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Extremal results regarding Kg-minors
in graphs of girth at least 5

ErLAD AIGNER-HOREV AND ROI KRAKOVSKI

We prove that every 6-connected graph of girth > 6 has a Kg-minor
and thus settle Jorgensen’s conjecture for graphs of girth > 6.
Relaxing the assumption on the girth, we prove that every 6-
connected n-vertex graph of size > 3%71 — 8 and of girth > 5
contains a Kg-minor.

Whenever possible, notation and terminology are that of [2]. Throughout, a graph is
always simple, undirected, and finite. G always denotes a graph. We write §(G) and d¢(v)
to denote the minimum degree of G and the degree of a vertex v € V(G), respectively. A
vertex of degree k is called k-valent. We write x(G) to denote the vertex connectivity of
G. The girth of G is the length of a shortest circuit in G. Finally, the cardinality |E(G)| is
called the size of G and is denoted ||G||; [V (G)]| is called the order of G and is denoted |G|.

1. Introduction

A conjecture of Jorgensen postulates that the 6-connected graphs not con-
taining K¢ as a minor are the apex graphs, where a graph is apex if it con-
tains a vertex removal of which results in a planar graph. The 6-connected
apex graphs contain triangles. Consequently, if Jorgensen’s conjecture is
true, then a 6-connected graph of girth > 4 contains a Kg-minor. Noting
that the extremal function for Kg-minors is at most 4n — 10 [4] (where n is
the order of the graph), our first result in this spirit is that

Theorem 1.1. A graph of size > 3n — 7 and girth at least 6 contains a
Kg-minor.

So that,
Theorem 1.2. FEvery 6-connected graph of girth > 6 contains a Kg-minor.

This settles Jorgensen’s conjecture for graphs of girth > 6. Relaxing the
assumption on the girth in Theorem 1.1, we prove the following:

Theorem 1.3. A 6-connected graph of size > S%n — 8 and girth at least 5
contains a Kg-minor.
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Remark. In our proofs of Theorems 1.1 and 1.3, the proofs of claims (1.1.A—
B) and (1.3.A-D) follow the approach of [3].

2. Preliminaries

Let H be a subgraph of GG, denoted H C GG. The boundary of H, denoted by
bndgH (or simply bndH), is the set of vertices of H incident with E(G) \
E(H). By intgH (or simply intH) we denote the subgraph induced by
V(H)\ bndH. If v € V(G), then Ng(v) denotes Ng(v) NV (H).

Let £ > 1 be an integer. By k-hammock of G we mean a connected
subgraph H C G satisfying |bndH| = k. A hammock H coinciding with
its boundary is called trivial, degenerate if |H| = |bndH| + 1, and fat if
|H| > |bndH| + 2. A proper subgraph of H that is a k-hammock is called a
proper k-hammock of H. A fat k-hammock is called minimal if all its proper
k-hammocks, if any, are trivial or degenerate. Clearly,

(2.1) every fat k-hammock contains a minimal fat k-hammock.

Let H be a fat 2-hammock with bndH = {u,v}. By capping H we mean
H+wvifuv ¢ E(H) and H if uv € E(H). In the former case, uv is called a
virtual edge of the capping of H. The set bndH is called the window of the
capping.

Let now k(G) = 2 and §(G) > 3. By the standard decomposition of 2-
connected graphs into their 3-connected components [1, Section 9.4], such a
graph has at least two minimal fat 2-hammocks whose interiors are disjoint
and that capping of each is 3-connected. Such a capping is called an extreme
3-connected component.

A k-(vertex)-disconnector, k > 1, is called trivial if its removal iso-
lates a vertex. Otherwise, it is called nontrivial. A graph is called essen-
tially k-connected if all its (k — 1)-disconnectors are trivial. If each (k — 1)-
disconnector D isolates a vertex and G— D consists of precisely 2 components
(one of which is a singleton) then G is called internally k-connected.

Suppose k(G) > 1 and that D C V(G) is a x(G)-disconnector of G.
Then, G[C U D] is a fat x(G)-hammock for every non-singleton component
C of G — D. In particular, we have that

Lemma 2.1. If k(G) > 1, §(G) > 3, and D C V(G) is a nontrivial k(G)-
disconnector of G, then G has at least two fat minimal k(G)-hammocks
whose interiors are disjoint.



Kg-minors in graphs of girth at least 5 465

Lemma 2.2. If k(G) > 1, 6(G) > 3, e € E(G), and G has a nontrivial
k(G)-disconnector, then G has a minimal fat k(G)-hammock H such that if
e € E(H), then e is spanned by bndH .

Let H be a k-hammock. By augmentation of H we mean the graph
obtained from H by adding a new vertex and linking it with edges to each
vertex in bndH.

Lemma 2.3. Suppose k(G) = 3 and that H is a minimal fat 3-hammock of
G. Then, an augmentation of H is 3-connected.

Proof. Let H' denote the augmentation and let {z} = V(H') \ V(H). As-
sume, to the contrary, that H' has a minimum disconnector D, |D| < 2. If
H'—D has a component containing x, then H has a nontrivial | D|-hammock;
contradicting the assumption that x(G) = 3. Hence, z € D. As x is 3-valent,
H'—D has a component C' containing a single member of bndH' (= Ny (z)),
say u. Since §(G) > 3, |[N¢(u) \ D| > 1 so that (D \ {z}) U {u} is a discon-
nector of H of size < 2 not containing x and hence also a disconnector of
G; contradiction. O

Lemma 2.4. Suppose k(G) = 3 and that H is a triangle free minimal fat 3-
hammock of G such that e € E(G[bndH]). Then, an augmentation of H —e
15 3-connected.

Proof. Let H' be the augmentation of H — e, let {z} = V(H') \ V(H),
and let e = tw such that t,w € Ny (z). By Lemma 2.3, x(H' +¢) > 3.
Suppose that k(H') < 3, then H' contains a 2-disconnector, say {u,v}, so
that H' = Hy U Ho, H'[{u,v}] = H1 N Hs and such that x € V(H;) for some
i € {1,2}. Unless z € {u,v}, then t,w € V(H;). Thus, if x ¢ {u,v}, then
{u,v} is a 2-disconnector of H' + e; contradiction.

Suppose then that, without loss of generality, x = u. Thus, since x is
3-valent, there exists an ¢ € {1,2} such that |Ng,(z) \ {v}| = 1. As {z,v}
is a minimum disconnector of H', it follows that H; — {x,v} is connected
so that Ng,(z) U {v} is the boundary of a 2-hammock of G; such must be
trivial as k(G) = 3, implying that |V (H;)| = {x, v, 2}, where z € {t,w}.

We may assume that z is not adjacent to v; for otherwise, |[Np, . (x) \
{v}| = 1 so that the minimality of the disconnector {z,v} implies that
Hs_; — {x,v} is connected and consequently that Ng, .(z) U {v} is the
boundary of a 2-hammock of G; since such must be trivial we have that H
is a triangle (consisting of {¢,v,w}) contradicting the assumption that H is
triangle-free.

Hence, since H is triangle free and since each member of {v} U Np, . ()
has at least two neighbors in Hs_;, {v} U Ny, ,(z) is the boundary of a
proper fat 3-hammock of H; contradiction to H being minimal. O
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The maximal 2-connected components of a connected graph are called
its blocks. Such define a tree structure for G whose leaves are blocks and are
called the leaf blocks of G [2].

We conclude this section with the following notation. Let H C G be
connected (possibly H is a single edge). By G/H we mean the contraction
minor of G obtained by contracting H into a single vertex. We always assume
that after the contractions the graph is kept simple; i.e., any multiple edges
resulting from a contraction are removed.

3. Truncations

Let F be a family of graphs (possibly infinite). A graph is F-free if it contains
no member of F as a subgraph. A graph G is nearly F-free if it is either
F-free or has a breaker x € V(G) U E(G) such that G — x is F-free. A
breaker that is a vertex is called a wvertez-breaker and an edge-breaker if it
is an edge.

An F-truncation of an F-free graph G is a minor H of G that is nearly
F-free such that either H C G (and then it has no breaker) or H contains a
breaker x such that H — 2 C G. In the former case, the truncation is called
proper; in the latter case, the truncation is improper with x as its breaker
and H — z as its body. An improper truncation is called an edge-truncation
if its breaker is an edge and a vertez-truncation if its breaker is a vertex. A
vertex-truncation is called a 3-truncation if its breaker is 3-valent.

Lemma 3.1. Let F be a graph family such that Ks € F and let G be F-free
with §(G) > 3. Then G has an essentially 4-connected F-truncation H such
that:

(3.1.1) |H| > 4; and

(3.1.2) if H is a vertex-truncation then it is a 3-truncation and |H| > 5.

Proof. Let H denote the 3-connected truncations of G.

(3.1.A) H is nonempty. In particular, H contains a truncation H with |H| >
4 so that if improper then it is an edge-truncation with edge-breaker e such
that k(H —e) = 2.

Proof. We may assume that G is connected. Let B be a leaf block of G
(possibly B = G). If k(B) > 3, then (3.1.1) follows (by setting H = B) as
B is a proper truncation of G. Assume then that x(B) = 2 and let H be
an extreme 3-connected component of B with window {x,y}. Now, H € H
with possibly zy an edge-breaker. If H is improper, then «(H — xy) = 2.
Note that 6(G) > 3 implies that |[H| > 4 in both cases. O
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If H contains a proper or an edge-truncation that is essentially 4-
connected, then (3.1.1) follows. Suppose then that

(3.1) ‘H has no essentially 4-connected proper or edge-truncations.

(3.1.B) Assuming (3.1), then H contains a truncation that if improper then
it is a 3-truncation of order > 5.

Proof. Let H € H such that if improper then H and e are as in (3.1.A).
By (3.1) and Lemma 2.2, H has a minimal fat 3-hammock H’ such that if
e € E(H'), then e is spanned by the boundary of H’. Let H” be the graph
obtained from an augmentation of H' by removing e if it is spanned by
bndH'. Let {2} = V(H")\ V(H').

By Lemmas 2.3 and 2.4, (H") > 3 so that H” € H with x as a potential
3-valent vertex-breaker and (3.1.B) follows.

Finally, note that |intH'| > 2 so that |[H"| > 5. O

Next, we show the following.

(3.1.C) If H contains a 3-truncation X of order > 5, then H contains es-
sentially 4-connected 3-truncations Y such that 5 < |Y| < |X]|.

Proof. Let H* € H be a 3-truncation of order > 5 with the order of its body
minimized. We show that H* is essentially 4-connected. Let x denote the
vertex-breaker of H*. By the minimality of H*,

any minimal fat 3 — hammock T of H*
(3.2) with x ¢ V(T') satisfies T'= H* — x

(so that bndT = Ng-(x)).

Assume now, towards contradiction, that H* is not essentially 4-
connected so that it contains nontrivial 3-disconnectors and at least two min-
imal fat 3-hammocks that may meet only at their boundary, by Lemma 2.1.
By (3.2), existence of at least two such hammocks implies that = belongs to
every nontrivial 3-disconnector and thus to the boundary of every minimal
fat 3-hammock. As z is 3-valent, there is a minimal fat 3-hammock T of
H* with z on its boundary such that Np(z) = {y}. As T is a minimal fat
3-hammock, V(T") consists of x,y, the two members of bndT" \ {z}, and an
additional vertex u. As §(G) > 3, uy € E(T), u is adjacent to both members
of bndT' \ {z} and y is adjacent to at least one member of bndT"\ {x}. Hence,
K3 CT —x C H* — x so that = is not a breaker; contradiction. O
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Assuming (3.1), then, by (3.1.B), there are 3-connected 3-truncations of
G of order > 5 so that an essentially 4-connected 3-truncation of G exists
by (3.1.C). O

Lemma 3.2. Let F be a graph family such that {K3, K3} C F, then G
has an internally 4-connected F-truncation satisfying (3.1.1-2) and if such
15 a vertez-truncation then it is a 3-truncation.

Proof. Let T denote the essentially 4-connected truncations of G that are ei-
ther proper, or edge-truncations, or 3-truncations; 7 is nonempty by Lemma
3.1. Let a(T) denote the least k such that 7 contains a proper truncation
of order k or an improper edge-truncation of order k. Let 5(7) denote the
least k such that T contains an improper 3-truncation with its body of order
k. Let H € T such that |[H| = min{«(7),B3(T) + 1} and let x denote its
breaker if improper.

We show that H is internally 4-connected. To see this, assume, to the
contrary, that H is not internally 4-connected and let D be a 3-disconnector
of H such that H — D consists of > 3 components at least one of which is a
singleton (since H is essentially 4-connected). Let C denote the non-singleton
components of H — D. Since Ky 3 € F, |C| > 1.

Suppose J = H[C'U D] is a 3-hammock of H, for some C € C, that does
not meet z in its interior (if x exists). By the choice of H,

for each fat 3-hammock X of J either
(3.3) x € bndXorz € E(H[bndX]).

Indeed, for otherwise, an augmentation of a minimal fat 3-hammock of X
is a 3-truncation of order >5 of G that belongs to H and has order <|H],
where H is as in the proof of Lemma 3.1; existence of such a 3-truncation
of G implies that G has an essentially 4-connected 3-truncation of order
>5, by (3.1.C), and such has order <|H| contradicting the choice of H.
Consequently, the assumption that the interior of J does not meet x implies
that

(3.4) if J exists, then © € D U E[H[D]].

Suppose now that J has a minimal fat 3-hammock J' (possibly J' = J)
with € bndJ’ so that € D, by (3.4). |D| = x(H) imply that z is incident
with each component of H — D so that |Njus (z)| = 1, as = is 3-valent. The
minimality of J’ then implies that |int.J'| = 2 so that J' — z contains a K3
(see proof of (3.1.C) for the argument) and thus x is not a breaker of H;
contradiction.
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Suppose next that J’ is a minimal fat 3-hammock of J whose boundary
vertices span z (as an edge). Then, an augmentation of J' — x belongs to H,
by Lemma 2.4, and such contains an essentially 4-connected 3-truncation of
G, by (3.1.C), of order < |H|. Hence,

J (if exists) has no minimal fat 3-hammock J’
(3.5) with z € bndJ' U E[H[bndJ']).

If J exists, then (3.3) and (3.5) are contradictory. Thus, to obtain a
contradiction and hence conclude the proof of Lemma 3.2 we show that a 3-
hammock such as J exists. This is clear if |C| > 2 as then at least one member
of C does not meet x. Suppose then that |C| = 1 so that H — D consists of two
singleton components, say {u,v}, and the single member C of C. DU {u,v}
induce a Ko 3, say K. Since K3 € F and z is a breaker, K contains x so
that C' does not; hence, H[C' U D] is the required 3-hammock. O

For k > 4, a graph that is nearly {K3,Cy, ..., Ci_1}-free is called nearly
k-long. That is, G is nearly k-long if either it has girth > k or it has a breaker
z € V(G) U E(G) such that G — z has girth > k.

A nearly 5-long graph is nearly {K3, Cy}-free; such is also nearly {Ks,
K 3}-free. In addition, a 3-connected nearly 5-long truncation has order >5.
Consequently, we have the following consequence of Lemma 3.2.

Lemma 3.3. A graph with girth > k > 5 and 6 > 3 has an internally
4-connected nearly k-long truncation of order >5 and if such is a vertex-
truncation then it is a 3-truncation.

4. Nearly long planar graphs

For a plane graph G, we denote its set of faces by F(G) and by Xg its
infinite face.

Lemma 4.1. Let G be a 2-connected plane graph of girth >6, and let S C
V(G) be the 2-valent vertices of G. Then, |S| > 6.

Proof. By Euler’s formula:
(4.1) [E(G)] = V(G)| + |[F(G)] - 2.
Since G is 2-connected, every vertex in V(G) \ S is at least 3-valent so that

(4.2) 21E(G)] = 3(V(G)] = [S]) +2IS].



470 Elad Aigner-Horev and Roi Krakovski

As G is of girth > 6 and 2-connected (and hence every edge is contained in
exactly two distinct faces) then:

(4.3) 2|E(G)| > 6|F(G)].
Substituting (4.1) in (4.2),

2(V(G)+ |F(G)] —2) = 3(IV(G)| — [S]) + 2[S]
(4.4) = [V(G)| < 2|F(G)| +|S| — 4.

Substituting (4.1) in (4.3),

(4.5) V(&) + |F(G)] = 2) = 6|F(G)| = [V(G)] = 2| F(G)] + 2.
From (4.4) and (4.5),

(4.6) 2|F(G)|+2 <2|F(G)|+|S|—4=|S] >6.

Hence, the proof follows. O
From Lemma 4.1 we have that:

Lemma 4.2. A nearly 6-long internally 4-connected graph is nonplanar.

Lemma 4.3. Let G be a nearly 5-long internally 4-connected planar graph
and suppose that if G has a vertex-breaker, then it also has a vertex-breaker
which is a 3-valent vertex. Then, |G| > 11.

Proof. Define S C V(G) U E(G) as follows. If G is of girth > 5 set S := (J;
otherwise set S := {z}, where z € V(G) U E(G) is a breaker of G so that if
x € V(G) then z is 3-valent. Then, G — S is 2-connected, and has at most
three 2-valent vertices. Hence,

(4.7) 2|B(G)| = 3(V(G)] - 3) +6.
As G — S is of girth > 5 and G is 2-connected then:
(4.8) 20E(G)| = 5IF (@)
Substituting (4.1) in (4.7),

2(V(G)+[F(G)] =2) =2 3(V(G)| - 3) + 6
(4.9) = [F(@)] < (V(G)| +1)/2.
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Substituting (4.1) in (4.8),
(4.10)  2(]V(G)[+ |F(G)| = 2) = 5|F(G)| = [F(G)] = 2[V(G)| - 2)/3.
From (4.9) and (4.10),
(4.11) (IV@I+1)/2< 2V(G)]-2)/3 = [V(G)] = 11.

Hence, the proof follows. OJ

Lemma 4.4. A 2-connected plane graphs G satisfying the following does
not exist.

(4.4.1) G has girth > 5;

(4.4.2) each member of V(G) — V(X¢) is at least 4-valent; and

(4.4.3) G has a set S C V(Xg), |S| < 3 (possibly S = 0) with each of
its members 2-valent and each member of V(Xg) — S at least 3-
valent.

Proof. Assume towards contraction that the claim is false. We will use the
Discharging Method to obtain a contradiction to Euler’s formula. The dis-
charging method starts by assigning numerical values (known as charges)
to the elements of the graph. For x € V(H) U F(H), define ch(x) as fol-
lows.

(CH.1) ch(v) =6 —du(v), for any v € V(H).
(CH.2) ch(f) =6 —2|f], for any f € F(H) — {Xu}.
(CH.3) ch(X,)=—52 —2|X,,|.

Next, we observe that

(4.12) Z ch(x) = %

z€V(H)UF(H)

Indeed, we have the following.
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S b= -5s-2AXul+ Y (G-27)

€V (H)UF(H) fEF(H)— Xy

+ ) (6—d(v))

veV(H)

:-5%—2[XH]+6(\f(H)]—1)+ ST (-2

fEF(H)—Xn

veV(H)
=- 5% +6(|f(H)| —1) —22[E|) + 6|V (H)| — 2|E(H)|
— 6(F(H) — E(H) + V(H)) - 11% _ %

Next the charges are locally redistributed according to the following dis-
charging rules:

(DIS.1) If v is of degree two, then v sends 3% to X¢ and % to the other face
incident to it.

(DIS.2) If v is of degree three, then v sends 1% to X¢g and % to every other
face incident to it.

(DIS.3) If v is of degree at least four then v sends 2 to each incident

5
face.

For x € V(G) U F(G), let ch*(x) (denoted as the modified charge) be
the resultant charge after modification of the initial charges according to
(DIS.1-3). We obtain a contradiction to (4.12) by showing that ch*(z) < 0
for every x € V(H) U F(H). This is clearly implied by the following claims
proved below.

(A) ch*(v) <0, for each v e V(H).
(B) ch*(f) <0, for each f € F(H) — {Xg}.
(C) ch*(X,) <0.

Observe that according to DIS.(1)-(3), faces do not send charge and
vertices do not receive charge.

To prove (A), it is sufficient to consider vertices v satisfying dg(v)
Indeed, if dg(v) > 6, then ch(v) = ch*(v) < 0 by (CH.1). If 2 < dg(v)
then it is easily seen by (CH.1) and (DIS.1-2) that ch*(v) = 0. If
dg(v) < 5, then, by (CH.1) and (DIS.3), ch*(v) = 6 — d(v) — 2dg(v)

IN = AV

5
37
<
0
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Next, we prove (B). Let f € F(H) — {X,,}. By (DIS.1-3), f receives a
charge of % from every vertex incident to it. Hence, togther with (CH.2),
ch*(f) =6 —2|f| + 2| f| < 0. (The last inequality follows as |f| > 5.)

Finally, we prove (C). Let S; C V(Xg) be the set of vertices of X¢ of
degree three, and let Sy = V(X¢g) — (S U S1). By (CH.3), (DIS.1-3) and
as |S| < 3, we see that ch*(f) = —52 — 2|X¢| + 3%[S| + 12|S1| + 2[S:| <
"5~ 21Xl +8 % 3} + 130Xl ~ 8) = 1| - 1 <0 5

5. Ks-minors in internally 4-connected graphs

By Vg we mean Cy together with 4 pairwise overlapping chords. By TG we
mean a subdivided G.
The following is due to Wanger.

Theorem 5.1. [6, Theorem 4.6] If G is 3-connected and TVs C G then
etther G = Vg or G has a K5-minor.

The following structure theorem was proved independently by
Kelmans [7] and Robertson [8].

Theorem 5.2. [7] Let G be internally 4-connected with no minor isomorphic
to V3. Then G satisfies one of the following conditions:
(5.2.1) G is planar;
(5.2.2) G is isomorphic to the line graph of K3 3;
(5.2.3) there exist a uwv € E(G) such that G — {u,v} is a circuit;
(5.2.4) |G| < 7;
(5.2.5) there is an X C V(G), |X| < 4 such that |G — X|| = 0.

From Theorems 5.1 and 5.2 we deduce that

Lemma 5.3. A nearly 5-long internally 4-connected nonplanar G has a
Ks-minor.

Proof. We may assume that G % Vg and that G has no Vg-minor. The
former since Vg is not nearly 5-long and the latter by Theorem 5.1. Hence,
G satisfies one of (5.2.1-5). As G is nonplanar, by assumption, and the line
graph of K33 has a Ks-minor (and is not nearly 5-long) it follows that G
satisfies one of (5.2.3-5).

If G is of girth < 4, let a € V(G) U E(G) be a breaker of G; otherwise (if
G has girth > 5) let a be an arbitrary vertex of G. If a € V(G), put b := a;
otherwise let b be some end of a. By definition, G — b has girth > 5.

(5.3.A) G — {u,v} is not a circuit for any u,v € V(G) so that G does not
satisfy (5.2.3).
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Proof. Suppose not; and let C := G — {u,v} = {xg,...,Tx_1}, where k > 3
is an integer. Suppose first that b € {u,v} and assume, without loss of
generality, that w = b. Then, k& > 5. As v is at least 3-valent, there exists
0 <i<k—1so that vz; € E(G). Since G — b has girth > 5, vx;11,vz42 &
E(G) (subscripts are read modulo k). Since z;11 and x;42 are at least 3-
valent in G, each is adjacent to u. But then {u, x;, z;13} is a 3-disconnector of
G separating {z;t+1, xiyo} from {v, z;14} (note that since k > 5, 11, Tiro #
xi+4); a contradiction to G being internally 4-connected.

Suppose then that x; = b, for some 0 < ¢ < k — 1. Hence, exactly one
of v and w is adjacent to x;41 and exactly one to x;1o (this is true since
every vertex of C is adjacent to v or u, and if say, v, is adjacent to both
xiy+1 and w12 then G — b contains a triangle). If z;13 # x;, then x;43 is
adjacent to one of u and v. If ; = x;13, then C' is a circuit of length three,
and V(G) = 5. Both cases contradict the fact that G is nearly 5-long. O

(5.3.B) |G| > 8 so that G does not satisfy (5.2.4).

Proof. For suppose |G| < 7. As G is internally 4-connected, G — b is 2-
connected. Since G —b is of girth > 5, then G — b contains an induced circuit
C of length > 5. Hence |G| > 6. If |G| = 6, then G = C' U b and then G is
planar; a contradiction. If |G| = 7 then G is a circuit plus two vertices and
we get a contradiction to (5.3.A). Hence, V(G) > 8. O

To reach a contradiction we show that (5.2.5) is not satisfied by G.
Suppose it is satisfied and let X be as in (5.2.5) and let Y = V(G) — X. As
V(G) > 8, then |Y| > 4 and every vertex of Y is adjacent to at least three
vertices in X. But then it is easily seen that G is of girth < 4 but contains
no edge- or vertex-breaker; a contradiction. O

Let G be a plane graph. By a jump over G we mean a path P internally-
disjoint of G whose ends are not cofacial in G.

Lemma 5.4. Let G be an internally 4-connected nearly 5-long plane graph
and let P be a jump over G. Then, G has a Ks-minor with every branch set
meeting V(G).

Proof. Put G' :== G U P. (By possibly contracting P) we may assume that
P is an edge e with both ends in G. It suffices now to show that G’ has a
Ks-minor. Suppose G’ has no such minor. We may assume that G’ % V%,
since Vg with any edge removed is not internally 4-connected, and that G’
has no Vg-minor, by Theorem 5.1. Since G’ is nonplanar, |G'| > |G| > 11, by
Lemma 4.3, and since the line graph of K33 3 has a K5-minor, we have that G’
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satisfies (5.2.3) or (5.2.5). We show that both options lead to a contradiction
to the definition of G.

Suppose (5.2.3) is satisfied. Set C' := G’ —{u,v} = {zo, ..., zx_1}, where
k > 9is an integer. If e ¢ E(C), then a contradiction is obtained by showing
that G — e — {v, u} cannot be a circuit. The proof is exactly the same as the
proof of (5.3.A) with G — e instead of G.

Hence we may assume that e € E(C); so let e = x;zit1, for some 0 <
i < k—1 (subscript are read modulo k). Observe that dg (z;), de (xiy1) > 4.
Hence, in G, each of z; and x;41 is adajcent to both u and v.

By assumption that (5.2.3) is satisfied, uv € E(G), and we see that one
of u or v is a breaker, say u. Hence, va;2,vx;13 ¢ E(G). But then, since
and dg(2i11),dg(zit2) = 3, the set {u, z;11,xi+4} is a 3-disconnector of G
(note that since k > 9, x; 11, ;14 are distinct) separating {x; 2, x;+3} from
{Zit5, zite}; a contradiction. Hence (5.2.3) is not satisfied.

Suppose (5.2.5) is satisfied. As V(G) > 11, it is easily seen that
G(= G' —e) is of girth < 4 but has no edge- or vertex-breaker; a con-
tradiction. This concludes the proof. O

By society we mean a pair (G, (2) consisting of a graph G and a cyclic
permutation € over a finite set Q@ C V(G). Let Q = {v1,..., v}, k > 4.
Two pairs of vertices {s1,t1} C Q and {s2,t2} C Q are said to overlap along
(G, Q) if {s1,s2,t1,t2} occur in Q in this order along 2.

Two vertex disjoint paths P and P’ of G that are both internally-disjoint
of Q) are said to form a cross on (G, Q) if their ends are in 2 and these overlap
along (G, Q).

Lemma 5.5. [9, Lemma (2.4)] Let (G, ) be a society. Then either

(5.5.1) (G,Q) admits a cross in G, or

(5.5.2) G = G1UGy, Gi1NGy =G[D], |D| <3 such that Q C V(G1) and
[V(G2) \V(G1)| = 2, or B

(5.5.3) G can be drawn in a disc with € on the boundary in order €.

Let C be a circuit in a plane graph G. Then the clockwise ordering
of V(C) induced by the embedding of G defines a cyclic permutation on
V(C) denoted Q¢ and we do not distinguish between the cyclic shifts of this
order. Then, (G,Q¢) is a society with Q¢ = V(C). Throughout, we omit
this notation when dealing with such societies of circuits of plane graphs
and instead say that C' is a society of G.

Lemma 5.6. Let G be a 3-connected plane graph of order >5 and let P and
P’ be vertex disjoint paths that are internally-disjoint of G and whose ends
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are contained in a facial circuit f of G. If P U P’ form a cross on f, then
GUPUP contains a Ks-minor with every branch set meeting V(G).

Proof. Clearly, V(G) # V(f). Since the facial circuits of a 3-connected plane
graph are it induced nonseparating circuits [5], we have that G — V(f) is
connected so that f U P U P’ have a K -minor which is completed into a
Ks-minor by adding a fifth branch set that is G — V(f) (as f is an induced
circuit). O

6. Proof of Theorem 1.1

Let H={H C G : H is connected, |G/H| > 5, and ||G/H| > 3|G/H| — 7}.
H contains every member of V(G) as a singleton and thus is nonempty. Let
Hy € H be maximal in (H,C), H = G[Ng(Hy)], and let Go = G/Hp, where
20 € V(Gy) represents Hy. Let G1 = Gy — zp and note that G; C G.

|Go| = 5 implies that ||Gp|| > 8 so that ||G1]| > 4 and contains a k-
circuit with k£ < 5; contradiction to the assumption that G has girth at
least 6. Thus, we may assume that

(1.1.A) |Go| > 6.

Let z € V(H;) and put Gf, = Go/zoz. |Gj| > 5, by (1.1.A). Thus,
the maximality of Hy in (#,C) implies that |Gyl < 3|Gj| — 8. Thus,
|Goll = |Gyl = 3|Go| —T7—3(|Go| — 1) +8 > 4; implying that zpz is common
to at least three triangles so that dg, (z) > 3. It follows then that

(1.1.B) 6(H,) > 3.

Let H be an internally 4-connected nearly 6-long truncation of Hj,
by Lemma 3.3. Such is nonplanar by Lemma 4.2 and has a Ks-minor by
Lemma 5.3. Consequently, Gy has a Kg-minor. This concludes the proof of
Theorem 1.1.

7. Proof of Theorem 1.3

In a manner similar to that presented in the proof of Theorem 1.1, let H =
{H C G: H is connected, |G/H| > 5, and |G/H|| > 31|G/H| — 8} (such is
nonempty) and let Hy, H1, Gy, z0, G1 be as in the proof of Theorem 1.1.

|Go| = 5 implies that [|Gp|| > 8 so that ||G1]| > 4 and contains a k-
circuit with & < 5; contradiction to the assumption that G has girth at
least 5. Thus, we may assume that

(1.3.A) |Go| > 6.
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Let z € V(H;) and put G, = Go/zpz. |Gj| > 5, by (1.3.A). Thus,
the maximality of Ho in (#,C) implies that |Gj|| < 3Gyl — 9. Thus,
IGoll — Gyl > 3L|Go| — 8 — 3L(1Go| — 1) + 9 > 4 implying that 2oz
is common to at least three triangles so that dg, (x) > 3. It follows then
that

(1.3.B) 6(Hy) > 3;

implying that

(1.3.C) 6(Gy) > 4.
Next, we prove that

(1.3.D) k(Gp) > 5.

To see (1.3.D), let T C V(G) be a minimum disconnector of Gy and
assume, towards contradiction, that |T'| < 4. As k(G) > 6, zp € T. Let then
y = |Ng,(20) NT| and let C denote the components of Go—T'. Choose C' € C
and put Hy = Go[CUT] and Hy = Gy — C.

Let H] be the graph obtained from Gg by contracting Hz_; into zg (note
that minimality of 7" implies that each of its members is incident with each
member of C), for i = 1,2. As |H;| > 5, by (1.3.C), then |H]| > 5, fori = 1,2.
The maximality of Hy in (#,C) then implies that ||H|| < 3%|H/| — 9.

As zox € E(H]) for each x € T' = T'\ {20}, for i = 1,2, it follows that

1
(7:1) IGoll+y+2(1T"| =y) + | Go[T"]|| < [|H ||+ [ Ha]| < 3 (IGol +|T1) - 18.
As ||Go|| = 32|Go| — 8, we have that
, 1
(7.2) 8+ [GolT]ll < 1 [T + -

Now, |T| < 4 (by assumption), so that y < 3, and [|Gp[T"]|| > 0. Conse-
quently, the right-hand size of (7.2) does not exceed 7.8. This contradiction
establishes (1.3.D).

Let B denote the bridges of H; in G1. We may assume that B is nonempty.
Otherwise, G1 coincides with H; so that H; is a nonplanar 4-connected
graph of girth > 5 and thus containing a Ks-minor by 5.3. Consequently,
Go has a Kg-minor and 1.3 follows.
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Let H be an internally 4-connected nearly 5-long truncation of Hi, by
Lemma 3.3. We may assume that H is planar for otherwise H has a Ks-
minor, by Lemma 5.3, so that Gy has a Kg-minor and Theorem 1.3 follows.
Let z denote the breaker of H, if such exists in H. Let By = 0 if = does
not exist (so that H C @) or is an edge-breaker. Otherwise (i.e., if z is a
vertex-breaker), B; denotes the members of B with attachment vertices in
the subgraph of H; contracted into x. Put By = B\ Bj.

Fix an embedding of H in the plane. No member of B defines a jump
over H for otherwise the union of H and such a jump has has a K5-minor
with every branch set meeting V(H), by Lemma 5.4. Hence, every member
of B has all of its attachment vertices confined to a single face of H.

By patch we mean a face f of H together with all members of B attach-
ing to V(f). Patches not meeting x in case it is a vertex-breaker are called
clean (so that if x does not exist or is an edge-breaker, then every patch is
clean). f is called the rim of the patch. If P is a patch with rim f, then by
(P,Qy) we mean a society with Qy = V(f) and Qy is the clockwise order
on V(f) defined by the embedding of f in the plane.

(1.3.E) Let H' denote the union of H and all members of By. Then, H' is
planar.

To see (1.3.E) it is sufficient to show that every clean patch is planar.
Indeed, since any two faces of H meet either at a single vertex or at a single
edge, the union of any number of planar patches results in a planar graph.

Let P be a clean patch with rim f. If (P,Q;) contains a cross, then the
union of H and such a cross has a Ks-minor, by Lemma 5.6, with every
branch set meeting V(H); so that Gy has a Kg-minor and Theorem 1.3
follows. Assume then that (P,€f) has no cross and is nonplanar. Then,
P =P UPy, PLNPy = P[D] and |D| < 3 such that V(f) C V(Py) and
|V (P2) \ V(P1)| > 2, by Lemma 5.5. Hence, {20} U D is a k-disconnector
of Gy with k < 4; contradicting (1.3.D). It follows that P is planar so that
(1.3.E) follows.

If x is a vertex-breaker, then let C' be the vertices of H cofacial with x.
4-connectivity of G implies that every vertex in H' — {z} — C is at least 4-
valent in H' —z. As x is 3-valent in this case, by (3.1.3), we have that H' —z
is a 2-connected planar graph of girth >5 has an embedding in the plane
with each vertex not in Xy _, at least 4-valent, and each vertex in Xp_,
at least 3-valent except for at most 3 vertices which are at least 2-valent. By
Lemma 4.4, H' — z does not exist; contradiction.

This concludes our proof of Theorem 1.3.
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