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A variation of the Stern-Brocot tree

Colin L. Mallows

We study of a variation of the Stern-Brocot tree, in which not one

but two fractions are inserted between each existing pair. Relating

this tree to the original one gives rise to a permutation of the

natural numbers.
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1. The Stern-Brocot tree, and a variation

The Stern-Brocot tree (or rather half of it) can be defined as follows. Start

with two fractions 0/1 and 1/1, forming an ordered set S0. (Through-

out this paper, “fraction” means “fraction in lowest terms”.) At stage k,

(k = 1, 2, . . .), form a new set Sk by inserting between each pair of adjacent

fractions in Sk−1, say p/q and r/s, the fraction (p+r)/(q+s). Name the (or-

dered) set of fractions that are introduced at this stage Rk. Thus R1 = (1/2),

R2 = (1/3, 2/3), R3 = (1/4, 2/5, 3/5, 3/4), R4 = (1/5, 2/7, 3/8, 3/7, 4/7, 5/8,

5/7, 4/5) etc. Rk has 2k−1 elements. It is well known (see e.g. [1]) that ev-

ery proper fraction appears (exactly once) in some Rk, and that adjacent

fractions p/q, r/s satisfy

(1) |qr − ps| = 1.

We define a new tree (first noticed in [2, Section 9]) starting with S′
0 =

S0. At the k-th stage insert two fractions between each existing adjacent

pair in S′
k−1, namely between p/q and r/s (where p is even and r is odd),

insert (p+ r)/(q+ s) and (p+2r)/(q+2s). Notice that we may have either

p/q < (p+ r)/(q + s) < (p+ 2r)/(q + 2s) < r/s or the same with all the in-

equalities reversed. It is easy to see that every adjacent pair of fractions in

S′
k satisfy (1) and that the numerators of successive fractions in S′

k are alter-

nately even and odd, so that the insertion rule is well-defined. Successive gen-

erations of insertions are denoted R′
1, R

′
2, . . . . Thus R

′
k has 2.3k−1 elements.
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Explicitly,

R′
1 = (1/2, 2/3), R′

2 = (1/3, 2/5, 4/7, 3/5, 3/4, 4/5),

R′
3 = (1/4, 2/7, 4/11, 3/8, 2/7, 4/9, 6/11, 5/9, 7/12, 10/17, 8/13, 5/8, 5/7,

8/11, 10/13, 7/9, 5/6, 6/7).

Lemma 1. For every proper fraction x, there is a k such that x appears in
R′

k.

Proof. Define the “ndsum” of a fraction p/q to be p+ q. An easy induction
shows that for k ≥ 1 the minimum ndsum in the row R′

k is k + 2 (attained
by the first element, which is 1/(k + 1)). The minimum ndsum in S′

0 is 1,
attained by 0/1. Suppose the fraction a/b, where a+ b ≥ 2, does not appear
in any R′

k. Consider the row R′
a+b. There must be a fraction p/q in this row

and a fraction r/s in S′
a+b such that |qr − ps| = 1 and p/q < a/b < r/s,

or the same with both inequalities reversed. Suppose the inequalities are as
shown. Then aq − bp > 0, so aq − bp ≥ 1, and similarly br − as ≥ 1. Thus

(2) (p+ q)(br − as) + (r + s)(aq − bp) ≥ p+ q + r + s.

But the l.h.s. of (2) equals (a+ b)(qr− ps) = a+ b, and the r.h.s. is at least
(a + b + 2) + 1, so a + b ≥ a + b + 3 which is a contradiction. When the
inequalities are reversed, the argument is similar.

2. Relating the two trees

We study the relation between the sets {R′
k} and {Rk}. We find that (as far

as we have computed, namely R′
6 and R12) there is a sequence p, starting

Sequence p

1, 2, 5, 3, 4, 8, 17, 9, 10, 20, 11, 6, 7, 14, 29, 15, 16, 32, 65, 33, 34, 68, 35, 18, 19,

such that for each k, and for i = 1, 2, . . . , 2.3k−1, the fraction R′
k(i) appears

as Rk′(i)(p(i)) for some k′(i). We write k′(i) = k+ rk(i), and set nk = 2k
′−1,

which is the sequence of lengths of the rows k′ of R in which these fractions
appear. Thus for k = 3, the rows of the following matrix M3 are

the numerators of fractions in R′
3

the corresponding denominators
the m such that each such fraction appears in Rm+3

the length of the row Rm+3 (this is nm+3)
the position of this fraction in Rm+3 (this is a prefix of p).



Stern-Brocot 503

1 2 4 3 3 4 6 5 7 10 8 5 5 8 10 7 5 6
4 7 11 8 7 9 11 9 12 17 11 8 7 11 13 9 6 7
0 1 2 1 1 2 3 2 2 3 2 1 1 2 3 2 2 3
4 8 16 8 8 16 32 16 16 32 16 8 8 16 32 16 16 32
1 2 5 3 4 8 17 9 10 20 11 6 7 14 29 15 16 32

Rows 3 and 5 of the first six columns of this matrix give the corresponding
results for R′

2, while the fourth row is twice the fourth row for R′
2.

We have studied similar matrices through k = 6, finding that for each
k, the fifth row of Mk contains the first 2.3k−1 elements of the sequence
we have called p. The third row contains numbers in the range (0, k), with
successive entries equal or consecutive.

The following lemma shows how the sequence for R′
k+1 can be obtained

from that for R′
k.

Lemma 2. Given the finite sequences pk and nk that describe the relation
of R′

k to the rows of S, the sequences for row R′
k+1 are as follows.

pk+1 = (pk, rev(3nk + 1− pk), 3nk + pk),

nk+1 = (2nk, rev(4nk), 4nk)

where “rev” means “the reverse of”.

Proof. The n and p sequences for R′
k+1 are unchanged if we replace the

starting fractions S0 and S′
0 by (0/1, 1/2). So the (finite) p sequence for R′

k

is the same as the first third of the p sequence for R′
k+1, while the rows

for Rm+1 are twice as long as those for Rm. Similarly, the final third of the
p-sequence for R′

k+1, which relate to the interval (2/3, 1/1), are the same
as the sequence for R′

k, translated by 3/4 of the length, which is four times
the length for Rm. Finally, for the middle third, which relates to the interval
(1/2, 2/3), we have to read the Rk values backwards (because the numerator
of 1/2 is odd and the numerator of 2/3 is even) and count backwards from
3/4 of the lengths.

This lemma makes it easy to compute p as far as desired. However it
has not led us to a proof that the sequence p is a permutation of the natural
numbers. We will show that another sequence, pp, which we have checked
agrees with p through 354, 294 terms, is indeed a permutation.

3. The sequences b and pp

To approach the sequence pp, we must first define another sequence b(N ).



504 Colin L. Mallows

Algorithm B. b(1) = 1. For k ≥ 1,

(b(3k − 1), b(3k), b(3k + 1)) = (4i− 1, 2i, 4i+ 1)

where i = b(k). Thus the sequence b begins

1, 3, 2, 5, 11, 6, 13, 7, 4, 9, 19, 10, 21, 43, 22, 45, 23, 12, 25, 51,

26, 53, 27, 14, 29, . . . .

Theorem 1. The sequence b(N ) is a permutation of N .

Proof. Suppose m is the smallest integer that does not appear as an element
of b(N ). It is impossible that m is even, since m/2 does appear, and for
some k we have b(k) = m/2. Then m must appear at b(3k). If m is odd,
set i = round(m/4). Then i appears at some point k, b(k) = i < m, so
that m appears as an element of the triad centered at 3k. Thus all integers
must appear. A similar argument shows that no integer can appear twice.
Suppose m is the smallest integer that appears twice. If m is even, we have
b(3k1) = b(3k2) = m, with k1 �= k2. Then b(k1) = b(k2) = m/2 so that the
integer m/2 appears twice before m does. Thus m cannot be even. If m is
odd, suppose first that the smallest violation is b(3k1 − 1) = b(3k2 − 1) =
4i − 1, with k1 �= k2. Then b(3k1) = b(3k2) = 2i so that b(k1) = b(k2) = i,
and i appears twice before 4i− 1 does. Similarly if m = 4i+ 1.

We define another sequence pp by:

Algorithm PP. pp(1) = 1, pp(2) = 2. For k = 1, 2, . . .

(pp(4k − 1), pp(4k), pp(4k + 1), pp(4k + 2)) = (6i− 1, 3i, 3i+ 1, 6i+ 2)

where i = b(k).

Theorem 2. The sequence pp(N ) is a permutation of N .

Proof. Since the sequence b is a permutation of N , it is clear that numbers
of the form 3i and 3i+1 appear just once in pp, in positions 4k and 4k+1,
and numbers of the form 3i−1 appear in positions 4k−1 and 4k+2, where
i = b(k).

We have verified that the sequences p and pp agree through their first
354,294 terms. Of course, this result does not prove anything about the
sequence p, merely that it agrees with the facts as far as we have computed
them. We have not been able to prove that Algorithms P and PP generate
the same sequence.
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We think it remarkable that (it appears) Algorithm B and Algorithm P

are so closely related, since b generates blocks of length 4 in PP, while

Algorithm P generates the sequence p in blocks of length 2, 4, 12, 36, . . . with

the first half of each block involving reading previous blocks backwards.

4. Generalizations

Once we have the sequence b in hand, we can generate many permutations

of N by constructions similar to that in Algorithm PP. For example,

Algorithm AA. aa(1, 2, 3) = (1, 2, 3). For k ≥ 1,

(aa(6k − 2), aa(6k − 1), aa(6k), aa(6k + 1), aa(6k + 2), aa(6k + 3))

= (8i− 2, 8i− 1, 4i, 4i+ 1, 8i+ 2, 8i+ 3)

where i = b(k).

This particular sequence happens to be identical to one that makes no

reference to the sequence b, but is generated by the following

Algorithm A. Set a(1) = 1. For n ≥ 1:

a(2n) = (1 + a(2n− 1))/2 if this value has not yet appeared(3)

= 2a(2n− 1) else(4)

a(2n+ 1) = 1 + a(2n).(5)

The proof of this equality is left for another occasion.

There are other ways of defining a modified Stern-Brocot tree, but we

have not found any as elegant as the one we have presented.
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