given by

(pk−1qa+ pk−2b)(1 + q + · · ·+ qk−2) + pkqk−1a

pkqa+ pk−1b
.

Replacing k with k + 1 gives the first result. Similarly,

R a

b
=

pqa+ b

pb
,

p2qa+ pb

p2q2a+ pqb+ pb
,

p3qa+ p2b

p3q2a+ p2qb+ p2q2a+ pqb+ pb
, . . . ,

whose k-th term, k ≥ 1, is given by

pkqa+ pk−1b

pb+ (pq2a+ qb)(p+ p2 + · · ·+ pk−1)
.
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We have the following partial result for succession.

Theorem 2.5. Let xn be the n-th term in the (p, q)-Calkin–Wilf sequence
where n ∈ N. Then

x2n+1 =
1

p− pqx2n
.

Proof. By Definition 2.3 and the recurrence (3), we have

x2n =
f (2n− 1; p, q)

f (2n; p, q)
=

pf (n− 1; p, q)

pqf (n− 1; p, q) + f (n; p, q)
,

and so

x2n+1 =
f (2n; p, q)

f (2n+ 1; p, q)

=
pqf (n− 1; p, q) + f (n; p, q)

pf (n; p, q)

=
pqf (n− 1; p, q) + f (n; p, q)

p(pqf (n− 1; p, q) + f (n; p, q))− p2qf(n− 1; p, q)

=
1

p− pq pf(n−1;p,q)
pqf(n−1;p,q)+f(n;p,q)

=
1

p− pqx2n
,

as claimed.

Before we state our next result concerning succession, we will need the
following lemma.

Lemma 2.6. Suppose q ≥ p > 0 are fixed real numbers and that x ∈ R
+

can be expressed in the form

(4) x =
1

p
(1 + q + · · ·+ qk−1) + εqk−1,

for some k ∈ N0 and ε ∈ [0, 1). Then k and ε are uniquely determined.

Proof. Suppose, to the contrary, that we may express x in the form (4) for
some k1, ε1 and k2, ε2, where k1 > k2 ≥ 0. Equating expressions for x implies

(5)
1

p
(qk2 + · · ·+ qk1−1) = ε2q

k2−1 − ε1q
k1−1.
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On the other hand, we have

ε2q
k2−1 − ε1q

k1−1 ≤ ε2q
k2−1 =

ε2
q
qk2 <

1

p
qk2 ≤ 1

p
(qk2 + · · ·+ qk1−1),

which contradicts (5).

Given x ∈ R
+ of the form in (4), let kx = k

(p,q)
x denote the uniquely

determined member of N0. We can now state a full recurrence for the (p, q)-
Calkin–Wilf sequence when q ≥ p > 0.

Theorem 2.7. Let xn be the n-th term in the (p, q)-Calkin–Wilf sequence,
where n ≥ 2 and q ≥ p > 0 are fixed real numbers. If xn belongs to L1, then

xn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
1+xn−1

, if q = p = 1;

p(pxn−1−1)(p−1)
p+ppxn−1−2 , if q = 1 and p 	= 1;

1
1+tq , if q 	= 1 and p = 1;

pt−1(p−1)
p−1+(pt−1)q , if q 	= 1 and p 	= 1,

where t = log(1+p(q−1)xn−1)
log(q) in the last two cases. If xn does not belong to L1

and k = kxn−1
is as defined above, then

xn =

{
1

pk−1
+ q

k−1∑
i=0

1

pi
+

1

pk

k−1∑
i=0

1

qi
− xn−1

(pq)k−1

}−1

.(6)

Proof. Suppose xn ∈ L1 and that it is the leftmost member of level j+1 for
some j ≥ 1, which implies xn−1 is the rightmost member of level j. Thus,
we have

xn−1 =
1 + q + · · ·+ qj−1

p

and

xn =
pj−1

1 + (1 + p+ · · ·+ pj−1)q
.

If q = 1, then xn−1 = j
p and the first two cases follow upon considering

whether or not p is one. If q 	= 1, then

xn−1 =
qj − 1

p(q − 1)
,
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which implies j = log(1+p(q−1)xn−1)
log(q) . Now substitute j into the expression for

xn, differentiating the cases when p = 1 and p 	= 1.
Now suppose xn does not belong to L1. Let

a
b denote the closest common

ancestor of xn−1 and xn. Then xn−1 and xn are the �-th terms in the left
and right branches, respectively, of a

b for some � ∈ N0. From Theorem 2.4,
we have

xn−1 =
p�−1(pqa+ b)(1 + q + · · ·+ q�−1) + p�+1q�a

p�(pqa+ b)

and

xn =
p�(pqa+ b)

pb+ pq(pqa+ b)(1 + p+ · · ·+ p�−1)
.

Rewrite xn−1 as

(7) xn−1 =
1

p

(
1 + q + · · ·+ q�−1

)
+

(
pqa

pqa+ b

)
q�−1.

From (7) and Lemma 2.6 (take ε = pqa
pqa+b), we see that � = kxn−1

, which
we’ll denote simply by k. Therefore, we have

1

xn
= q

(
1 +

1

p
+ · · ·+ 1

pk−1

)
+

1

pk−1

(
b

pqa+ b

)

= q

(
1 +

1

p
+ · · ·+ 1

pk−1

)
+

1

pk−1

(
1− pqa

pqa+ b

)

= q

(
1 +

1

p
+ · · ·+ 1

pk−1

)

+
1

pk−1

(
1− xn−1

qk−1
+

1

p

(
1 +

1

q
+ · · ·+ 1

qk−1

))
,

by (7), which gives the result.

The proof above specializes to yield recurrence (1) satisfied by the Calkin–
Wilf sequence.

Corollary 2.8. If xn denotes the n-th term of the Calkin–Wilf sequence,
then

(8) xn =
1

2�xn−1�+ 1− xn−1
, n ≥ 2,

with initial condition x1 = 1.
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Proof. First suppose xn does not belong to L1. If p = q = 1, we have
k = kxn−1

= �xn−1�, by definition. Theorem 2.7 when p = q = 1 then
implies

xn =
1

2k + 1− xn−1
=

1

2�xn−1�+ 1− xn−1
.

If xn ∈ L1, then xn−1 = j and xn = 1
j+1 for some j ≥ 1 and the recurrence

holds in this case as well.

We have the following partial result concerning the uniqueness of the
entries of the (p, q)-Calkin–Wilf tree. We refer to the p = 1 case as the
q-Calkin–Wilf tree.

Theorem 2.9. If q is a positive integer, then the entries of the q-Calkin–
Wilf tree are distinct positive rational numbers in lowest terms.

Proof. First note that if a
b is a fraction in lowest terms, then so are its

children, a
qa+b and qa+b

b , which implies all of the entries are positive rational
numbers in lowest terms by induction. We next treat the uniqueness. First
note that the members of R1 (which are of the form 1 + q + · · · + qi) are
distinct from all of the other entries of the tree, since they are integers with
no other entries of the tree integral (recall all fractions are in lowest terms).
To show that all of the entries in the tree are distinct, we will prove that all
of the entries in the first n rows are distinct for each n ≥ 1, by induction on
n, the n = 1 and n = 2 cases clear (note that the numbers 1, 1

q+1 and q + 1

are distinct).
Let us assume the statement holds for n and prove it for n+1. Suppose,

to the contrary, that it fails for n+1, where n ≥ 2, and that x = y, where x is
an entry in row n+1 and y is another entry in row k for some k ≤ n+1. We
may also assume further that neither x nor y belongs to R1. Given z /∈ R1,
let z̄ be an entry such that z ∈ Lz̄; we show that z̄ is uniquely determined. If
z̄ = a

b , written in lowest terms, then the p = 1 case of Theorem 2.4 implies
z is expressible as

z = (1 + q + · · ·+ qr−2) + qr−2

(
qa

qa+ b

)

for some r ≥ 1. By Lemma 2.6, note that r, and hence a, b, and z̄, are
uniquely determined by the numerical value of z. (Indeed, one can show fur-
ther that the mapping z 
→ z̄ is a bijection from the 2n−1 entries comprising
row n+1 excepting the rightmost entry to the 2n−1 entries comprising the
first n rows for each n ≥ 1, by an inductive argument.)
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Thus, the number of rows r one must go back along the tree to reach z̄
starting from z is determined by z. So x = y implies x̄ = ȳ, with x̄ and ȳ
corresponding to distinct positions in rows n+1−r and k−r, respectively, for
some r ≥ 1, which contradicts the induction hypothesis. This completes the
induction step and implies that all of the entries of the tree are distinct.

Remark. Not all of the positive rationals appear in the q-Calkin–Wilf tree
for integers q > 1, which is apparent since not all positive integers are of the
form 1 + q + · · ·+ qi in this case.

3. The q-Calkin–Wilf k-tree and sequence

The following definition of the q-Calkin–Wilf k-tree provides another gener-
alization of the one presented in Bates et al. [3] for the Calkin–Wilf tree.

Definition 3.1 (q-Calkin–Wilf k-tree). The q-Calkin–Wilf k-tree is a k-
ary tree whereby each vertex (a1, a2, . . . , ak) has fixed dimension, k, and
(1, 1, . . . , 1) represents the root of the tree. Each vertex (a1, . . . , ak) is a
parent to exactly k children:

(a1, . . . , a1, qa1 + a2), (a1, . . . , a1, qa1 + a2, a2), . . . , (qa1 + a2, a2, . . . , a2),

going from the leftmost to the rightmost child, where q may either be re-
garded as an indeterminate or as an element of R+. Each of these children
is located one level below its parent on the tree.

Figure 3 shows the first three levels of the q-Calkin–Wilf 3-tree.
By induction on j, the leftmost and rightmost vertices in level j of the

q-Calkin–Wilf k-tree are given, respectively, by

(1, . . . , 1, 1 + q) and (1 + q + · · ·+ qj−1, 1, . . . , 1).

Similarly, the second leftmost and second rightmost vertices in level j, where
j ≥ 2, are given, respectively, by

(1, . . . , 1, 1 + q, 1) and (1 + q + · · ·+ qj−2, 1 + 2 + · · ·+ qj−1, 1, . . . , 1).

The left diagonals of the q-Calkin–Wilf k-tree assume a particularly sim-
ple form.

Proposition 3.1. If k ≥ 3, then each left diagonal of the q-Calkin–Wilf
k-tree, except for the first, has every entry identical. The first left diagonal
has identical entries except for the first term.
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v0

v1

v1 v2 v3

v2

v4 v5 v6

v3

v7 v8 v9

Figure 3: The first three levels of the q-Calkin–Wilf 3-tree, where v0 =
(1, 1, 1), v1 = (1, 1, q+1), v2 = (1, q+1, 1), v3 = (q+1, 1, 1), v4 = (1, 1, 2q+1),
v5 = (1, 2q+1, q+1), v6 = (2q+1, q+1, q+1), v7 = (q+1, q+1, q2+ q+1),
v8 = (q + 1, q2 + q + 1, 1) and v9 = (q2 + q + 1, 1, 1).

Proof. Note that there are kn−1 entries of level n in the q-Calkin–Wilf k-tree
for each n ≥ 1. By induction, our result is an immediate consequence of the
fact that the leftmost kn−2 entries of level n are identical to the entries of
level n − 1 for all n ≥ 2. To see this, note that the first kn−2 entries in
level n are all descendants of the first entry in the second row and therefore
they correspond to the (n− 1)-st row of the q-Calkin–Wilf k-tree with root
(1, . . . , 1, 1 + q) instead of (1, . . . , 1) (which would have all the same entries
except for the root).

Furthermore, note that writing the set of vectors representing the chil-
dren of a node left-to-right in column form yields a symmetric matrix. In
this matrix, the diagonal that proceeds from the bottom left to the upper
right consists of identical entries.

The next two definitions provide a q-generalization for the number of
hyper k-expansions of an integer n.

Definition 3.2 (q-hyper k-expansions). A hyper k-expansion of a number
n is an expansion of n as a sum of powers of k, each power being used at
most k times. We denote the set of all hyper k-expansions of n by Hk(n)
and the total number of powers that are used exactly k times in the hyper
k-expansion x ∈ Hk(n) by hk,n(x). The q-hyper k-expansion of x is defined
as qhk,n(x).

Definition 3.3 (q-Calkin–Wilf k-sequence). Define fk(n; q) to be the poly-
nomial for the sum of all q-hyper k-expansions of n ∈ N, with fk(0; q) = 1.
The fk(n; q) will be called q-hyper k-expansion polynomials. We will call the
sequence of vectors

{vk(n)}n∈N0
= {(fk(n; q), fk(n+ 1; q), . . . , fk(n+ k − 1; q))}n∈N0

the q-Calkin–Wilf k-sequence.
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Note that the sequence {v2(n)}n∈N0
provides an alternate representation

of the (p, q)-Calkin–Wilf sequence presented in Definition 2.3 above in the
case when p = 1.

Example 3.1. The hyper 3-expansions of 12 are 32 + 3, 32 + 1+ 1+ 1 and
3+ 3+ 3+ 1+ 1+ 1. Thus, the q-hyper 3-expansions of 12 are q0, q1 and q2

and, accordingly, f3(12; q) = q2 + q + 1. Similarly, the q-hyper 3-expansions
of n for n = 0, 1, 2, . . . , 21 are given by

1, 1, 1, q + 1, 1, 1, q + 1, 1, 1, 2q + 1, q + 1, q + 1, q2 + q + 1, 1, 1, q + 1, 1, 1,

2q + 1, q + 1, q + 1.

The next result shows how the q-Calkin–Wilf k-tree is related to the
q-Calkin–Wilf k-sequence.

Theorem 3.2. If k ≥ 2, then let the concatenation of successive levels of
the q-Calkin–Wilf k-tree form a sequence uk(n; q) of vectors of length k.
Then

uk(n) = vk(n),

for all n ≥ 0.

Proof. From Definition 3.1, the children of the vertex uk(n) in the q-Calkin–
Wilf k-tree are given by

uk(kn+ 1), uk(kn+ 2), . . . , uk(kn+ k).

Write uk(n) = (gk(n; q), gk(n + 1; q), . . . , gk(n + k − 1; q)) for all n ∈ N0.
From Definition 3.1, we have

gk(kn+ j; q) = gk(n; q), for all j = 1, 2, . . . , k − 1,(9)

gk(kn+ k; q) = gk(n+ 1; q) + qgk(n; q),

for all n ∈ N0, with gk(0; q) = 1. Now suppose x is any hyper k-expansion of
the integer m. If m = kn+ j for some j, 1 ≤ j ≤ k−1, then the expansion x
must contain exactly j powers of k0 = 1. Subtracting j and reducing all of
the other powers of k by one in x gives a hyper k-expansion of the integer
n. If m = kn + k, then x either contains no powers of k0 (in which case,
simply reduce each power of k by one) or exactly k powers of k0 (in which
case, first subtract k before dividing by it). This yields the following set of
recurrences:
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fk(kn+ j; q) = fk(n; q), for all j = 1, 2, . . . , k − 1,(10)

fk(kn+ k; q) = fk(n+ 1; q) + qfk(n; q),

for all n ∈ N0, with fk(0; q) = 1. The result follows from (9) and (10).

In particular, we see that the sequence consisting of the first components
of the vectors which label the vertices in the q-Calkin–Wilf k-tree is precisely
the sequence fk(n; q). These polynomials may be given explicitly in several
cases.

Theorem 3.3. If k ≥ 2, then

(i) fk(k
m − 1; q) = 1, m ≥ 1,

(ii) fk(k
m; q) = 1 +mq, m ≥ 1,

(iii) fk(k
m + k; q) = 1 + (m− 1)q + (m− 1)q2, m ≥ 2.

Proof. (i) Since km− 1 = (k− 1)(km−1+ · · ·+ k)+ k− 1, then from (10),
we have

fk(k
m − 1; q) = fk((k − 1)(km−2 + · · ·+ 1); q) = fk(k

m−1 − 1; q),

for all m ≥ 1, whence the result follows from the fact fk(k− 1; q) = 1.
(ii) Applying (10) when n = km, we have fk(n; q) = fk(k

m−1; q) +
qfk(k

m−1 − 1; q). Thus, by (i), we have fk(k
m; q) = fk(k

m−1; q) + q,
with the initial condition fk(1; q) = 1, whence the result follows by
induction on m.

(iii) If m ≥ 2, then from (10),

fk(k
m + k; q) = fk(k

m−1 + 1; q) + qfk(k
m−1; q)

= fk(k
m−2; q) + q(1 + (m− 1)q)

= 1 + (m− 2)q + q(1 + (m− 1)q),

by (ii).

We next find an explicit formula for the ordinary generating function of
the sequence fk(n; q), where k ≥ 2 is fixed.

Theorem 3.4. The generating function Fk(x, q) =
∑

n≥0 fk(n; q)x
n is given

by

F (x, q) =
∏
j∈N0

(
1− xk

j+1

1− xkj + qxk
j+1

)
.
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Proof. By (10), we have

Fk(x, q) = 1 +
∑
n≥0

k∑
j=1

fk(kn+ j; q)xkn+j

= 1 +
∑
n≥0

k−1∑
j=1

fk(n; q)x
kn+j +

∑
n≥0

[fk(n+ 1; q) + qfk(n; q)]x
kn+k

=

k−1∑
j=0

xjFk(x
k, q) + qxkFk(x

k, q).

Therefore, we have

Fk(x, q) =

(
1− xk

1− x
+ qxk

)
Fk(x

k, q)

=

(
1− xk

1− x
+ qxk

)(
1− xk

2

1− xk
+ qxk

2

)
Fk(x

k2

, q)

= · · ·

=
∏
j∈N0

(
1− xk

j+1

1− xkj + qxk
j+1

)
,

as required.

When q = 0, the product in Theorem 3.4 telescopes to give

Fk(x, 0) =
1

1− x
,

in accordance with the uniqueness of the usual k-ary expansion. We conclude
by describing a recurrence satisfied by the sequence of fractions xk(n) :=
fk(n+1;q)
fk(n+2;q) .

Theorem 3.5. If n ≥ 1, then

xk(kn+ k − 1) = 1 + qxk(n− 1),

xk(kn+ k − 2) =
xk(n− 1)

1 + qxk(n− 1)
,

xk(kn+ j) = 1,

for all j = 0, 1, 2, . . . , k − 3.
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Proof. By (10), we have

xk(kn+ d− 1)xk(kn+ d) · · ·xk(kn+ k − 2) =
fk(kn+ d; q)

fk(kn+ k; q)

=
fk(n; q)

fk(n+ 1; q) + qfk(n)

=
xk(n− 1)

1 + qxk(n− 1)
,

for all d ∈ {1, 2, . . . , k−1}. Applying this equation for d = k−1, k−2, . . . , 1,
we obtain

xk(kn+ k − 2) =
xk(n− 1)

1 + qxk(n− 1)

and

xk(kn) = · · · = xk(kn+ k − 3) = 1.

Also, by (10), we get

xk(kn+ k − 1) =
fk(kn+ k; q)

fk(kn+ k + 1; q)

=
fk(n+ 1; q) + qfk(n; q)

fk(n+ 1; q)

= 1 + qxk(n− 1; q),

as claimed.
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