Extremal results regarding K_6 -minors in graphs of girth at least 5

Elad Aigner-Horev and Roi Krakovski

We prove that every 6-connected graph of girth ≥ 6 has a K_6 -minor and thus settle Jorgensen's conjecture for graphs of girth ≥ 6 . Relaxing the assumption on the girth, we prove that every 6 connected *n*-vertex graph of size $\geq 3\frac{1}{5}n - 8$ and of girth ≥ 5 contains a K_6 -minor.

Whenever possible, notation and terminology are that of [\[2\]](#page-16-0). Throughout, a graph is always simple, undirected, and finite. G always denotes a graph. We write $\delta(G)$ and $d_G(v)$ to denote the minimum degree of G and the degree of a vertex $v \in V(G)$, respectively. A vertex of degree k is called k-valent. We write $\kappa(G)$ to denote the vertex connectivity of G. The girth of G is the length of a shortest circuit in G. Finally, the cardinality $|E(G)|$ is called the size of G and is denoted $||G||$; $|V(G)|$ is called the *order* of G and is denoted $|G|$.

1. Introduction

A conjecture of Jorgensen postulates that *the* 6*-connected graphs not containing* K_6 *as a minor are the apex graphs*, where a graph is apex if it contains a vertex removal of which results in a planar graph. The 6-connected apex graphs contain triangles. Consequently, if Jorgensen's conjecture is true, then a 6-connected graph of girth ≥ 4 contains a K_6 -minor. Noting that the extremal function for K_6 -minors is at most $4n-10$ [\[4\]](#page-16-1) (where n is the order of the graph), our first result in this spirit is that

Theorem 1.1. A graph of size $\geq 3n - 7$ and girth at least 6 contains a K_6 -minor.

So that,

Theorem 1.2. Every 6-connected graph of girth ≥ 6 contains a K_6 -minor.

This settles Jorgensen's conjecture for graphs of girth ≥ 6 . Relaxing the assumption on the girth in Theorem [1.1,](#page-0-0) we prove the following:

Theorem 1.3. A 6-connected graph of size $\geq 3\frac{1}{5}n - 8$ and girth at least 5 contains a K_6 -minor.

Remark. In our proofs of Theorems [1.1](#page-0-0) and [1.3,](#page-0-1) the proofs of claims $(1.1.A (1.1.A-$ B) and $(1.3.A-D)$ $(1.3.A-D)$ follow the approach of [\[3\]](#page-16-2).

2. Preliminaries

Let H be a subgraph of G, denoted $H \subseteq G$. The boundary of H, denoted by bnd_GH (or simply $bndH$), is the set of vertices of H incident with $E(G) \setminus$ $E(H)$. By $int_G H$ (or simply $intH$) we denote the subgraph induced by $V(H) \setminus \text{bndH}$. If $v \in V(G)$, then $N_H(v)$ denotes $N_G(v) \cap V(H)$.

Let $k \geq 1$ be an integer. By k-hammock of G we mean a connected subgraph $H \subseteq G$ satisfying $|bndH| = k$. A hammock H coinciding with its boundary is called *trivial*, *degenerate* if $|H| = |bndH| + 1$, and fat if $|H| \ge |bndH| + 2$. A proper subgraph of H that is a k-hammock is called a proper k-hammock of H. A fat k-hammock is called *minimal* if all its proper k-hammocks, if any, are trivial or degenerate. Clearly,

 (2.1) every fat k-hammock contains a minimal fat k-hammock.

Let H be a fat 2-hammock with $bndH = \{u, v\}$. By capping H we mean $H + uv$ if $uv \notin E(H)$ and H if $uv \in E(H)$. In the former case, uv is called a *virtual* edge of the capping of H. The set bndH is called the *window* of the capping.

Let now $\kappa(G) = 2$ and $\delta(G) \geq 3$. By the standard decomposition of 2connected graphs into their 3-connected components [\[1,](#page-16-3) Section 9.4], such a graph has at least two minimal fat 2-hammocks whose interiors are disjoint and that capping of each is 3-connected. Such a capping is called an extreme 3-connected component.

A k-(vertex)-disconnector, $k \geq 1$, is called *trivial* if its removal isolates a vertex. Otherwise, it is called *nontrivial*. A graph is called *essen*tially k-connected if all its $(k-1)$ -disconnectors are trivial. If each $(k-1)$ disconnector D isolates a vertex and $G-D$ consists of precisely 2 components (one of which is a singleton) then G is called *internally k*-connected.

Suppose $\kappa(G) \geq 1$ and that $D \subseteq V(G)$ is a $\kappa(G)$ -disconnector of G. Then, $G[C \cup D]$ is a fat $\kappa(G)$ -hammock for every non-singleton component C of $G - D$. In particular, we have that

Lemma 2.1. If $\kappa(G) > 1$, $\delta(G) > 3$, and $D \subset V(G)$ is a nontrivial $\kappa(G)$ disconnector of G, then G has at least two fat minimal $\kappa(G)$ -hammocks whose interiors are disjoint.

Lemma 2.2. If $\kappa(G) \geq 1$, $\delta(G) \geq 3$, $e \in E(G)$, and G has a nontrivial $\kappa(G)$ -disconnector, then G has a minimal fat $\kappa(G)$ -hammock H such that if $e \in E(H)$, then e is spanned by bndH.

Let H be a k-hammock. By *augmentation* of H we mean the graph obtained from H by adding a new vertex and linking it with edges to each vertex in $bndH$.

Lemma 2.3. Suppose $\kappa(G)=3$ and that H is a minimal fat 3-hammock of G. Then, an augmentation of H is 3-connected.

Proof. Let H^{\prime} denote the augmentation and let $\{x\} = V(H') \setminus V(H)$. Assume, to the contrary, that H^{\prime} has a minimum disconnector D, $|D| \leq 2$. If $H'-D$ has a component containing x, then H has a nontrivial $|D|$ -hammock; contradicting the assumption that $\kappa(G) = 3$. Hence, $x \in D$. As x is 3-valent, $H'-D$ has a component C containing a single member of $bndH' (= N_{H'}(x)),$ say u. Since $\delta(G) \geq 3$, $|N_C(u) \setminus D| \geq 1$ so that $(D \setminus \{x\}) \cup \{u\}$ is a disconnector of H of size ≤ 2 not containing x and hence also a disconnector of G; contradiction. \Box

Lemma 2.4. Suppose $\kappa(G)=3$ and that H is a triangle free minimal fat 3hammock of G such that $e \in E(G[bndH])$. Then, an augmentation of $H - e$ is 3-connected.

Proof. Let H' be the augmentation of $H - e$, let $\{x\} = V(H') \setminus V(H)$, and let $e = tw$ such that $t, w \in N_{H'}(x)$. By Lemma [2.3,](#page-2-0) $\kappa(H' + e) \geq 3$. Suppose that $\kappa(H') < 3$, then H' contains a 2-disconnector, say $\{u, v\}$, so that $H' = H_1 \cup H_2$, $H'[\{u, v\}] = H_1 \cap H_2$ and such that $x \in V(H_i)$ for some $i \in \{1,2\}$. Unless $x \in \{u, v\}$, then $t, w \in V(H_i)$. Thus, if $x \notin \{u, v\}$, then $\{u, v\}$ is a 2-disconnector of $H' + e$; contradiction.

Suppose then that, without loss of generality, $x = u$. Thus, since x is 3-valent, there exists an $i \in \{1,2\}$ such that $|N_{H_i}(x) \setminus \{v\}| = 1$. As $\{x, v\}$ is a minimum disconnector of H' , it follows that $H_i - \{x, v\}$ is connected so that $N_{H_i}(x) \cup \{v\}$ is the boundary of a 2-hammock of G; such must be trivial as $\kappa(G) = 3$, implying that $|V(H_i)| = \{x, v, z\}$, where $z \in \{t, w\}$.

We may assume that x is not adjacent to v; for otherwise, $|N_{H_{3-i}}(x) \setminus$ ${v} = 1$ so that the minimality of the disconnector ${x, v}$ implies that $H_{3-i} - \{x, v\}$ is connected and consequently that $N_{H_{3-i}}(x) \cup \{v\}$ is the boundary of a 2-hammock of G ; since such must be trivial we have that H is a triangle (consisting of $\{t, v, w\}$) contradicting the assumption that H is triangle-free.

Hence, since H is triangle free and since each member of $\{v\} \cup N_{H_{3-i}}(x)$ has at least two neighbors in H_{3-i} , $\{v\} \cup N_{H_{3-i}}(x)$ is the boundary of a proper fat 3-hammock of H ; contradiction to H being minimal. ப

The maximal 2-connected components of a connected graph are called its blocks. Such define a tree structure for G whose leaves are blocks and are called the *leaf* blocks of G [\[2\]](#page-16-0).

We conclude this section with the following notation. Let $H \subseteq G$ be connected (possibly H is a single edge). By G/H we mean the contraction minor of G obtained by contracting H into a single vertex. We always assume that after the contractions the graph is kept simple; i.e., any multiple edges resulting from a contraction are removed.

3. Truncations

Let F be a family of graphs (possibly infinite). A graph is $\mathcal{F}\text{-}free$ if it contains no member of $\mathcal F$ as a subgraph. A graph G is *nearly* $\mathcal F$ -free if it is either F-free or has a breaker $x \in V(G) \cup E(G)$ such that $G - x$ is F-free. A breaker that is a vertex is called a vertex-breaker and an edge-breaker if it is an edge.

An F-truncation of an F-free graph G is a minor H of G that is nearly F-free such that either $H \subseteq G$ (and then it has no breaker) or H contains a breaker x such that $H - x \subseteq G$. In the former case, the truncation is called proper; in the latter case, the truncation is *improper* with x as its breaker and $H - x$ as its body. An improper truncation is called an *edge-truncation* if its breaker is an edge and a vertex-truncation if its breaker is a vertex. A vertex-truncation is called a 3-truncation if its breaker is 3-valent.

Lemma 3.1. Let F be a graph family such that $K_3 \in \mathcal{F}$ and let G be F-free with $\delta(G) \geq 3$. Then G has an essentially 4-connected F-truncation H such that:

 $(3.1.1)$ $(3.1.1)$ |H| > 4 ; and

 $(3.1.2)$ $(3.1.2)$ if H is a vertex-truncation then it is a 3-truncation and $|H| \geq 5$.

Proof. Let H denote the 3-connected truncations of G .

 $(3.1.A)$ $(3.1.A)$ H is nonempty. In particular, H contains a truncation H with $|H| >$ 4 so that if improper then it is an edge-truncation with edge-breaker e such that $\kappa(H-e)=2$.

Proof. We may assume that G is connected. Let B be a leaf block of G (possibly $B = G$). If $\kappa(B) \geq 3$, then [\(3.1.](#page-3-0)1) follows (by setting $H = B$) as B is a proper truncation of G. Assume then that $\kappa(B) = 2$ and let H be an extreme 3-connected component of B with window $\{x, y\}$. Now, $H \in \mathcal{H}$ with possibly xy an edge-breaker. If H is improper, then $\kappa(H - xy) = 2$. Note that $\delta(G) \geq 3$ implies that $|H| \geq 4$ in both cases. □

If H contains a proper or an edge-truncation that is essentially 4connected, then $(3.1.1)$ $(3.1.1)$ follows. Suppose then that

 (3.1) H has no essentially 4-connected proper or edge-truncations.

 $(3.1.B)$ $(3.1.B)$ Assuming (3.1) , then H contains a truncation that if improper then it is a 3-truncation of order ≥ 5 .

Proof. Let $H \in \mathcal{H}$ such that if improper then H and e are as in [\(3.1.](#page-3-0)A). By (3.1) and Lemma [2.2,](#page-2-1) H has a minimal fat 3-hammock H' such that if $e \in E(H')$, then e is spanned by the boundary of H'. Let H'' be the graph obtained from an augmentation of H' by removing e if it is spanned by bndH'. Let $\{x\} = V(H'') \setminus V(H')$.

By Lemmas [2.3](#page-2-0) and [2.4,](#page-2-2) $\kappa(H'') \geq 3$ so that $H'' \in \mathcal{H}$ with x as a potential 3-valent vertex-breaker and [\(3.1.](#page-3-0)B) follows.

Finally, note that $|intH'| \geq 2$ so that $|H''| \geq 5$. \Box

Next, we show the following.

[\(3.1.](#page-3-0)C) If H contains a 3-truncation X of order \geq 5, then H contains essentially 4-connected 3-truncations Y such that $5 \leq |Y| \leq |X|$.

Proof. Let $H^* \in \mathcal{H}$ be a 3-truncation of order ≥ 5 with the order of its body minimized. We show that H^* is essentially 4-connected. Let x denote the vertex-breaker of H^* . By the minimality of H^* ,

any minimal fat 3 — hammock T of
$$
H^*
$$

\n(3.2)

\nwith $x \notin V(T)$ satisfies $T = H^* - x$

(so that $bndT = N_{H^*}(x)$).

Assume now, towards contradiction, that H^* is not essentially 4connected so that it contains nontrivial 3-disconnectors and at least two minimal fat 3-hammocks that may meet only at their boundary, by Lemma [2.1.](#page-1-0) By (3.2) , existence of at least two such hammocks implies that x belongs to every nontrivial 3-disconnector and thus to the boundary of every minimal fat 3-hammock. As x is 3-valent, there is a minimal fat 3-hammock T of H^* with x on its boundary such that $N_T(x) = \{y\}$. As T is a minimal fat 3-hammock, $V(T)$ consists of x, y, the two members of $bndT \setminus \{x\}$, and an additional vertex u. As $\delta(G) \geq 3$, $uy \in E(T)$, u is adjacent to both members of $bndT \setminus \{x\}$ and y is adjacent to at least one member of $bndT \setminus \{x\}$. Hence, $K_3 \subseteq T - x \subseteq H^* - x$ so that x is not a breaker; contradiction. \Box

Assuming [\(3.1\)](#page-4-0), then, by [\(3.1.](#page-3-0)B), there are 3-connected 3-truncations of G of order ≥ 5 so that an essentially 4-connected 3-truncation of G exists by $(3.1.C).$ $(3.1.C).$ \Box

Lemma 3.2. Let F be a graph family such that $\{K_3, K_{2,3}\} \subseteq \mathcal{F}$, then G has an internally 4-connected F-truncation satisfying $(3.1.1-2)$ $(3.1.1-2)$ and if such is a vertex-truncation then it is a 3-truncation.

Proof. Let $\mathcal T$ denote the essentially 4-connected truncations of G that are either proper, or edge-truncations, or 3-truncations; $\mathcal T$ is nonempty by Lemma [3.1.](#page-3-0) Let $\alpha(\mathcal{T})$ denote the least k such that $\mathcal T$ contains a proper truncation of order k or an improper edge-truncation of order k. Let $\beta(\mathcal{T})$ denote the least k such that $\mathcal T$ contains an improper 3-truncation with its body of order k. Let $H \in \mathcal{T}$ such that $|H| = \min{\{\alpha(\mathcal{T}), \beta(\mathcal{T}) + 1\}}$ and let x denote its breaker if improper.

We show that H is internally 4-connected. To see this, assume, to the contrary, that H is not internally 4-connected and let D be a 3-disconnector of H such that $H - D$ consists of ≥ 3 components at least one of which is a singleton (since H is essentially 4-connected). Let $\mathcal C$ denote the non-singleton components of $H - D$. Since $K_{2,3} \in \mathcal{F}, |\mathcal{C}| \geq 1$.

Suppose $J = H[C \cup D]$ is a 3-hammock of H, for some $C \in \mathcal{C}$, that does not meet x in its interior (if x exists). By the choice of H ,

(3.3) for each fat 3-hammock X of J either

$$
(3.3) \t x \in bndX or x \in E(H[bndX]).
$$

Indeed, for otherwise, an augmentation of a minimal fat 3-hammock of X is a 3-truncation of order ≥ 5 of G that belongs to H and has order $\leq |H|$, where \mathcal{H} is as in the proof of Lemma [3.1;](#page-3-0) existence of such a 3-truncation of G implies that G has an essentially 4-connected 3-truncation of order \geq 5, by [\(3.1.](#page-3-0)C), and such has order \leq |H| contradicting the choice of H. Consequently, the assumption that the interior of J does not meet x implies that

(3.4) if
$$
J
$$
 exists, then $x \in D \cup E[H[D]]$.

Suppose now that J has a minimal fat 3-hammock J' (possibly $J' = J$) with $x \in bndJ'$ so that $x \in D$, by (3.4) . $|D| = \kappa(H)$ imply that x is incident with each component of $H - D$ so that $|N_{intJ'}(x)| = 1$, as x is 3-valent. The minimality of J' then implies that $|intJ'| = 2$ so that $J' - x$ contains a K_3 (see proof of $(3.1.C)$ $(3.1.C)$ for the argument) and thus x is not a breaker of H; contradiction.

Suppose next that J' is a minimal fat 3-hammock of J whose boundary vertices span x (as an edge). Then, an augmentation of $J'-x$ belongs to \mathcal{H} , by Lemma [2.4,](#page-2-2) and such contains an essentially 4-connected 3-truncation of G, by $(3.1.C)$ $(3.1.C)$, of order $\lt |H|$. Hence,

(3.5)
$$
J
$$
 (if exists) has no minimal fat 3-hammock J' (3.5) J' with $x \in bndJ' \cup E[H[bndJ']].$

If J exists, then (3.3) and (3.5) are contradictory. Thus, to obtain a contradiction and hence conclude the proof of Lemma [3.2](#page-5-2) we show that a 3 hammock such as J exists. This is clear if $|\mathcal{C}| \geq 2$ as then at least one member of C does not meet x. Suppose then that $|\mathcal{C}| = 1$ so that $H-D$ consists of two singleton components, say $\{u, v\}$, and the single member C of C. $D \cup \{u, v\}$ induce a $K_{2,3}$, say K. Since $K_{2,3} \in \mathcal{F}$ and x is a breaker, K contains x so that C does not; hence, $H[C \cup D]$ is the required 3-hammock. 口

For $k \geq 4$, a graph that is nearly $\{K_3, C_4, \ldots, C_{k-1}\}$ -free is called *nearly* k-long. That is, G is nearly k-long if either it has girth $\geq k$ or it has a breaker $x \in V(G) \cup E(G)$ such that $G - x$ has girth $\geq k$.

A nearly 5-long graph is nearly $\{K_3, C_4\}$ -free; such is also nearly $\{K_3,$ $K_{2,3}$ -free. In addition, a 3-connected nearly 5-long truncation has order ≥ 5 . Consequently, we have the following consequence of Lemma [3.2.](#page-5-2)

Lemma 3.3. A graph with girth $\geq k \geq 5$ and $\delta \geq 3$ has an internally 4-connected nearly k-long truncation of order \geq 5 and if such is a vertextruncation then it is a 3-truncation.

4. Nearly long planar graphs

For a plane graph G, we denote its set of faces by $F(G)$ and by X_G its infinite face.

Lemma 4.1. Let G be a 2-connected plane graph of girth ≥ 6 , and let S $V(G)$ be the 2-valent vertices of G. Then, $|S| \geq 6$.

Proof. By Euler's formula:

(4.1)
$$
|E(G)| = |V(G)| + |F(G)| - 2.
$$

Since G is 2-connected, every vertex in $V(G) \setminus S$ is at least 3-valent so that

(4.2)
$$
2|E(G)| \ge 3(|V(G)| - |S|) + 2|S|.
$$

As G is of girth ≥ 6 and 2-connected (and hence every edge is contained in exactly two distinct faces) then:

(4.3)
$$
2|E(G)| \ge 6|F(G)|.
$$

Substituting (4.1) in (4.2) ,

$$
2(|V(G)| + |F(G)| - 2) \ge 3(|V(G)| - |S|) + 2|S|
$$

(4.4)
$$
\Rightarrow |V(G)| \le 2|F(G)| + |S| - 4.
$$

Substituting (4.1) in (4.3) ,

$$
(4.5) \qquad 2(|V(G)| + |F(G)| - 2) \ge 6|F(G)| \Rightarrow |V(G)| \ge 2|F(G)| + 2.
$$

From (4.4) and (4.5) ,

(4.6)
$$
2|F(G)| + 2 \le 2|F(G)| + |S| - 4 \Rightarrow |S| \ge 6.
$$

Hence, the proof follows.

From Lemma [4.1](#page-6-3) we have that:

Lemma 4.2. A nearly 6-long internally 4-connected graph is nonplanar.

Lemma 4.3. Let G be a nearly 5-long internally 4-connected planar graph and suppose that if G has a vertex-breaker, then it also has a vertex-breaker which is a 3-valent vertex. Then, $|G| \ge 11$.

Proof. Define $S \subseteq V(G) \cup E(G)$ as follows. If G is of girth ≥ 5 set $S := \emptyset$; otherwise set $S := \{x\}$, where $x \in V(G) \cup E(G)$ is a breaker of G so that if $x \in V(G)$ then x is 3-valent. Then, $G - S$ is 2-connected, and has at most three 2-valent vertices. Hence,

$$
(4.7) \t2|E(G)| \ge 3(|V(G)| - 3) + 6.
$$

As $G - S$ is of girth ≥ 5 and G is 2-connected then:

(4.8)
$$
2|E(G)| \ge 5|F(G)|.
$$

Substituting (4.1) in (4.7) ,

(4.9)
$$
2(|V(G)| + |F(G)| - 2) \ge 3(|V(G)| - 3) + 6
$$

$$
\Rightarrow |F(G)| \le (|V(G)| + 1)/2.
$$

$$
\Box
$$

Substituting (4.1) in (4.8) ,

$$
(4.10) \qquad 2(|V(G)| + |F(G)| - 2) \ge 5|F(G)| \Rightarrow |F(G)| \ge (2|V(G)| - 2)/3.
$$

From (4.9) and (4.10) ,

$$
(4.11) \qquad (|V(G)|+1)/2 \le (2|V(G)|-2)/3 \Rightarrow |V(G)| \ge 11.
$$

Hence, the proof follows.

Lemma 4.4. A 2-connected plane graphs G satisfying the following does not exist.

- $(4.4.1)$ $(4.4.1)$ G has girth ≥ 5 ;
- [\(4.4.](#page-8-1)2) each member of $V(G) V(X_G)$ is at least 4-valent; and

 $(4.4.3)$ $(4.4.3)$ G has a set $S \subseteq V(X_G)$, $|S| \leq 3$ (possibly $S = \emptyset$) with each of its members 2-valent and each member of $V(X_G) - S$ at least 3valent.

Proof. Assume towards contraction that the claim is false. We will use the Discharging Method to obtain a contradiction to Euler's formula. The discharging method starts by assigning numerical values (known as charges) to the elements of the graph. For $x \in V(H) \cup F(H)$, define $ch(x)$ as follows.

(CH.1) $ch(v) = 6 - d_H(v)$, for any $v \in V(H)$. (CH.2) $ch(f) = 6 - 2|f|$, for any $f \in F(H) - \{X_H\}.$ (CH.3) $ch(X_H) = -5\frac{2}{3} - 2|X_H|$.

Next, we observe that

(4.12)
$$
\sum_{x \in V(H) \cup F(H)} ch(x) = \frac{1}{3}.
$$

Indeed, we have the following.

 \Box

$$
\sum_{x \in V(H) \cup F(H)} ch(x) = -5\frac{2}{3} - 2|X_H| + \sum_{f \in F(H) - X_H} (6 - 2|f|)
$$

+
$$
\sum_{v \in V(H)} (6 - d(v))
$$

=
$$
-5\frac{2}{3} - 2|X_H| + 6(|f(H)| - 1) + \sum_{f \in F(H) - X_H} (-2|f|)
$$

+
$$
\sum_{v \in V(H)} (6 - d(v))
$$

=
$$
-5\frac{2}{3} + 6(|f(H)| - 1) - 2(2|E|) + 6|V(H)| - 2|E(H)|
$$

=
$$
6(F(H) - E(H) + V(H)) - 11\frac{2}{3} = \frac{1}{3}.
$$

Next the charges are locally redistributed according to the following discharging rules:

- (DIS.1) If v is of degree two, then v sends $3\frac{1}{5}$ to X_G and $\frac{4}{5}$ to the other face incident to it.
- (DIS.2) If v is of degree three, then v sends $1\frac{5}{8}$ to X_G and $\frac{4}{5}$ to every other face incident to it.
- (DIS.3) If v is of degree at least four then v sends $\frac{4}{5}$ to each incident face.

For $x \in V(G) \cup F(G)$, let $ch^*(x)$ (denoted as the modified charge) be the resultant charge after modification of the initial charges according to (DIS.1–3). We obtain a contradiction to [\(4.12\)](#page-8-2) by showing that $ch^*(x) \leq 0$ for every $x \in V(H) \cup F(H)$. This is clearly implied by the following claims proved below.

(A) $ch^*(v) \leq 0$, for each $v \in V(H)$. (B) $ch^*(f) \leq 0$, for each $f \in F(H) - \{X_H\}.$ (C) $ch^*(X_{\mu}) \leq 0.$

Observe that according to $DIS(1)–(3)$, faces do not send charge and vertices do not receive charge.

To prove (A), it is sufficient to consider vertices v satisfying $d_G(v) \geq 5$. Indeed, if $d_H(v) \geq 6$, then $ch(v) = ch^*(v) \leq 0$ by (CH.1). If $2 \leq d_G(v) \leq 3$, then it is easily seen by (CH.1) and (DIS.1–2) that $ch^*(v) = 0$. If $4 \le$ $d_G(v) \le 5$, then, by (CH.1) and (DIS.3), $ch^*(v) = 6 - d_H(v) - \frac{4}{5}d_G(v) \le 0$.

Next, we prove (B). Let $f \in F(H) - \{X_{\mu}\}\$. By (DIS.1–3), f receives a charge of $\frac{4}{5}$ from every vertex incident to it. Hence, togther with (CH.2), $ch^*(f) = 6 - 2|f| + \frac{4}{5}|f| \leq 0$. (The last inequality follows as $|f| \geq 5$.)

Finally, we prove (C). Let $S_1 \subseteq V(X_G)$ be the set of vertices of X_G of degree three, and let $S_2 = V(X_G) - (S \cup S_1)$. By (CH.3), (DIS.1–3) and as $|S| \leq 3$, we see that $ch^*(f) = -5\frac{2}{3} - 2|X_G| + 3\frac{1}{5}|S| + 1\frac{5}{8}|S_1| + \frac{4}{5}|S_2| \leq$ $-5\frac{2}{3} - 2|X_G| + 3 \times 3\frac{1}{5} + 1\frac{5}{8}(|X_G| - 3) = -\frac{3}{8}|X_G| - \frac{11}{12} \leq 0.$

5. *K***5-minors in internally 4-connected graphs**

By V_8 we mean C_8 together with 4 pairwise overlapping chords. By TG we mean a subdivided G.

The following is due to Wanger.

Theorem 5.1. [\[6,](#page-16-4) Theorem 4.6] If G is 3-connected and $TV_8 \subseteq G$ then either $G \cong V_8$ or G has a K₅-minor.

The following structure theorem was proved independently by Kelmans [\[7\]](#page-16-5) and Robertson [\[8\]](#page-16-6).

Theorem 5.2. [\[7\]](#page-16-5) Let G be internally 4-connected with no minor isomorphic to V_8 . Then G satisfies one of the following conditions:

- $(5.2.1)$ $(5.2.1)$ G is planar;
- $(5.2.2)$ $(5.2.2)$ G is isomorphic to the line graph of $K_{3.3}$;
- [\(5.2.](#page-10-0)3) there exist a uv $\in E(G)$ such that $G \{u, v\}$ is a circuit;
- $(5.2.4)$ $(5.2.4)$ $|G| \leq 7;$
- [\(5.2.](#page-10-0)5) there is an $X \subseteq V(G)$, $|X| \leq 4$ such that $||G X|| = 0$.

From Theorems [5.1](#page-10-1) and [5.2](#page-10-0) we deduce that

Lemma 5.3. A nearly 5-long internally 4-connected nonplanar G has a K5-minor.

Proof. We may assume that $G \not\cong V_8$ and that G has no V_8 -minor. The former since V_8 is not nearly 5-long and the latter by Theorem [5.1.](#page-10-1) Hence, G satisfies one of $(5.2.1-5)$ $(5.2.1-5)$. As G is nonplanar, by assumption, and the line graph of $K_{3,3}$ has a K_5 -minor (and is not nearly 5-long) it follows that G satisfies one of $(5.2.3-5)$ $(5.2.3-5)$.

If G is of girth ≤ 4 , let $a \in V(G) \cup E(G)$ be a breaker of G; otherwise (if G has girth ≥ 5) let a be an arbitrary vertex of G. If $a \in V(G)$, put $b := a$; otherwise let b be some end of a. By definition, $G - b$ has girth ≥ 5 .

 $(5.3.A) G - \{u, v\}$ $(5.3.A) G - \{u, v\}$ is not a circuit for any $u, v \in V(G)$ so that G does not satisfy $(5.2.3)$ $(5.2.3)$.

Proof. Suppose not; and let $C := G - \{u, v\} = \{x_0, \ldots, x_{k-1}\},$ where $k \geq 3$ is an integer. Suppose first that $b \in \{u, v\}$ and assume, without loss of generality, that $u = b$. Then, $k \geq 5$. As v is at least 3-valent, there exists $0 \leq i \leq k-1$ so that $vx_i \in E(G)$. Since $G-b$ has girth ≥ 5 , $vx_{i+1}, vx_{i+2} \notin$ $E(G)$ (subscripts are read modulo k). Since x_{i+1} and x_{i+2} are at least 3valent in G, each is adjacent to u. But then $\{u, x_i, x_{i+3}\}$ is a 3-disconnector of G separating $\{x_{i+1}, x_{i+2}\}$ from $\{v, x_{i+4}\}$ (note that since $k \geq 5$, $x_{i+1}, x_{i+2} \neq 0$ x_{i+4}); a contradiction to G being internally 4-connected.

Suppose then that $x_i = b$, for some $0 \leq i \leq k-1$. Hence, exactly one of v and u is adjacent to x_{i+1} and exactly one to x_{i+2} (this is true since every vertex of C is adjacent to v or u, and if say, v, is adjacent to both x_{i+1} and x_{i+2} then $G-b$ contains a triangle). If $x_{i+3} \neq x_i$, then x_{i+3} is adjacent to one of u and v. If $x_i = x_{i+3}$, then C is a circuit of length three, and $V(G) = 5$. Both cases contradict the fact that G is nearly 5-long. \Box

 $(5.3.B)$ $(5.3.B)$ $|G| \geq 8$ so that G does not satisfy $(5.2.4)$ $(5.2.4)$.

Proof. For suppose $|G| \le 7$. As G is internally 4-connected, $G - b$ is 2connected. Since $G-b$ is of girth ≥ 5 , then $G-b$ contains an induced circuit C of length ≥ 5 . Hence $|G| \geq 6$. If $|G| = 6$, then $G = C \cup b$ and then G is planar; a contradiction. If $|G| = 7$ then G is a circuit plus two vertices and we get a contradiction to $(5.3.A)$ $(5.3.A)$. Hence, $V(G) \geq 8$. \Box

To reach a contradiction we show that $(5.2.5)$ $(5.2.5)$ is not satisfied by G. Suppose it is satisfied and let X be as in [\(5.2.](#page-10-0)5) and let $Y = V(G) - X$. As $V(G) \geq 8$, then $|Y| \geq 4$ and every vertex of Y is adjacent to at least three vertices in X. But then it is easily seen that G is of girth ≤ 4 but contains no edge- or vertex-breaker; a contradiction. \Box

Let G be a plane graph. By a jump over G we mean a path P internallydisjoint of G whose ends are not cofacial in G.

Lemma 5.4. Let G be an internally 4-connected nearly 5-long plane graph and let P be a jump over G. Then, G has a K_5 -minor with every branch set meeting $V(G)$.

Proof. Put $G' := G \cup P$. (By possibly contracting P) we may assume that P is an edge e with both ends in G. It suffices now to show that G' has a K_5 -minor. Suppose G' has no such minor. We may assume that $G' \not\cong V_8$, since V_8 with any edge removed is not internally 4-connected, and that G' has no V_8 -minor, by Theorem [5.1.](#page-10-1) Since G' is nonplanar, $|G'| \ge |G| \ge 11$, by Lemma [4.3,](#page-7-6) and since the line graph of $K_{3,3}$ has a K_5 -minor, we have that G'

satisfies [\(5.2.](#page-10-0)3) or [\(5.2.](#page-10-0)5). We show that both options lead to a contradiction to the definition of G.

Suppose [\(5.2.](#page-10-0)3) is satisfied. Set $C := G' - \{u, v\} = \{x_0, \dots, x_{k-1}\},$ where $k \geq 9$ is an integer. If $e \notin E(C)$, then a contradiction is obtained by showing that $G - e - \{v, u\}$ cannot be a circuit. The proof is exactly the same as the proof of $(5.3.A)$ $(5.3.A)$ with $G - e$ instead of G.

Hence we may assume that $e \in E(C)$; so let $e = x_i x_{i+1}$, for some $0 \leq$ $i \leq k-1$ (subscript are read modulo k). Observe that $d_{G'}(x_i)$, $d_{G'}(x_{i+1}) \geq 4$. Hence, in G, each of x_i and x_{i+1} is adajcent to both u and v.

By assumption that $(5.2.3)$ $(5.2.3)$ is satisfied, $uv \in E(G)$, and we see that one of u or v is a breaker, say u. Hence, $vx_{i+2}, vx_{i+3} \notin E(G)$. But then, since and $d_G(x_{i+1}), d_G(x_{i+2}) = 3$, the set $\{u, x_{i+1}, x_{i+4}\}$ is a 3-disconnector of G (note that since $k \geq 9$, x_{i+1}, x_{i+4} are distinct) separating $\{x_{i+2}, x_{i+3}\}$ from ${x_{i+5}, x_{i+6}}$; a contradiction. Hence $(5.2.3)$ $(5.2.3)$ is not satisfied.

Suppose [\(5.2.](#page-10-0)5) is satisfied. As $V(G) \geq 11$, it is easily seen that $G(= G' - e)$ is of girth ≤ 4 but has no edge- or vertex-breaker; a contradiction. This concludes the proof. 口

By *society* we mean a pair (G, Ω) consisting of a graph G and a cyclic permutation Ω over a finite set $\overline{\Omega} \subseteq V(G)$. Let $\overline{\Omega} = \{v_1, \ldots, v_k\}, k \geq 4$. Two pairs of vertices $\{s_1, t_1\} \subseteq \overline{\Omega}$ and $\{s_2, t_2\} \subseteq \overline{\Omega}$ are said to *overlap* along (G, Ω) if $\{s_1, s_2, t_1, t_2\}$ occur in Ω in this order along Ω .

Two vertex disjoint paths P and P' of G that are both internally-disjoint of $\overline{\Omega}$ are said to form a *cross* on (G, Ω) if their ends are in $\overline{\Omega}$ and these overlap along (G, Ω) .

Lemma 5.5. [\[9,](#page-16-7) Lemma (2.4)] Let (G, Ω) be a society. Then either

- $(5.5.1)$ $(5.5.1)$ (G,Ω) admits a cross in G, or
- $(5.5.2)$ $(5.5.2)$ $G = G_1 \cup G_2$, $G_1 \cap G_2 = G[D], |D| \leq 3$ such that $\overline{\Omega} \subseteq V(G_1)$ and $|V(G_2) \setminus V(G_1)| \geq 2$, or
- $(5.5.3)$ $(5.5.3)$ G can be drawn in a disc with Ω on the boundary in order Ω .

Let C be a circuit in a plane graph G . Then the clockwise ordering of $V(C)$ induced by the embedding of G defines a cyclic permutation on $V(C)$ denoted Ω_C and we do not distinguish between the cyclic shifts of this order. Then, (G, Ω_C) is a society with $\overline{\Omega_C} = V(C)$. Throughout, we omit this notation when dealing with such societies of circuits of plane graphs and instead say that C is a society of G .

Lemma 5.6. Let G be a 3-connected plane graph of order \geq 5 and let P and P' be vertex disjoint paths that are internally-disjoint of G and whose ends

are contained in a facial circuit f of G. If $P \cup P'$ form a cross on f, then $G\cup P\cup P'$ contains a $K_5\text{-minor with every branch set meeting }V(G).$

Proof. Clearly, $V(G) \neq V(f)$. Since the facial circuits of a 3-connected plane graph are it induced nonseparating circuits [\[5\]](#page-16-8), we have that $G - V(f)$ is connected so that $f \cup P \cup P'$ have a K_4 -minor which is completed into a K₅-minor by adding a fifth branch set that is $G - V(f)$ (as f is an induced circuit). \Box

6. Proof of Theorem [1.1](#page-0-0)

Let $\mathcal{H} = \{H \subseteq G : H \text{ is connected}, |G/H| \geq 5, \text{ and } ||G/H|| \geq 3|G/H| - 7\}.$ H contains every member of $V(G)$ as a singleton and thus is nonempty. Let $H_0 \in \mathcal{H}$ be maximal in $(\mathcal{H}, \subseteq), H_1 = G[N_G(H_0)],$ and let $G_0 = G/H_0$, where $z_0 \in V(G_0)$ represents H_0 . Let $G_1 = G_0 - z_0$ and note that $G_1 \subseteq G$.

 $|G_0| = 5$ implies that $||G_0|| \geq 8$ so that $||G_1|| \geq 4$ and contains a kcircuit with $k < 5$; contradiction to the assumption that G has girth at least 6. Thus, we may assume that

 $(1.1.A)$ $(1.1.A)$ $|G_0| \geq 6.$

Let $x \in V(H_1)$ and put $G_0' = G_0/z_0x$. $|G_0'| \geq 5$, by [\(1.1.](#page-0-0)A). Thus, the maximality of H_0 in (\mathcal{H}, \subseteq) implies that $||G'_0|| \leq 3|G'_0| - 8$. Thus, $||G_0|| - ||G'_0|| \ge 3|G_0| - 7 - 3(|G_0| - 1) + 8 \ge 4$; implying that z_0x is common to at least three triangles so that $d_{H_1}(x) \geq 3$. It follows then that

 $(1.1.B) \delta(H_1) \geq 3.$ $(1.1.B) \delta(H_1) \geq 3.$

Let H be an internally 4-connected nearly 6-long truncation of H_1 , by Lemma [3.3.](#page-6-4) Such is nonplanar by Lemma [4.2](#page-7-7) and has a K_5 -minor by Lemma [5.3.](#page-10-2) Consequently, G_0 has a K_6 -minor. This concludes the proof of Theorem [1.1.](#page-0-0)

7. Proof of Theorem [1.3](#page-0-1)

In a manner similar to that presented in the proof of Theorem [1.1,](#page-0-0) let $\mathcal{H} =$ ${H \subseteq G : H \text{ is connected, } |G/H| \ge 5, \text{ and } ||G/H|| \ge 3\frac{1}{5}|G/H| - 8}$ (such is nonempty) and let H_0, H_1, G_0, z_0, G_1 be as in the proof of Theorem [1.1.](#page-0-0)

 $|G_0| = 5$ implies that $||G_0|| \geq 8$ so that $||G_1|| \geq 4$ and contains a kcircuit with $k < 5$; contradiction to the assumption that G has girth at least 5. Thus, we may assume that

 $(1.3.A)$ $(1.3.A)$ $|G_0| \geq 6.$

Let $x \in V(H_1)$ and put $G_0' = G_0/z_0x$. $|G_0'| \geq 5$, by $(1.3.A)$ $(1.3.A)$. Thus, the maximality of H_0 in (\mathcal{H}, \subseteq) implies that $||G_0'|| \leq 3\frac{1}{5}|G_0'|-9$. Thus, $||G_0|| - ||G'_0|| \geq 3\frac{1}{5}|G_0| - 8 - 3\frac{1}{5}(|G_0| - 1) + 9 \geq 4$; implying that z_0x is common to at least three triangles so that $d_{H_1}(x) \geq 3$. It follows then that

[\(1.3.](#page-0-1)B) $\delta(H_1) \geq 3$;

implying that

[\(1.3.](#page-0-1)C) $\delta(G_0) \geq 4$.

Next, we prove that

$$
(1.3.D) \kappa(G_0) \geq 5.
$$

To see $(1.3.D)$ $(1.3.D)$, let $T \subseteq V(G)$ be a minimum disconnector of G_0 and assume, towards contradiction, that $|T| \leq 4$. As $\kappa(G) \geq 6$, $z_0 \in T$. Let then $y = |N_{G_0}(z_0) \cap T|$ and let C denote the components of $G_0 - T$. Choose $C \in \mathcal{C}$ and put $H_1 = G_0[C \cup T]$ and $H_2 = G_0 - C$.

Let H'_{i} be the graph obtained from G_0 by contracting H_{3-i} into z_0 (note that minimality of T implies that each of its members is incident with each member of C), for $i = 1, 2$. As $|H_i| \ge 5$, by [\(1.3.](#page-0-1)C), then $|H'_i| \ge 5$, for $i = 1, 2$. The maximality of H_0 in (\mathcal{H}, \subseteq) then implies that $||H'_i|| \leq 3\frac{1}{5}|H'_i| - 9$.

As $z_0x \in E(H'_i)$ for each $x \in T' = T \setminus \{z_0\}$, for $i = 1, 2$, it follows that

$$
(7.1) \quad ||G_0|| + y + 2(|T'|-y) + ||G_0[T']|| \le ||H'_1|| + ||H'_2|| \le 3\frac{1}{5}(|G_0| + |T|) - 18.
$$

As $||G_0|| \geq 3\frac{1}{5}|G_0| - 8$, we have that

(7.2)
$$
8 + ||G_0[T']|| \le 1\frac{1}{5}|T| + y.
$$

Now, $|T| \le 4$ (by assumption), so that $y \le 3$, and $||G_0[T']|| \ge 0$. Consequently, the right-hand size of [\(7.2\)](#page-14-0) does not exceed 7.8. This contradiction establishes [\(1.3.](#page-0-1)D).

Let B denote the bridges of H_1 in G_1 . We may assume that B is nonempty. Otherwise, G_1 coincides with H_1 so that H_1 is a nonplanar 4-connected graph of girth ≥ 5 and thus containing a K_5 -minor by [5.3.](#page-10-2) Consequently, G_0 has a K_6 -minor and [1.3](#page-0-1) follows.

Let H be an internally 4-connected nearly 5-long truncation of H_1 , by Lemma [3.3.](#page-6-4) We may assume that H is planar for otherwise H has a K_5 -minor, by Lemma [5.3,](#page-10-2) so that G_0 has a K_6 -minor and Theorem [1.3](#page-0-1) follows. Let x denote the breaker of H, if such exists in H. Let $\mathcal{B}_1 = \emptyset$ if x does not exist (so that $H \subseteq G$) or is an edge-breaker. Otherwise (i.e., if x is a vertex-breaker), \mathcal{B}_1 denotes the members of \mathcal{B} with attachment vertices in the subgraph of H_1 contracted into x. Put $\mathcal{B}_2 = \mathcal{B} \setminus \mathcal{B}_1$.

Fix an embedding of H in the plane. No member of β defines a jump over H for otherwise the union of H and such a jump has has a K_5 -minor with every branch set meeting $V(H)$, by Lemma [5.4.](#page-11-0) Hence, every member of β has all of its attachment vertices confined to a single face of H.

By patch we mean a face f of H together with all members of β attaching to $V(f)$. Patches not meeting x in case it is a vertex-breaker are called *clean* (so that if x does not exist or is an edge-breaker, then every patch is clean). f is called the rim of the patch. If P is a patch with rim f, then by (\mathcal{P}, Ω_f) we mean a society with $\Omega_f = V(f)$ and Ω_f is the clockwise order on $V(f)$ defined by the embedding of f in the plane.

 $(1.3.E)$ $(1.3.E)$ Let H' denote the union of H and all members of \mathcal{B}_2 . Then, H' is planar.

To see [\(1.3.](#page-0-1)E) it is sufficient to show that every clean patch is planar. Indeed, since any two faces of H meet either at a single vertex or at a single edge, the union of any number of planar patches results in a planar graph.

Let P be a clean patch with rim f. If (\mathcal{P}, Ω_f) contains a cross, then the union of H and such a cross has a K_5 -minor, by Lemma [5.6,](#page-12-1) with every branch set meeting $V(H)$; so that G_0 has a K_6 -minor and Theorem [1.3](#page-0-1) follows. Assume then that (\mathcal{P}, Ω_f) has no cross and is nonplanar. Then, $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$, $\mathcal{P}_1 \cap \mathcal{P}_2 = \mathcal{P}[D]$ and $|D| \leq 3$ such that $V(f) \subseteq V(\mathcal{P}_1)$ and $|V(\mathcal{P}_2) \setminus V(\mathcal{P}_1)| \geq 2$, by Lemma [5.5.](#page-12-0) Hence, $\{z_0\} \cup D$ is a k-disconnector of G_0 with $k \leq 4$; contradicting [\(1.3.](#page-0-1)D). It follows that P is planar so that $(1.3.E)$ $(1.3.E)$ follows.

If x is a vertex-breaker, then let C be the vertices of H cofacial with x. 4-connectivity of G_1 implies that every vertex in $H' - \{x\} - C$ is at least 4valent in $H'-x$. As x is 3-valent in this case, by $(3.1.3)$ $(3.1.3)$, we have that $H'-x$ is a 2-connected planar graph of girth ≥ 5 has an embedding in the plane with each vertex not in $X_{H'-x}$ at least 4-valent, and each vertex in $X_{H'-x}$ at least 3-valent except for at most 3 vertices which are at least 2-valent. By Lemma [4.4,](#page-8-1) $H' - x$ does not exist; contradiction.

This concludes our proof of Theorem [1.3.](#page-0-1)

References

- [1] Bondy, J. A. and Murty, U. S. R. (2008). Graph Theory, Springer. [MR2368647](http://www.ams.org/mathscinet-getitem?mr=2368647)
- [2] Diestel, R. (2005). Graph Theory, 3rd ed., Springer. [MR2159259](http://www.ams.org/mathscinet-getitem?mr=2159259)
- [3] Mader, W. (1998). $3n-5$ edges do force a subdivision of K_5 . Combinatorica **18**(4) 569–595. [MR1722261](http://www.ams.org/mathscinet-getitem?mr=1722261)
- [4] Mader, W. (1968). Homomorphiesatze fur Graphen. Math. Ann. **178** 154−168. [MR0229550](http://www.ams.org/mathscinet-getitem?mr=0229550)
- [5] Mohar, B. and Thomassen, C. (2001). Graphs on Surfaces. The Johns Hopkins University Press Baltimore and London. [MR1844449](http://www.ams.org/mathscinet-getitem?mr=1844449)
- [6] Graham, R. L., Grötschel, M. and Lovász, L. (1995). Handbook of Combinatorics (Vol. 1). MIT Press Cambridge, MA, USA.
- [7] Kelmans, A. K. (1986). On 3-connected graphs without essential 3 cuts or triangles (English translation). Sov. Math. Dokl. **33**(4) 698–703. [MR0847782](http://www.ams.org/mathscinet-getitem?mr=0847782)
- [8] Robertson, N. Excluding V_8 as a minor, manuscript.
- [9] Robertson, N., Seymour, P. D. and Thomas, R. (1993). Hadwiger's conjecture for K_6 -free graphs. Combinatorica **14** 279–361. [MR1238823](http://www.ams.org/mathscinet-getitem?mr=1238823)

Elad Aigner-Horev Department of Mathematics University of Hamburg **HAMBURG GERMANY** E-mail address: elad.horev@math.uni-hamburg.de

Roi Krakovski Department of Mathematics Simon Fraser University Burnaby, B.C. V5A 1S6 **CANADA** E-mail address: rkrakovs@sfu.ca

RECEIVED OCTOBER 13, 2010