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Extremal results regarding K6-minors
in graphs of girth at least 5

Elad Aigner-Horev and Roi Krakovski

We prove that every 6-connected graph of girth ≥ 6 has aK6-minor
and thus settle Jorgensen’s conjecture for graphs of girth ≥ 6.
Relaxing the assumption on the girth, we prove that every 6-
connected n-vertex graph of size ≥ 3 1

5n − 8 and of girth ≥ 5
contains a K6-minor.

Whenever possible, notation and terminology are that of [2]. Throughout, a graph is

always simple, undirected, and finite. G always denotes a graph. We write δ(G) and dG(v)

to denote the minimum degree of G and the degree of a vertex v ∈ V (G), respectively. A

vertex of degree k is called k-valent. We write κ(G) to denote the vertex connectivity of

G. The girth of G is the length of a shortest circuit in G. Finally, the cardinality |E(G)| is
called the size of G and is denoted ‖G‖; |V (G)| is called the order of G and is denoted |G|.

1. Introduction

A conjecture of Jorgensen postulates that the 6-connected graphs not con-
taining K6 as a minor are the apex graphs, where a graph is apex if it con-
tains a vertex removal of which results in a planar graph. The 6-connected
apex graphs contain triangles. Consequently, if Jorgensen’s conjecture is
true, then a 6-connected graph of girth ≥ 4 contains a K6-minor. Noting
that the extremal function for K6-minors is at most 4n− 10 [4] (where n is
the order of the graph), our first result in this spirit is that

Theorem 1.1. A graph of size ≥ 3n − 7 and girth at least 6 contains a
K6-minor.

So that,

Theorem 1.2. Every 6-connected graph of girth ≥ 6 contains a K6-minor.

This settles Jorgensen’s conjecture for graphs of girth ≥ 6. Relaxing the
assumption on the girth in Theorem 1.1, we prove the following:

Theorem 1.3. A 6-connected graph of size ≥ 31
5n − 8 and girth at least 5

contains a K6-minor.
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Remark. In our proofs of Theorems 1.1 and 1.3, the proofs of claims (1.1.A–

B) and (1.3.A–D) follow the approach of [3].

2. Preliminaries

Let H be a subgraph of G, denoted H ⊆ G. The boundary of H, denoted by

bndGH (or simply bndH), is the set of vertices of H incident with E(G) \
E(H). By intGH (or simply intH) we denote the subgraph induced by

V (H) \ bndH. If v ∈ V (G), then NH(v) denotes NG(v) ∩ V (H).

Let k ≥ 1 be an integer. By k-hammock of G we mean a connected

subgraph H ⊆ G satisfying |bndH| = k. A hammock H coinciding with

its boundary is called trivial, degenerate if |H| = |bndH| + 1, and fat if

|H| ≥ |bndH|+ 2. A proper subgraph of H that is a k-hammock is called a

proper k-hammock of H. A fat k-hammock is called minimal if all its proper

k-hammocks, if any, are trivial or degenerate. Clearly,

(2.1) every fat k-hammock contains a minimal fat k-hammock.

Let H be a fat 2-hammock with bndH = {u, v}. By capping H we mean

H +uv if uv /∈ E(H) and H if uv ∈ E(H). In the former case, uv is called a

virtual edge of the capping of H. The set bndH is called the window of the

capping.

Let now κ(G) = 2 and δ(G) ≥ 3. By the standard decomposition of 2-

connected graphs into their 3-connected components [1, Section 9.4], such a

graph has at least two minimal fat 2-hammocks whose interiors are disjoint

and that capping of each is 3-connected. Such a capping is called an extreme

3-connected component.

A k-(vertex)-disconnector, k ≥ 1, is called trivial if its removal iso-

lates a vertex. Otherwise, it is called nontrivial. A graph is called essen-

tially k-connected if all its (k − 1)-disconnectors are trivial. If each (k − 1)-

disconnectorD isolates a vertex andG−D consists of precisely 2 components

(one of which is a singleton) then G is called internally k-connected.

Suppose κ(G) ≥ 1 and that D ⊆ V (G) is a κ(G)-disconnector of G.

Then, G[C ∪D] is a fat κ(G)-hammock for every non-singleton component

C of G−D. In particular, we have that

Lemma 2.1. If κ(G) ≥ 1, δ(G) ≥ 3, and D ⊆ V (G) is a nontrivial κ(G)-

disconnector of G, then G has at least two fat minimal κ(G)-hammocks

whose interiors are disjoint.
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Lemma 2.2. If κ(G) ≥ 1, δ(G) ≥ 3, e ∈ E(G), and G has a nontrivial
κ(G)-disconnector, then G has a minimal fat κ(G)-hammock H such that if
e ∈ E(H), then e is spanned by bndH.

Let H be a k-hammock. By augmentation of H we mean the graph
obtained from H by adding a new vertex and linking it with edges to each
vertex in bndH.

Lemma 2.3. Suppose κ(G) = 3 and that H is a minimal fat 3-hammock of
G. Then, an augmentation of H is 3-connected.

Proof. Let H ′ denote the augmentation and let {x} = V (H ′) \ V (H). As-
sume, to the contrary, that H ′ has a minimum disconnector D, |D| ≤ 2. If
H ′−D has a component containing x, thenH has a nontrivial |D|-hammock;
contradicting the assumption that κ(G) = 3. Hence, x ∈ D. As x is 3-valent,
H ′−D has a component C containing a single member of bndH ′ (= NH′(x)),
say u. Since δ(G) ≥ 3, |NC(u) \D| ≥ 1 so that (D \ {x}) ∪ {u} is a discon-
nector of H of size ≤ 2 not containing x and hence also a disconnector of
G; contradiction.

Lemma 2.4. Suppose κ(G) = 3 and that H is a triangle free minimal fat 3-
hammock of G such that e ∈ E(G[bndH]). Then, an augmentation of H − e
is 3-connected.

Proof. Let H ′ be the augmentation of H − e, let {x} = V (H ′) \ V (H),
and let e = tw such that t, w ∈ NH′(x). By Lemma 2.3, κ(H ′ + e) ≥ 3.
Suppose that κ(H ′) < 3, then H ′ contains a 2-disconnector, say {u, v}, so
that H ′ = H1 ∪H2, H

′[{u, v}] = H1 ∩H2 and such that x ∈ V (Hi) for some
i ∈ {1, 2}. Unless x ∈ {u, v}, then t, w ∈ V (Hi). Thus, if x /∈ {u, v}, then
{u, v} is a 2-disconnector of H ′ + e; contradiction.

Suppose then that, without loss of generality, x = u. Thus, since x is
3-valent, there exists an i ∈ {1, 2} such that |NHi

(x) \ {v}| = 1. As {x, v}
is a minimum disconnector of H ′, it follows that Hi − {x, v} is connected
so that NHi

(x) ∪ {v} is the boundary of a 2-hammock of G; such must be
trivial as κ(G) = 3, implying that |V (Hi)| = {x, v, z}, where z ∈ {t, w}.

We may assume that x is not adjacent to v; for otherwise, |NH3−i
(x) \

{v}| = 1 so that the minimality of the disconnector {x, v} implies that
H3−i − {x, v} is connected and consequently that NH3−i

(x) ∪ {v} is the
boundary of a 2-hammock of G; since such must be trivial we have that H
is a triangle (consisting of {t, v, w}) contradicting the assumption that H is
triangle-free.

Hence, since H is triangle free and since each member of {v}∪NH3−i
(x)

has at least two neighbors in H3−i, {v} ∪ NH3−i
(x) is the boundary of a

proper fat 3-hammock of H; contradiction to H being minimal.
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The maximal 2-connected components of a connected graph are called
its blocks. Such define a tree structure for G whose leaves are blocks and are
called the leaf blocks of G [2].

We conclude this section with the following notation. Let H ⊆ G be
connected (possibly H is a single edge). By G/H we mean the contraction
minor of G obtained by contractingH into a single vertex. We always assume
that after the contractions the graph is kept simple; i.e., any multiple edges
resulting from a contraction are removed.

3. Truncations

Let F be a family of graphs (possibly infinite). A graph is F-free if it contains
no member of F as a subgraph. A graph G is nearly F-free if it is either
F-free or has a breaker x ∈ V (G) ∪ E(G) such that G − x is F-free. A
breaker that is a vertex is called a vertex-breaker and an edge-breaker if it
is an edge.

An F-truncation of an F-free graph G is a minor H of G that is nearly
F-free such that either H ⊆ G (and then it has no breaker) or H contains a
breaker x such that H − x ⊆ G. In the former case, the truncation is called
proper ; in the latter case, the truncation is improper with x as its breaker
and H − x as its body. An improper truncation is called an edge-truncation
if its breaker is an edge and a vertex-truncation if its breaker is a vertex. A
vertex-truncation is called a 3-truncation if its breaker is 3-valent.

Lemma 3.1. Let F be a graph family such that K3 ∈ F and let G be F-free
with δ(G) ≥ 3. Then G has an essentially 4-connected F-truncation H such
that:

(3.1.1) |H| ≥ 4; and
(3.1.2) if H is a vertex-truncation then it is a 3-truncation and |H| ≥ 5.

Proof. Let H denote the 3-connected truncations of G.

(3.1.A) H is nonempty. In particular, H contains a truncation H with |H| ≥
4 so that if improper then it is an edge-truncation with edge-breaker e such
that κ(H − e) = 2.

Proof. We may assume that G is connected. Let B be a leaf block of G
(possibly B = G). If κ(B) ≥ 3, then (3.1.1) follows (by setting H = B) as
B is a proper truncation of G. Assume then that κ(B) = 2 and let H be
an extreme 3-connected component of B with window {x, y}. Now, H ∈ H
with possibly xy an edge-breaker. If H is improper, then κ(H − xy) = 2.
Note that δ(G) ≥ 3 implies that |H| ≥ 4 in both cases.
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If H contains a proper or an edge-truncation that is essentially 4-
connected, then (3.1.1) follows. Suppose then that

(3.1) H has no essentially 4-connected proper or edge-truncations.

(3.1.B) Assuming (3.1), then H contains a truncation that if improper then
it is a 3-truncation of order ≥ 5.

Proof. Let H ∈ H such that if improper then H and e are as in (3.1.A).
By (3.1) and Lemma 2.2, H has a minimal fat 3-hammock H ′ such that if
e ∈ E(H ′), then e is spanned by the boundary of H ′. Let H ′′ be the graph
obtained from an augmentation of H ′ by removing e if it is spanned by
bndH ′. Let {x} = V (H ′′) \ V (H ′).

By Lemmas 2.3 and 2.4, κ(H ′′) ≥ 3 so that H ′′ ∈ H with x as a potential
3-valent vertex-breaker and (3.1.B) follows.

Finally, note that |intH ′| ≥ 2 so that |H ′′| ≥ 5.

Next, we show the following.

(3.1.C) If H contains a 3-truncation X of order ≥ 5, then H contains es-
sentially 4-connected 3-truncations Y such that 5 ≤ |Y | ≤ |X|.

Proof. Let H∗ ∈ H be a 3-truncation of order ≥ 5 with the order of its body
minimized. We show that H∗ is essentially 4-connected. Let x denote the
vertex-breaker of H∗. By the minimality of H∗,

any minimal fat 3− hammock T of H∗

with x /∈ V (T ) satisfies T = H∗ − x(3.2)

(so that bndT = NH∗(x)).

Assume now, towards contradiction, that H∗ is not essentially 4-
connected so that it contains nontrivial 3-disconnectors and at least two min-
imal fat 3-hammocks that may meet only at their boundary, by Lemma 2.1.
By (3.2), existence of at least two such hammocks implies that x belongs to
every nontrivial 3-disconnector and thus to the boundary of every minimal
fat 3-hammock. As x is 3-valent, there is a minimal fat 3-hammock T of
H∗ with x on its boundary such that NT (x) = {y}. As T is a minimal fat
3-hammock, V (T ) consists of x, y, the two members of bndT \ {x}, and an
additional vertex u. As δ(G) ≥ 3, uy ∈ E(T ), u is adjacent to both members
of bndT \{x} and y is adjacent to at least one member of bndT \{x}. Hence,
K3 ⊆ T − x ⊆ H∗ − x so that x is not a breaker; contradiction.
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Assuming (3.1), then, by (3.1.B), there are 3-connected 3-truncations of
G of order ≥ 5 so that an essentially 4-connected 3-truncation of G exists
by (3.1.C).

Lemma 3.2. Let F be a graph family such that {K3,K2,3} ⊆ F , then G
has an internally 4-connected F-truncation satisfying (3.1.1–2) and if such
is a vertex-truncation then it is a 3-truncation.

Proof. Let T denote the essentially 4-connected truncations of G that are ei-
ther proper, or edge-truncations, or 3-truncations; T is nonempty by Lemma
3.1. Let α(T ) denote the least k such that T contains a proper truncation
of order k or an improper edge-truncation of order k. Let β(T ) denote the
least k such that T contains an improper 3-truncation with its body of order
k. Let H ∈ T such that |H| = min{α(T ), β(T ) + 1} and let x denote its
breaker if improper.

We show that H is internally 4-connected. To see this, assume, to the
contrary, that H is not internally 4-connected and let D be a 3-disconnector
of H such that H −D consists of ≥ 3 components at least one of which is a
singleton (sinceH is essentially 4-connected). Let C denote the non-singleton
components of H −D. Since K2,3 ∈ F , |C| ≥ 1.

Suppose J = H[C ∪D] is a 3-hammock of H, for some C ∈ C, that does
not meet x in its interior (if x exists). By the choice of H,

for each fat 3-hammock X of J either

x ∈ bndXorx ∈ E(H[bndX]).(3.3)

Indeed, for otherwise, an augmentation of a minimal fat 3-hammock of X
is a 3-truncation of order ≥5 of G that belongs to H and has order <|H|,
where H is as in the proof of Lemma 3.1; existence of such a 3-truncation
of G implies that G has an essentially 4-connected 3-truncation of order
≥5, by (3.1.C), and such has order <|H| contradicting the choice of H.
Consequently, the assumption that the interior of J does not meet x implies
that

(3.4) if J exists, then x ∈ D ∪ E[H[D]].

Suppose now that J has a minimal fat 3-hammock J ′ (possibly J ′ = J)
with x ∈ bndJ ′ so that x ∈ D, by (3.4). |D| = κ(H) imply that x is incident
with each component of H −D so that |NintJ ′(x)| = 1, as x is 3-valent. The
minimality of J ′ then implies that |intJ ′| = 2 so that J ′ − x contains a K3

(see proof of (3.1.C) for the argument) and thus x is not a breaker of H;
contradiction.
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Suppose next that J ′ is a minimal fat 3-hammock of J whose boundary
vertices span x (as an edge). Then, an augmentation of J ′−x belongs to H,
by Lemma 2.4, and such contains an essentially 4-connected 3-truncation of
G, by (3.1.C), of order < |H|. Hence,

J (if exists) has no minimal fat 3-hammock J ′

with x ∈ bndJ ′ ∪ E[H[bndJ ′]].(3.5)

If J exists, then (3.3) and (3.5) are contradictory. Thus, to obtain a
contradiction and hence conclude the proof of Lemma 3.2 we show that a 3-
hammock such as J exists. This is clear if |C| ≥ 2 as then at least one member
of C does not meet x. Suppose then that |C| = 1 so thatH−D consists of two
singleton components, say {u, v}, and the single member C of C. D ∪ {u, v}
induce a K2,3, say K. Since K2,3 ∈ F and x is a breaker, K contains x so
that C does not; hence, H[C ∪D] is the required 3-hammock.

For k ≥ 4, a graph that is nearly {K3, C4, . . . , Ck−1}-free is called nearly
k-long. That is, G is nearly k-long if either it has girth ≥ k or it has a breaker
x ∈ V (G) ∪ E(G) such that G− x has girth ≥ k.

A nearly 5-long graph is nearly {K3, C4}-free; such is also nearly {K3,
K2,3}-free. In addition, a 3-connected nearly 5-long truncation has order ≥5.
Consequently, we have the following consequence of Lemma 3.2.

Lemma 3.3. A graph with girth ≥ k ≥ 5 and δ ≥ 3 has an internally
4-connected nearly k-long truncation of order ≥5 and if such is a vertex-
truncation then it is a 3-truncation.

4. Nearly long planar graphs

For a plane graph G, we denote its set of faces by F (G) and by XG its
infinite face.

Lemma 4.1. Let G be a 2-connected plane graph of girth ≥6, and let S ⊆
V (G) be the 2-valent vertices of G. Then, |S| ≥ 6.

Proof. By Euler’s formula:

(4.1) |E(G)| = |V (G)|+ |F (G)| − 2.

Since G is 2-connected, every vertex in V (G) \ S is at least 3-valent so that

(4.2) 2|E(G)| ≥ 3(|V (G)| − |S|) + 2|S|.
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As G is of girth ≥ 6 and 2-connected (and hence every edge is contained in
exactly two distinct faces) then:

(4.3) 2|E(G)| ≥ 6|F (G)|.

Substituting (4.1) in (4.2),

2(|V (G)|+ |F (G)| − 2) ≥ 3(|V (G)| − |S|) + 2|S|
⇒ |V (G)| ≤ 2|F (G)|+ |S| − 4.(4.4)

Substituting (4.1) in (4.3),

(4.5) 2(|V (G)|+ |F (G)| − 2) ≥ 6|F (G)| ⇒ |V (G)| ≥ 2|F (G)|+ 2.

From (4.4) and (4.5),

(4.6) 2|F (G)|+ 2 ≤ 2|F (G)|+ |S| − 4 ⇒ |S| ≥ 6.

Hence, the proof follows.

From Lemma 4.1 we have that:

Lemma 4.2. A nearly 6-long internally 4-connected graph is nonplanar.

Lemma 4.3. Let G be a nearly 5-long internally 4-connected planar graph
and suppose that if G has a vertex-breaker, then it also has a vertex-breaker
which is a 3-valent vertex. Then, |G| ≥ 11.

Proof. Define S ⊆ V (G) ∪ E(G) as follows. If G is of girth ≥ 5 set S := ∅;
otherwise set S := {x}, where x ∈ V (G) ∪E(G) is a breaker of G so that if
x ∈ V (G) then x is 3-valent. Then, G − S is 2-connected, and has at most
three 2-valent vertices. Hence,

(4.7) 2|E(G)| ≥ 3(|V (G)| − 3) + 6.

As G− S is of girth ≥ 5 and G is 2-connected then:

(4.8) 2|E(G)| ≥ 5|F (G)|.

Substituting (4.1) in (4.7),

2(|V (G)|+ |F (G)| − 2) ≥ 3(|V (G)| − 3) + 6

⇒ |F (G)| ≤ (|V (G)|+ 1)/2.(4.9)
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Substituting (4.1) in (4.8),

(4.10) 2(|V (G)|+ |F (G)| − 2) ≥ 5|F (G)| ⇒ |F (G)| ≥ (2|V (G)| − 2)/3.

From (4.9) and (4.10),

(4.11) (|V (G)|+ 1)/2 ≤ (2|V (G)| − 2)/3 ⇒ |V (G)| ≥ 11.

Hence, the proof follows.

Lemma 4.4. A 2-connected plane graphs G satisfying the following does

not exist.

(4.4.1) G has girth ≥ 5;

(4.4.2) each member of V (G)− V (XG) is at least 4-valent; and

(4.4.3) G has a set S ⊆ V (XG), |S| ≤ 3 (possibly S = ∅) with each of

its members 2-valent and each member of V (XG) − S at least 3-

valent.

Proof. Assume towards contraction that the claim is false. We will use the

Discharging Method to obtain a contradiction to Euler’s formula. The dis-

charging method starts by assigning numerical values (known as charges)

to the elements of the graph. For x ∈ V (H) ∪ F (H), define ch(x) as fol-

lows.

(CH.1) ch(v) = 6− dH(v), for any v ∈ V (H).

(CH.2) ch(f) = 6− 2|f |, for any f ∈ F (H)− {XH}.
(CH.3) ch(X

H
) = −52

3 − 2|X
H
|.

Next, we observe that

(4.12)
∑

x∈V (H)∪F (H)

ch(x) =
1

3
.

Indeed, we have the following.
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∑

x∈V (H)∪F (H)

ch(x) = − 5
2

3
− 2|XH |+

∑

f∈F (H)−XH

(6− 2|f |)

+
∑

v∈V (H)

(6− d(v))

= − 5
2

3
− 2|XH |+ 6(|f(H)| − 1) +

∑

f∈F (H)−XH

(−2|f |)

+
∑

v∈V (H)

(6− d(v))

=− 5
2

3
+ 6(|f(H)| − 1)− 2(2|E|) + 6|V (H)| − 2|E(H)|

= 6(F (H)− E(H) + V (H))− 11
2

3
=

1

3
.

Next the charges are locally redistributed according to the following dis-

charging rules:

(DIS.1) If v is of degree two, then v sends 31
5 to XG and 4

5 to the other face

incident to it.

(DIS.2) If v is of degree three, then v sends 15
8 to XG and 4

5 to every other

face incident to it.

(DIS.3) If v is of degree at least four then v sends 4
5 to each incident

face.

For x ∈ V (G) ∪ F (G), let ch∗(x) (denoted as the modified charge) be

the resultant charge after modification of the initial charges according to

(DIS.1–3). We obtain a contradiction to (4.12) by showing that ch∗(x) ≤ 0

for every x ∈ V (H) ∪ F (H). This is clearly implied by the following claims

proved below.

(A) ch∗(v) ≤ 0, for each v ∈ V (H).

(B) ch∗(f) ≤ 0, for each f ∈ F (H)− {XH}.
(C) ch∗(X

H
) ≤ 0.

Observe that according to DIS.(1)–(3), faces do not send charge and

vertices do not receive charge.

To prove (A), it is sufficient to consider vertices v satisfying dG(v) ≥ 5.

Indeed, if dH(v) ≥ 6, then ch(v) = ch∗(v) ≤ 0 by (CH.1). If 2 ≤ dG(v) ≤ 3,

then it is easily seen by (CH.1) and (DIS.1–2) that ch∗(v) = 0. If 4 ≤
dG(v) ≤ 5, then, by (CH.1) and (DIS.3), ch∗(v) = 6− dH(v)− 4

5dG(v) ≤ 0.
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Next, we prove (B). Let f ∈ F (H) − {X
H
}. By (DIS.1–3), f receives a

charge of 4
5 from every vertex incident to it. Hence, togther with (CH.2),

ch∗(f) = 6− 2|f |+ 4
5 |f | ≤ 0. (The last inequality follows as |f | ≥ 5.)

Finally, we prove (C). Let S1 ⊆ V (XG) be the set of vertices of XG of
degree three, and let S2 = V (XG) − (S ∪ S1). By (CH.3), (DIS.1–3) and
as |S| ≤ 3, we see that ch∗(f) = −52

3 − 2|XG| + 31
5 |S| + 15

8 |S1| + 4
5 |S2| ≤

−52
3 − 2|XG|+ 3× 31

5 + 15
8(|XG| − 3) = −3

8 |XG| − 11
12 ≤ 0.

5. K5-minors in internally 4-connected graphs

By V8 we mean C8 together with 4 pairwise overlapping chords. By TG we
mean a subdivided G.

The following is due to Wanger.

Theorem 5.1. [6, Theorem 4.6] If G is 3-connected and TV8 ⊆ G then
either G ∼= V8 or G has a K5-minor.

The following structure theorem was proved independently by
Kelmans [7] and Robertson [8].

Theorem 5.2. [7] Let G be internally 4-connected with no minor isomorphic
to V8. Then G satisfies one of the following conditions:

(5.2.1) G is planar;
(5.2.2) G is isomorphic to the line graph of K3,3;
(5.2.3) there exist a uv ∈ E(G) such that G− {u, v} is a circuit;
(5.2.4) |G| ≤ 7;
(5.2.5) there is an X ⊆ V (G), |X| ≤ 4 such that ‖G−X‖ = 0.

From Theorems 5.1 and 5.2 we deduce that

Lemma 5.3. A nearly 5-long internally 4-connected nonplanar G has a
K5-minor.

Proof. We may assume that G �∼= V8 and that G has no V8-minor. The
former since V8 is not nearly 5-long and the latter by Theorem 5.1. Hence,
G satisfies one of (5.2.1–5). As G is nonplanar, by assumption, and the line
graph of K3,3 has a K5-minor (and is not nearly 5-long) it follows that G
satisfies one of (5.2.3–5).

If G is of girth ≤ 4, let a ∈ V (G)∪E(G) be a breaker of G; otherwise (if
G has girth ≥ 5) let a be an arbitrary vertex of G. If a ∈ V (G), put b := a;
otherwise let b be some end of a. By definition, G− b has girth ≥ 5.

(5.3.A) G − {u, v} is not a circuit for any u, v ∈ V (G) so that G does not
satisfy (5.2.3).
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Proof. Suppose not; and let C := G− {u, v} = {x0, . . . , xk−1}, where k ≥ 3
is an integer. Suppose first that b ∈ {u, v} and assume, without loss of
generality, that u = b. Then, k ≥ 5. As v is at least 3-valent, there exists
0 ≤ i ≤ k− 1 so that vxi ∈ E(G). Since G− b has girth ≥ 5, vxi+1, vxi+2 �∈
E(G) (subscripts are read modulo k). Since xi+1 and xi+2 are at least 3-
valent in G, each is adjacent to u. But then {u, xi, xi+3} is a 3-disconnector of
G separating {xi+1, xi+2} from {v, xi+4} (note that since k ≥ 5, xi+1, xi+2 �=
xi+4); a contradiction to G being internally 4-connected.

Suppose then that xi = b, for some 0 ≤ i ≤ k − 1. Hence, exactly one
of v and u is adjacent to xi+1 and exactly one to xi+2 (this is true since
every vertex of C is adjacent to v or u, and if say, v, is adjacent to both
xi+1 and xi+2 then G − b contains a triangle). If xi+3 �= xi, then xi+3 is
adjacent to one of u and v. If xi = xi+3, then C is a circuit of length three,
and V (G) = 5. Both cases contradict the fact that G is nearly 5-long.

(5.3.B) |G| ≥ 8 so that G does not satisfy (5.2.4).

Proof. For suppose |G| ≤ 7. As G is internally 4-connected, G − b is 2-
connected. Since G−b is of girth ≥ 5, then G−b contains an induced circuit
C of length ≥ 5. Hence |G| ≥ 6. If |G| = 6, then G = C ∪ b and then G is
planar; a contradiction. If |G| = 7 then G is a circuit plus two vertices and
we get a contradiction to (5.3.A). Hence, V (G) ≥ 8.

To reach a contradiction we show that (5.2.5) is not satisfied by G.
Suppose it is satisfied and let X be as in (5.2.5) and let Y = V (G)−X. As
V (G) ≥ 8, then |Y | ≥ 4 and every vertex of Y is adjacent to at least three
vertices in X. But then it is easily seen that G is of girth ≤ 4 but contains
no edge- or vertex-breaker; a contradiction.

Let G be a plane graph. By a jump over G we mean a path P internally-
disjoint of G whose ends are not cofacial in G.

Lemma 5.4. Let G be an internally 4-connected nearly 5-long plane graph
and let P be a jump over G. Then, G has a K5-minor with every branch set
meeting V (G).

Proof. Put G′ := G ∪ P . (By possibly contracting P ) we may assume that
P is an edge e with both ends in G. It suffices now to show that G′ has a
K5-minor. Suppose G′ has no such minor. We may assume that G′ �∼= V8,
since V8 with any edge removed is not internally 4-connected, and that G′

has no V8-minor, by Theorem 5.1. Since G′ is nonplanar, |G′| ≥ |G| ≥ 11, by
Lemma 4.3, and since the line graph of K3,3 has a K5-minor, we have that G′
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satisfies (5.2.3) or (5.2.5). We show that both options lead to a contradiction
to the definition of G.

Suppose (5.2.3) is satisfied. Set C := G′−{u, v} = {x0, . . . , xk−1}, where
k ≥ 9 is an integer. If e �∈ E(C), then a contradiction is obtained by showing
that G− e−{v, u} cannot be a circuit. The proof is exactly the same as the
proof of (5.3.A) with G− e instead of G.

Hence we may assume that e ∈ E(C); so let e = xixi+1, for some 0 ≤
i ≤ k−1 (subscript are read modulo k). Observe that dG′(xi), dG′(xi+1) ≥ 4.
Hence, in G, each of xi and xi+1 is adajcent to both u and v.

By assumption that (5.2.3) is satisfied, uv ∈ E(G), and we see that one
of u or v is a breaker, say u. Hence, vxi+2, vxi+3 /∈ E(G). But then, since
and dG(xi+1), dG(xi+2) = 3, the set {u, xi+1, xi+4} is a 3-disconnector of G
(note that since k ≥ 9, xi+1, xi+4 are distinct) separating {xi+2, xi+3} from
{xi+5, xi+6}; a contradiction. Hence (5.2.3) is not satisfied.

Suppose (5.2.5) is satisfied. As V (G) ≥ 11, it is easily seen that
G(= G′ − e) is of girth ≤ 4 but has no edge- or vertex-breaker; a con-
tradiction. This concludes the proof.

By society we mean a pair (G,Ω) consisting of a graph G and a cyclic
permutation Ω over a finite set Ω ⊆ V (G). Let Ω = {v1, . . . , vk}, k ≥ 4.
Two pairs of vertices {s1, t1} ⊆ Ω and {s2, t2} ⊆ Ω are said to overlap along
(G,Ω) if {s1, s2, t1, t2} occur in Ω in this order along Ω.

Two vertex disjoint paths P and P ′ of G that are both internally-disjoint
of Ω are said to form a cross on (G,Ω) if their ends are in Ω and these overlap
along (G,Ω).

Lemma 5.5. [9, Lemma (2.4)] Let (G,Ω) be a society. Then either

(5.5.1) (G,Ω) admits a cross in G, or
(5.5.2) G = G1 ∪ G2, G1 ∩ G2 = G[D], |D| ≤ 3 such that Ω ⊆ V (G1) and

|V (G2) \ V (G1)| ≥ 2, or
(5.5.3) G can be drawn in a disc with Ω on the boundary in order Ω.

Let C be a circuit in a plane graph G. Then the clockwise ordering
of V (C) induced by the embedding of G defines a cyclic permutation on
V (C) denoted ΩC and we do not distinguish between the cyclic shifts of this
order. Then, (G,ΩC) is a society with ΩC = V (C). Throughout, we omit
this notation when dealing with such societies of circuits of plane graphs
and instead say that C is a society of G.

Lemma 5.6. Let G be a 3-connected plane graph of order ≥5 and let P and
P ′ be vertex disjoint paths that are internally-disjoint of G and whose ends
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are contained in a facial circuit f of G. If P ∪ P ′ form a cross on f , then
G ∪ P ∪ P ′ contains a K5-minor with every branch set meeting V (G).

Proof. Clearly, V (G) �= V (f). Since the facial circuits of a 3-connected plane
graph are it induced nonseparating circuits [5], we have that G − V (f) is
connected so that f ∪ P ∪ P ′ have a K4-minor which is completed into a
K5-minor by adding a fifth branch set that is G− V (f) (as f is an induced
circuit).

6. Proof of Theorem 1.1

LetH = {H ⊆ G : H is connected, |G/H| ≥ 5, and ‖G/H‖ ≥ 3|G/H| − 7}.
H contains every member of V (G) as a singleton and thus is nonempty. Let
H0 ∈ H be maximal in (H,⊆), H1 = G[NG(H0)], and let G0 = G/H0, where
z0 ∈ V (G0) represents H0. Let G1 = G0 − z0 and note that G1 ⊆ G.

|G0| = 5 implies that ‖G0‖ ≥ 8 so that ‖G1‖ ≥ 4 and contains a k-
circuit with k < 5; contradiction to the assumption that G has girth at
least 6. Thus, we may assume that

(1.1.A) |G0| ≥ 6.

Let x ∈ V (H1) and put G′
0 = G0/z0x. |G′

0| ≥ 5, by (1.1.A). Thus,
the maximality of H0 in (H,⊆) implies that ‖G′

0‖ ≤ 3|G′
0| − 8. Thus,

‖G0‖−‖G′
0‖ ≥ 3|G0|−7−3(|G0|−1)+8 ≥ 4; implying that z0x is common

to at least three triangles so that dH1
(x) ≥ 3. It follows then that

(1.1.B) δ(H1) ≥ 3.

Let H be an internally 4-connected nearly 6-long truncation of H1,
by Lemma 3.3. Such is nonplanar by Lemma 4.2 and has a K5-minor by
Lemma 5.3. Consequently, G0 has a K6-minor. This concludes the proof of
Theorem 1.1.

7. Proof of Theorem 1.3

In a manner similar to that presented in the proof of Theorem 1.1, let H =
{H ⊆ G : H is connected, |G/H| ≥ 5, and ‖G/H‖ ≥ 31

5 |G/H| − 8} (such is
nonempty) and let H0, H1, G0, z0, G1 be as in the proof of Theorem 1.1.

|G0| = 5 implies that ‖G0‖ ≥ 8 so that ‖G1‖ ≥ 4 and contains a k-
circuit with k < 5; contradiction to the assumption that G has girth at
least 5. Thus, we may assume that

(1.3.A) |G0| ≥ 6.
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Let x ∈ V (H1) and put G′
0 = G0/z0x. |G′

0| ≥ 5, by (1.3.A). Thus,
the maximality of H0 in (H,⊆) implies that ‖G′

0‖ ≤ 31
5 |G′

0| − 9. Thus,
‖G0‖ − ‖G′

0‖ ≥ 31
5 |G0| − 8 − 31

5(|G0| − 1) + 9 ≥ 4; implying that z0x
is common to at least three triangles so that dH1

(x) ≥ 3. It follows then
that

(1.3.B) δ(H1) ≥ 3;

implying that

(1.3.C) δ(G0) ≥ 4.

Next, we prove that

(1.3.D) κ(G0) ≥ 5.

To see (1.3.D), let T ⊆ V (G) be a minimum disconnector of G0 and
assume, towards contradiction, that |T | ≤ 4. As κ(G) ≥ 6, z0 ∈ T . Let then
y = |NG0

(z0)∩T | and let C denote the components of G0−T . Choose C ∈ C
and put H1 = G0[C ∪ T ] and H2 = G0 − C.

Let H ′
i be the graph obtained from G0 by contracting H3−i into z0 (note

that minimality of T implies that each of its members is incident with each
member of C), for i = 1, 2. As |Hi| ≥ 5, by (1.3.C), then |H ′

i| ≥ 5, for i = 1, 2.
The maximality of H0 in (H,⊆) then implies that ‖H ′

i‖ ≤ 31
5 |H ′

i| − 9.

As z0x ∈ E(H ′
i) for each x ∈ T ′ = T \ {z0}, for i = 1, 2, it follows that

(7.1) ‖G0‖+y+2(|T ′|−y)+‖G0[T
′]‖ ≤ ‖H ′

1‖+‖H ′
2‖ ≤ 3

1

5
(|G0|+|T |)−18.

As ‖G0‖ ≥ 31
5 |G0| − 8, we have that

(7.2) 8 + ‖G0[T
′]‖ ≤ 1

1

5
|T |+ y.

Now, |T | ≤ 4 (by assumption), so that y ≤ 3, and ‖G0[T
′]‖ ≥ 0. Conse-

quently, the right-hand size of (7.2) does not exceed 7.8. This contradiction
establishes (1.3.D).

Let B denote the bridges ofH1 inG1. We may assume that B is nonempty.
Otherwise, G1 coincides with H1 so that H1 is a nonplanar 4-connected
graph of girth ≥ 5 and thus containing a K5-minor by 5.3. Consequently,
G0 has a K6-minor and 1.3 follows.
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Let H be an internally 4-connected nearly 5-long truncation of H1, by
Lemma 3.3. We may assume that H is planar for otherwise H has a K5-
minor, by Lemma 5.3, so that G0 has a K6-minor and Theorem 1.3 follows.
Let x denote the breaker of H, if such exists in H. Let B1 = ∅ if x does
not exist (so that H ⊆ G) or is an edge-breaker. Otherwise (i.e., if x is a
vertex-breaker), B1 denotes the members of B with attachment vertices in
the subgraph of H1 contracted into x. Put B2 = B \ B1.

Fix an embedding of H in the plane. No member of B defines a jump
over H for otherwise the union of H and such a jump has has a K5-minor
with every branch set meeting V (H), by Lemma 5.4. Hence, every member
of B has all of its attachment vertices confined to a single face of H.

By patch we mean a face f of H together with all members of B attach-
ing to V (f). Patches not meeting x in case it is a vertex-breaker are called
clean (so that if x does not exist or is an edge-breaker, then every patch is
clean). f is called the rim of the patch. If P is a patch with rim f , then by
(P ,Ωf ) we mean a society with Ωf = V (f) and Ωf is the clockwise order
on V (f) defined by the embedding of f in the plane.

(1.3.E) Let H ′ denote the union of H and all members of B2. Then, H
′ is

planar.

To see (1.3.E) it is sufficient to show that every clean patch is planar.
Indeed, since any two faces of H meet either at a single vertex or at a single
edge, the union of any number of planar patches results in a planar graph.

Let P be a clean patch with rim f . If (P ,Ωf ) contains a cross, then the
union of H and such a cross has a K5-minor, by Lemma 5.6, with every
branch set meeting V (H); so that G0 has a K6-minor and Theorem 1.3
follows. Assume then that (P ,Ωf ) has no cross and is nonplanar. Then,
P = P1 ∪ P2, P1 ∩ P2 = P [D] and |D| ≤ 3 such that V (f) ⊆ V (P1) and
|V (P2) \ V (P1)| ≥ 2, by Lemma 5.5. Hence, {z0} ∪ D is a k-disconnector
of G0 with k ≤ 4; contradicting (1.3.D). It follows that P is planar so that
(1.3.E) follows.

If x is a vertex-breaker, then let C be the vertices of H cofacial with x.
4-connectivity of G1 implies that every vertex in H ′ −{x}−C is at least 4-
valent in H ′−x. As x is 3-valent in this case, by (3.1.3), we have that H ′−x
is a 2-connected planar graph of girth ≥5 has an embedding in the plane
with each vertex not in XH′−x at least 4-valent, and each vertex in XH′−x

at least 3-valent except for at most 3 vertices which are at least 2-valent. By
Lemma 4.4, H ′ − x does not exist; contradiction.

This concludes our proof of Theorem 1.3.
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