
Journal of Combinatorics

Volume 2, Number 3, 413–433, 2011

Escape paths of Besicovitch triangles

Yevgenya Movshovich and John E. Wetzel

The shortest arcs that do not fit in the interior of a compact, convex
body in the plane have been called its escape paths. We summarize
some basic general facts about such paths. Specializing to triangles,
we study the escape paths of the so-called Besicovitch triangles,
near-equilateral isosceles triangles recently shown by Coulton and
Movshovich to be covers for the family of all arcs of unit length,
and we show that each such triangle has exactly one escape path.
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Shortest arcs that do not fit in the interior of a compact, convex body
K in the plane are its “escape paths”, in the language of the “lost in a
forest” boundary search problems, and their common length ε(K) is called
its “escape length”. If one thinks of K as a “forest” of known shape and
size in which one is completely lost, an escape path is the shortest path
one can follow to be assured of reaching the boundary ∂K of K, no matter
where one is in the forest or in which direction one sets out. The notion
apparently is due to Bellman [1]. For a recent overview of such boundary
search problems, see Finch and Wetzel [6].

Escape paths also play a role in arc-covering problems, the so-called
“worm” problems, because one can show that if K has escape length ε,
then K contains a congruent copy of every arc of length ε, i.e., K is a cover
for the family Cε of all such arcs. For a look at some arc-covering problems,
see Wetzel [17] and [16].

Although elementary compactness considerations guarantee the exis-
tence of escape paths for any compact, convex body, the determination of
their precise shape is generally not easy.

Graham [7] asked nearly 50 years ago for the shortest arc that does not
fit in an open equilateral triangle of side one. Two years later, Besicovitch
[2] conjectured that a certain z-shaped arc is as short as such an arc can be.
The arc Besicovitch described is a centrally symmetric polygonal arc formed
by three line segments each of length

√
3/28.
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Restated as a covering problem, the Besicovitch conjecture is that an
equilateral triangle of side

√
28/27 ≈ 1.018 is a cover for the family C1 of all

unit arcs in the plane, i.e., it contains a congruent copy of every planar arc
of length 1. This conjecture was recently proved by Coulton and Movshovich
[3], who studied more generally a certain family of near-equilateral isosceles
triangular regions and determined for each the smallest dimensions large
enough to cover C1. They called those smallest triangles Besicovitch trian-
gles.

In this paper, after discussing some basic properties of escape paths in
general, we investigate the escape paths of Besicovitch triangles and prove
that up to congruence, each such triangle has a unique escape path.

1. Escape paths

We begin by establishing our notation and some basic facts about escape
paths. An oval K is a compact, convex set with non-empty interior. We
write ∂K for its (topological) boundary, ∂K=K \ intK. We assume paths1

to be rectifiable and parameterized on arclength, and we write l(γ) for the
length of the path γ. We do not bother to make a notational distinction
between path as function and path as range of the function.

Definition. A path γ is an exit path2 for an oval K if for each point I in
intK and each Euclidean motion μ for which μ(γ(0)) = I,

(1) {μ(γ(s)): 0 ≤ s ≤ l(γ)} ∩ ∂K �= ∅.

In less formal terms, a path is an exit path of an oval K if no matter how
it is placed with its initial point inside K, it invariably meets the boundary
of K.

It is not difficult to show that if γ is an exit path for K, if the point I lies
on the boundary ∂K of K, and if μ is a motion so that μ◦γ(0) = I and the
transplanted path μ◦γ meets intK, then {μ(γ(s)): 0 < s ≤ l(γ)}∩∂K �= ∅.
So any path that does not fit in the oval is an exit path for the oval. An
oval always has exit paths—for example, any line segment whose length is
at least the diameter of K is an exit path.

Definition. The escape length ε(K) of an oval K is the greatest lower
bound of the lengths of its exit paths. An escape path of K is an exit path
of length ε(K).

1We regard the terms arc, curve, and path as synonyms.
2Our terminology here differs somewhat from that employed in Finch and Wetzel

[6].
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A path is an exit path for an oval K if and only if it does not fit in the
interior of K (an assertion that could be taken as the definition). Hence, as
described in the first paragraph of the article, every shortest path that does
not fit in the interior of an oval K is an escape path of K.

The escape length of an oval is a fundamental geometric measure associ-
ated with the oval that, like area, perimeter, minimum width, and diameter,
is monotonic with respect to set inclusion. Its ultimate importance remains
unclear. The following three basic theorems are proved in Finch and Wetzel
[6].

Theorem 1. Let K be an oval and γ a path in K. If (a) γ does not fit in
intK, but (b) every path strictly shorter than γ fits in intK, then γ is an
escape path for K.

Theorem 2. If every path of length less than L fits in K, then every path
of length L fits in K.

Theorem 3. The escape length ε of K is the largest L for which K is
a cover for the family CL of all arcs in the plane of length at most L. In
particular, K is a cover for Cε(K).

It frequently is convenient to scale the oval to have escape length one,
so that the scaled oval is a cover for the family C1 of all arcs of unit length.

Norwood, Poole, and Laidacker [13], refining an earlier cover for the
family C1 of all unit arcs found by Poole and Gerriets [14] in 1973, showed
in 1992 that the region pictured in Figure 1 is a cover for C1. This region is
formed by clipping an end of the minor diagonal of a 60◦ rhombus of side
1/
√
3 with a circular arc of radius 1

2 (see Wetzel [17]). Since this cover has
diameter 1, it has escape length ε = 1. This oval has uncountably many
non-congruent escape paths, four of which are drawn in Figure 1.

Not much is known about the escape paths of ovals in general:

1. An escape path need not be polygonal, even if the oval has a polygonal
boundary (see [6, p. 649]).

Figure 1: The NPL cover.
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2. There is an oval that has exactly two non-congruent escape paths (see
[6, p. 649]). It is not known whether an oval can have exactly n non-
congruent escape paths for any n > 2.

3. An escape path need not be convex (see, for example, the Besicovitch
zα, below).

4. It seems likely that an escape path must be a simple arc with distinct
endpoints.

2. The case of a triangle

If the oval is a triangle (that is to say, a closed triangular region), escape
paths can be characterized in the following convenient way. We agree that
line segments always include their endpoints.

Definition. (cf. [3, p. 82]) A path γ in a triangle T is an extreme path of T
if it and every path in T congruent to it meet each of the three sides of T.

Lemma 4. If a triangle T has escape length ε(T ), then l(γ) ≥ ε(T ) for
every extreme path γ in T ; and an extreme path of length ε(T ) is an escape
path.

Proof. If an escape path γ in T does not meet one side of T, then a small
translation toward that side moves it into the interior of T, contrary to the
definition of exit path. Hence every escape path in T must be an extreme
path of T, and l(γ) ≥ ε(T ). On the other hand, suppose a path γ of length
ε(T ) in T is extreme, let I be an interior point of T, let μ be a motion that
carries γ so that its initial point is I, and let γ0 = μ◦γ. If γ0 fits in T, then it
meets ∂T by hypothesis, and if γ0 does not fit in T, then it surely meets ∂T .
Hence γ is an exit path of length ε(T ) and consequently an escape path.

In other words, every extreme path γ of a triangle T has length at least
ε(T ), and an extreme path has length ε(T ) only if it is an escape path.

2.1. The triangle Tα and the path zα

Recall the classical language for an isosceles triangle T : if T is not equilateral,
the two equal sides are the “arms” of the triangle and the third side is the
“base”; but if T is equilateral, each side is both an “arm” and a “base” of
T . Each side of T includes its endpoints. In the remainder of this article we
denote by Tα the isosceles triangle XY Z with base XY and base angle α
whose base has length

(2) bα = XY =
1

3

√
9 + cot2 α



Escape paths of Besicovitch triangles 417

Figure 2

and whose vertices are labeled in the counterclockwise sense (Figure 2(a)).

For given α a certain three-segment polygonal arc plays an important
role.

Definition. The Besicovitch “zee” arc zα is the centrally symmetric three-

segment polygonal unit arc 〈ABCD〉 , with AB = BC = CD = 1
3 , AB ‖

CD, and ∠CAB = arctan(13 cotα) (Figure 2(b)).

One can easily verify that for zα,

AC =
2 tanα√

1 + 9 tan2 α
,

AD =
1

3

√
1 + 81 tan2 α

1 + 9 tan2 α
,

∠CAD = arctan
1

9
cotα.

Definition. A triangle Tα is a Besicovitch triangle3 if it covers every unit
arc and if it is the smallest such triangle in its similarity class.

The main result of Coulton and Movshovich [3] is that for α in the range

(3) 52.239◦ ≈ arctan

√
5

3
≤ α ≤ arctan

√
3 = 60◦,

Tα is a cover for the family C1 of all unit arcs in the plane:

Theorem 5. [3] Triangle Tα is a Besicovitch triangle for α in the range

(3).

3This definition is a little different from that employed in [3].
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Figure 3: The arc zα in Tα.

Proof. The authors of [3] showed directly that Tα contains a congruent copy
of every simple polygonal unit arc, and they concluded from an approxima-
tion covering theorem in [9, Theorem 14] that Tα is a cover for all unit arcs.
That it is the smallest such triangle in its similarity class follows because zα
fits in Tα only as pictured in Figure 3(a), with one endpoint at a base vertex
of Tα and the third vertex on the base of Tα.

It is conceivable that zα might also fit in Tα as pictured in Figure 3(b),
with A near X on XZ, C on XY , and D inside Tα near Y , a case not
considered in [3]. We take this opportunity to show that this cannot happen,
thereby correcting a small lacuna in the argument in [3].

Recall the following classical locus, which Dörrie [4, pp. 214–216] at-
tributes to the Dutch mathematician Frans van Schooten the younger (1615–
1660). (See, for example, Honsberger [8, pp. 173–177] or Wetzel [15].)

Schooten’s Locus. If the vertices P and Q of a triangular tile PQR move
respectively on two intersecting lines p and q, the locus of the third vertex R
is a (possibly degenerate) ellipse whose center is at the point in which the lines
p and q meet.

If A = X, a short calculation shows that the endpoint D lies in Tα only
when C lies on the base XY (as pictured in Figure 3(a)); and similarly if
A = Y . If A is neither X not Y, then by a suitable motion we may suppose
that A lies on XZ and C lies on the base XY (Figure 3(b)). We argue that
then D must extend beyond Y Z. Indeed, the locus of the point D as A
moves on the line XZ and C moves on the line XY is an ellipse centered at
X (Figure 3(b)). Let T be the point on XZ for which D lies on the baseline
XY . Then the elliptic arc traced when A moves from X to T is convex and
has its initial point on Y Z and its terminal point on the line XY outside
the triangle. It follows that apart from its initial point on Y Z it lies entirely
across Y Z from X.
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This completes the proof that the Besicovitch arc zα fits in Tα only along
a base, and it follows that Tα is a Besicovitch triangle when its base angle
α falls in the range (3).

Corollary 6. The Besicovitch arc zα is an escape path of the oval Tα.

Proof. The proof shows that zα is an extreme path of length 1, and the
result follows from Lemma 4.

We write

α0 = arctan

√
5

3
≈ 52.24◦,

so that

arctan

(
1

3
cotα0

)
= arctan

√
1

15
≈ 14.48◦.

Because the base bα = 1
3

√
9 + cot2 α of Tα is a decreasing function of α on

the range (3),

1.018 350 ≈ b60◦ ≤ bα ≤ bα0
≈ 1.032 796.

We have chosen α = 54◦ for most of the drawings of Tα in this article.

3. Various preliminaries

Recall that a path γ from P to Q is parameterized by arclength, so that
γ(0) = P and γ(l (γ)) = Q. The path γ from P to Q is open if Q �= P . We
begin by showing that an escape path must be open.

Lemma 7. An escape path of Tα has endpoints at least 0.59 apart.

Proof. A well-known theorem of Eggleston [5, p. 157] implies that every
closed curve whose length is at most the circumference of the incircle of a
triangle can be covered by that triangle. The circumference

c(α) =
π
√
1 + 9 tan2 α

3 (1 + secα)

of the incircle of the Besicovitch triangle Tα is strictly increasing on the
range (3), so the smallest value it can take occurs at α0 = arctan(

√
5/3):

c(α) ≥ c(α0) =
π
√

1 + 9 tan2 α0

3 (1 + secα0)
> 1.59.
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If γ is an escape path from Tα whose endpoints are d < 0.59 apart, joining
those endpoints with a line segment gives a closed path whose length is less
than c(α), which consequently fits in the interior of Tα, a contradiction that
proves the result.

3.1. The Λ-property

It will be convenient to write dist(A, t) for the normal distance from a point
A to a line t.

Definition. An open arc γ from P = γ(0) to Q = γ(l(γ)) has the Λ-property
if there are parameter values b, c, and d with 0 ≤ b < c < d ≤ l (γ) and
parallel lines m and n so that, writing B = γ (b) , C = γ (c) , and D = γ (d) ,
(1) B and D lie on m, (2) C lies on n, and (3) the arc γ lies in the closed
infinite strip σ (m,n) between the lines m and n (Figure 4).

It was shown in [3] that every simple, open, polygonal arc has the Λ-
property. Routine limiting arguments extend this result from simple polyg-
onal arcs to arbitrary open arcs:

Theorem 8. Let γ be an open arc of length L, parameterized on arclength.
There are both a direction ϑ0 and a triple (b, c, d) of real numbers b, c, and
d with 0 ≤ b < c < d ≤ L so that the points B = γ(b) and D = γ(d) lie on
one of the two support lines in the direction ϑ0 and the point C = γ(c) lies
on the other (Figure 4). In other words, every open arc has the Λ-property.4

Proof. The claims are trivially correct if γ is a subset of a line, so we suppose
that the minimal width of γ is positive. According to the simple approxi-
mation theorem [9, Th. 14] there is a sequence 〈	n〉∞n=1 of simple polygonal
arcs from P to Q such that for each n = 1, 2, . . . ,

h(	n, γ) <
1

n
,

L− 1

n
< l(	n) ≤ L,

where h(	n, γ) is the Hausdorff distance between the (traces of ) 	n and γ.
According to the proof of Theorem 5.1 of [3, pp. 86–87] there are sequences
of angles ϑn (say in [0, 2π]) and parameter values bn, cn, and dn with 0 ≤
bn < cn < dn ≤ L so that the points Bn = γ(bn) and Dn = γ(dn) lie on one
of the two support lines of 	n and the point Cn = γ(cn) lies on the other.
There is a subsequence of angles that converges to an angle ϑ0 in [0, 2π], call

4This is most likely a known result, but we have not succeeded in locating it in
the literature.
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Figure 4: Λ property.

it again 〈ϑn〉; and by passing to another subsequence if necessary we may
suppose that the support lines mn at angle ϑn converge to a support line
m at angle ϑ0 and the parallel support lines m′

n converge to the support
line m′ parallel to m (say in the topology on lines induced from R

3 by the
association px + qy + r = 0 ←→ (p, q, r)). Now for each positive integer
n, Bn and Dn lie on mn and Cn lies on m′

n, or vice versa; and by passing to
a subsequence if necessary we may suppose that Bn and Dn lie on mn and
Cn lies on m′

n. Similarly we may arrange successively for bn → b, cn → c,
and dn → d, where 0 ≤ b ≤ c ≤ d ≤ L. Then Bn = 	n(bn) → B ∈ m ∩ γ,
Dn = 	n(dn) → D ∈ m ∩ γ, and Cn = 	n(cn) → C ∈ m′ ∩ γ. Finally,
because γ has positive minimal width, neither of the equalities b = c and
c = d can hold; and this completes the argument.

3.2. Tetral arcs

In this section we define a family of at-most four segment polygonal Λ-arcs
in Tα that we need for comparison purposes in the final argument.

Let a and e be distinct points on the base XY of Tα, let b be a point on
the arm XZ of Tα and d a point on the arm Y Z, and let c be a point in Tα

but not on its base. We permit b = a = X, d = e = Y , and c = b or c = d.
It will be convenient to use the following notation: For points x, y, z on an
arc γ we write x ∼ y ∼ z to indicate that y lies strictly between x and z in
the arclength parametrization of γ, and x � y ∼ z to indicate that either
y = x or x ∼ y ∼ z.

Definition. A tetral arc is an at-most four segment polygonal path in
Tα with vertex set {a, b, c, d, e} such that a ∼ c ∼ e and dist(b,XY ) ≤
dist(c,XY ) and dist(d,XY ) ≤ dist(c,XY ).

Note that every tetral arc has the Λ-property.
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3.2.1. Important families of tetral arcs Mirroring the development
in [3], we study three important families of tetral arcs: staples, s-arcs, and
w-arcs. We do not require that tetral arcs be simple.

Staples The staples are the least complicated of the tetral arcs.

Definition. A tetral arc is a staple if its vertices are in the order a � b �
d � e, with c = b or c = d.

Lemma 9. Every staple is longer than 1.

Proof. Suppose π = 〈abde〉 is a staple. Let b′ and d′ be the feet of the
perpendiculars from b and d to the base XY of Tα. Then

l(π) = l(〈abde〉) ≥ l(〈b′bdd′〉) ≥ XY > 1

because α ≥ α0 > 45◦.

Consequently staple arcs are too long to be escape paths.

s-arcs

Definition. A tetral arc is an s-arc if its vertices are in the order a � b �
c ∼ e ∼ d, with d �= Y (or the reverse: b � a � c ∼ e � d and b �= X).

Lemma 10. Every s-arc has length at least one. The Besicovitch arc zα is
an s-arc of length one, and when α > α0 it is the only s-arc of unit length.
When α = α0, there is an additional infinite family of s-arcs of unit length.
The Besicovitch arc zα is the only s-arc that is an escape arc for Tα.

Proof. [3] Let ρ1 and ρ2 be the rays

ρ1: y = 3(bα − x) tanα, y ≥ 0,
ρ2: y = x tan 2α, y ≥ 0,

in the upper half-plane. When α0 < α ≤ 60◦, these rays are divergent, and
their minimum distance is the length of the perpendicular from the origin
to ρ1, viz., 1. When α = α0 the rays ρ1 and ρ2 are parallel and the distance
1 apart.

Let π be an s-arc having vertices a, b, c, d, e in the order a � b � c ∼
e ∼ d; the arguments in the reverse case are similar.

Suppose that X, a, e, Y lie in that order on the base XY (Figure 5);
the argument works as well if the points on the base are in the order X, e,
a, Y . Let a′ be the point on ρ2 symmetric to a in the arm XZ. Let h be
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Figure 5: X ∼ a ∼ e ∼ Y .

Figure 6: Unit s-arcs.

the ordinate of c, and let e′ be the point above e with ordinate 2h. Suppose
d = (x, y), and let d′ be the point with coordinates (x, y + 2h), so that the
figure dd′e′e is a parallelogram. Since y ≤ h, the point d′ lies on or above
the ray ρ1, and it follows that

(4) l(π) = ab+ bc+ ce+ ed = a′b+ bc+ ce′ + e′d′ ≥1 a
′d′ ≥2 1.

For the equality to hold in the first inequality (≥1), the points a
′, b, c, e′,

d′ must fall in that order on the line segment a′d′. If α > α0 and the equality
also holds in the second inequality (≥2), then a′d′ must be the (unique)
unit perpendicular from ρ2 to ρ1, which meets ρ2 at X. Consequently a′ =
a = X = b, and it follows that π = zα. The reverse case is the symmetric
argument.

When α = α0 the rays ρ2 and ρ1 are 1 apart, and the equalities (4)
require that a′ and d′ be the ends of a common perpendicular on ρ2 and ρ1
on which the points a′, b, c, e′, d′ fall in that order. It follows that l(π) = 1
is satisfied by an infinite family of s-arcs that includes zα, pictured in Fig-
ure 6(a) and constructed by folding the unit segment (dashed in Figure 6(a)
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Figure 7: ω-arcs.

by reflections. More precisely, let β0 = arctan(13 cotα0). For each x between
u = 1

2bα0
≈ 0.5164 and w = 2

3 cosβ0 ≈ 0.6455, position a flat “∨” opening
upwards with vertex at x on the base XY, extend the right wing of the ∨
until it reaches the arm Y Z and extend the left wing until its tip has the
same height above the base as the tip of the right wing t. Then follow the
perpendicular t from ρ1 to the left arm XZ of Tα0

and thence down a per-
pendicular to the base XY (Figure 6(a), in which the extreme cases x = u
and x = w are also drawn). Each such path has unit length, and when x = w
it coincides with zα. In every other case the path fits in the interior of Tα

inverted, as is clear in Figure 6(b). The reverse case adds nothing new.
It follows as claimed that the only s-arc that is an escape path is zα.

w- and w∗-arcs

Definition. A tetral arc whose vertices in the order b ∼ a ∼ c ∼ e ∼ d is
a w-arc when dist(b,XY ) + dist(d,XY ) ≤ dist(c,XY ) and a w∗-arc when
dist(b,XY ) + dist(d,XY ) > dist(c,XY ).

We will show that none of these arcs is an escape arc. We begin with
w-arcs.

Lemma 11. Every w-arc has length at least 1. Every w-arc for which
dist(b,XY ) + dist(d,XY ) < dist(c,XY ) is strictly longer than 1.

Proof. Let π = 〈baced〉 be a w-arc. We place a copy T ′
α = X ′Y ′Z ′ of Tα

so that its arm X ′Z ′ just touches the segment ac of π (Figure 7). Suppose
the segment ba of π meets the arm X ′Z ′ at x, and let x′b′ be the reflected
image of xb in the vertical line through S, the point Y Z ∩X ′Z ′. Let d′ be
the point so that the figure dx′b′d′ is a parallelogram. Then d′ lies on Y ′Z ′

and the tetral arc 〈aced′〉 is an s-arc in T ′
α because

dist(d′, X ′Y ′) = dist(d,X ′Y ′) + dist(b′, X ′Y ′)− dist(x′, X ′Y ′)

≤ dist(d,XY ) + dist(b,XY ) ≤ dist(c,XY ).
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Figure 8: zα-convolute.

Then according to Lemma 10,

(5) l(π) = l(〈baced〉) = l〈xacedd′〉 ≥ l(〈aced′〉) ≥ 1.

Thus when dist(b,XY ) + dist(d,XY ) ≤ dist(c,XY ), the w-arc π has
length at least 1; and when dist(b,XY ) + dist(d,XY ) < dist(c,XY ), then
dist(d′, XY ) ≤ dist(c,XY ), and the w-arc π is longer than the s-arc 〈aced′〉,
which is longer than 1.

If π is a w-arc of length 1, Lemma 11 implies that dist(b,XY ) + dist(d,
XY ) = dist(c,XY ), and it follows from (5) that the s-arc 〈aced′〉 has length
1. All such s-arcs are described in Lemma 10, and of those, only zα fits
the geometric requirements of the present situation. When 〈aced′〉 = zα, it
follows (Figure 7) that a = X ′ = x, ac = ce = ed′ = 1

3 , and the generating
angles (∠eac, ∠aec, and ∠Y ′ed′) all equal the angle ∠CAB of zα.

Definition. A zα-convolute is a w-arc for which 〈aced′〉 = zα.

Such arcs are easily constructed. Take any point a onXY whose distance
from X lies between 0 and

bα − 2

3bα
=

1

3

cot2 α+ 3√
cot2 α+ 9

,

and position T ′
α so that X ′ = a (Figure 8). Select points c, e, and f so that

〈acef〉 = zα, let s be the point on Y ′Z ′ so that Y sfd is a parallelogram,
and take b on XZ so that Xb = Y ′s. Then ba = df, and the w-arc 〈baced〉,
which has length one, is a zα-convolute of zα.

None of these convolutes of zα, however, is an escape path, because each
fits in the interior of Tα:

Corollary 12. No zα-convolute other than zα itself is an escape path for
Tα.
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Figure 9: A zα-convolute π.

Figure 10: Proof of Corollary 12.

Proof. We show that the zα-convolute πa = 〈baced〉, inverted, fits in the in-
terior of Tα. To illustrate the argument we employ the vertically-exaggerated
w-arc π in Figure 9. The condition that

dist(b,XY ) + dist(d,XY ) = dist(c,XY )

ensures that the inverted “∨” 〈bcd〉 fits in Tα with b and d on opposite
arms and c on the base (Figure 10), and we adjust the notation as needed
so that cd ≤ bc. Angles ∠cdY and ∠cbX are both obtuse, and a small
counterclockwise rotation of 〈bcd〉 about c moves d to a point d∗ outside Tα

and the point b to a point b∗ inside Tα. Since triangles cbb∗ and cdd∗ are
similar and cd ≤ cb, we see that bb∗ ≥ dd∗. Now reflect triangle cbb∗ through
a line perpendicular to the base XY of Tα, and translate the reflected image
so that the image of b is moved to the point d (Figure 10), b∗ is moved to
a point r, and c to c′. Let s be the point so that d is the midpoint of the
segment d∗s. Then

dr = bb∗ ≥ dd∗ = ds.

Let d′ be the foot of the perpendicular from d to XY . Then the points r
and s are clearly in the interior of ∠d′dY. Now

∠c′dr = ∠cdd∗ < 90◦ < ∠cds ≤ ∠c′ds,

and it follows that r lies in the interior of ∠d′ds. The point r′ on the ray ds at
distance bb∗ from d lies beyond s on that ray. Temporarily write xdist(P,m)
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Figure 11: w∗-arcs.

for the horizontal distance from the point P to the (non-horizontal) line m.
Then

xdist(b∗, XZ) = xdist(r, Y Z) > xdist(r′, Y Z) ≥ xdist(s, Y Z)

= xdist(d∗, Y Z).

Consequently, a small horizontal translation toward X will move 〈b∗cd∗〉 so
that both b∗ and d∗ are inside Tα, and then a small vertical translation
carries the inverted tetral w-arc π into the interior of Tα.

Finally we consider w∗-arcs, i.e., tetrals whose vertices are in the order
b ∼ a ∼ c ∼ e ∼ d and dist(b,XY ) + dist(d,XY ) > dist(c,XY ).

Lemma 13. No w∗-arc is an escape path.

Proof. Let π = 〈baced〉 be a w∗-arc in Tα, and with no loss of generality
suppose

dist(b,XY ) ≤ dist(d,XY ).

Place an inverted copy T ∗
α = X∗Y ∗Z∗ of Tα as pictured in Figure 11, with

its base X∗Y ∗ parallel to XY and with its arm X∗Z∗ touching the segment
ba on the left. Suppose that XZ and X∗Z∗ meet at L, X∗Y ∗ and Y Z at S,
and Y Z and Y ∗Z∗ at R. The point e lies in the interior of T ∗

α or it lies on
or to the right of Y ∗Z∗. In the former case the two possibilities, that X∗Z∗

touches π at b or at a, are illustrated in Figures 11(a) and (b). In (a),

dist(d,XY ) > dist(c,XY )− dist(b,XY ) = dist(R,XY )

so that d lies on the segment RS but not at R. Then a small translation
clearly moves π into the interior of T ∗

α. In (b), if d lies on the segment RS
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(but not at R), then π = 〈baced〉 can be translated into the interior of T ∗
α,

as in (a). Otherwise d lies on the segment RY,

dist(L,XY ) + dist(d,XY ) ≤ dist(R,X∗Y ∗) + dist(R,XY ) = dist(c,XY ),

the arc 〈Laced〉 is a w-arc, and l(〈baced〉 > l(〈Laced〉) ≥ 1 according to
Lemma 11.

Suppose e lies on or to the right of Y ∗Z∗ (Figure 11(c)). If d lies on the
segment RY (but not at R), then irrespective of whether X∗Z∗ touches the
segment ba at b or at a,

l (π) ≥ l(〈Laced〉) > 1.

If d lies on the segment SR, then

l(π) ≥ l(〈Laced〉) ≥ l(〈LaceR〉) > 1.

This disposes of all the possibilities.

3.2.2. The family of all tetrals We consider the family of all tetrals.
To simplify the notation, we write xy to mean that the vertex x precedes the
vertex y in the arclength parametrization of a tetral π. We lose no generality
if we assume that X � a ∼ e � Y and ace. Now, there are 4 places for b,
and, after b is in place, 5 places for d, so there are 20 different tetral arcs
to consider; and every tetral arc is essentially the same as one of those
20 (allowing always for two adjacent vertices to coincide where permitted).
These 20 arcs fall into 7 groups of related arcs that yield to similar analyses.
Reflecting a tetral arc π through the altitude of Tα from Z (and rearranging
the labels as necessary) transforms π into its reverse, and interchanging b
and d in π gives its swap, whose reverse is its inverse. For example, these
arcs are illustrated in Figure 12 for the tetral arc π = 〈bdace〉. For tetral
arcs other than staples, w-arcs, and w∗-arcs these four arcs are generally
different.

Table 1 gives the 20 tetral arcs assembled in related groups. An exami-
nation of the distinct tetral arcs in this table shows that all 20 possibilities
are present, including both w-arcs and w∗-arcs.

Lemma 14. The only tetral arc in Tα that is an escape arc for Tα is zα.

Proof. Note that the tetral arcs #7 are staples and are longer then 1 by
Lemma 9. Arcs #3 are s-arcs and are fully described in Lemma 10; all have
length at least 1, and among them there is exactly one (up to congruence)
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Figure 12: The four related tetral arcs.

Table 1: The 7 essential tetral arcs and their related arcs

Tetral arc Reverse Swap Inverse
1. bdace acebd dbace acedb longer than a staple.
2. badce acbed dabce acdeb longer than an s-arc.
3. bacde abced dacbe adceb s-arc.
4. baced† – daceb† – w-arc.
5. baced‡ – daceb‡ – w∗-arc.
6. abdce acbde adbce acdbe longer than a staple.
7. abcde – adcbe – staple.

†together with: dist(b,XY ) + dist(d,XY ) ≤ dist(c,XY ).
‡together with: dist(b,XY ) + dist(d,XY ) > dist(c,XY ).

that is an escape arc, zα. Arcs #4 are w-arcs, and their behavior is fully
described in Lemma 11; all have length at least one, and none is an escape
arc. Arcs #5 are w∗-arcs, and their behavior is described in Lemma 13. Only
the groups of arcs listed in #1, #2, and #6 remain to be examined.

Arcs #1. Let π = 〈bdace〉 (Figure 12). Let b′ and d′ be the feet of the
perpendiculars from b and d to XY, respectively. Then b′b ≤ ca and
d′d ≤ ce, so

l(π) = bd+ da+ ac+ ce > b′b+ bd+ dd′ = l(〈b′bdd′〉 > 1,

because 〈b′bdd′〉 is a staple. The other arcs of the group are similar.
Arcs #2. Let π = 〈badce〉. Then

l(π) = ba+ ad+ dc+ ce

>1 ba+ ac+ cd+ de = l (〈edcab〉) ≥2 1.

The first inequality (>1) follows from ad+ ce > ac+ de, an inequality
that holds for every convex quadrilateral acde. The last inequality
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(≥2) follows because 〈bacde〉 (Arc #3) is an s-arc. The other arcs of
the group are similar.

Arcs #6. Let π = 〈abdce〉. Define b′ and d′ as for Arcs #1. Then ab ≥ bb′

and dc+ ce ≥ de ≥ dd′, we see that

l(π) = ab+ bd+ dc+ ce ≥ b′b+ bd+ dd′ = l
(
〈b′bdd′〉

)
> 1

because 〈b′bdd′〉 is a staple. The other arcs of the group are similar.

This completes the argument.

We have shown that there is exactly one tetral arc in Tα that is an escape
path for Tα, and it is zα.

4. The escape path

Finally, we arrive at our principal result.

Theorem 15. The Besicovitch arc zα is the only escape path from a Besi-
covitch triangle Tα.

Proof. The escape length ε(Tα) is 1, and no exit path is shorter. Since the
escape paths we seek lie in Tα, they have unit length, and their endpoints
are at least 0.59 apart, we lose no generality by restricting our attention to
exit paths having these properties. Let γ be such an exit path, with initial
endpoint P and terminal endpoint Q. According to Theorem 8, γ lies in an
infinite strip σ(m,n) of width h, 0 < h ≤ 1

2 , with two distinct points on
m and a third point between them on n. We picture the containing strip
σ(m,n) as horizontal, and we arrange for the initial point of γ to lie to the
left of the terminal point.

Place a triangle Tα = XY Z with its base XY along m, its apex Z on
the same side of m as γ, and its arm XZ a support line of γ (Figure 13).
Then γ lies in σ(m,n) ∩∠Y XZ, and if γ does not meet the arm Y Z of Tα,
then a suitable small translation would move it into the interior of Tα, a
contradition.

Now, γ has two distinct points a and e on the base XY, a point b on
the arm XZ, a point d on the arm Y Z, and a point c on the line n that lies
between a and e in the parametric ordering of γ. Let πγ be the tetral arc
that connects the five significant points a, b, c, d, e in the same order as
they lie on γ (Figure 13). Then πγ is inscribed in γ, and

1 = l(γ) ≥ l(πγ) ≥ 1
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Figure 13: The argument.

since γ has length 1 and πγ is inscribed in γ. Thus γ must coincide with πγ .
But by Lemma 14, among the tetral arcs there is only one escape arc, viz.,
zα.

In [12] one of us has extended the results presented here to isosceles
triangles with base angle α in the range 45◦ ≤ α < α0, including the de-
termination of the shortest base for which such a triangle is a cover for the
family C1 of all unit arcs. In particular, this provides an affirmative answer
to the conjecture in [17, p. 359] that an isosceles right triangle with base√

10/9 is a cover for C1. It follows from arguments similar to those pre-
sented here that each such triangle has a unique escape path analogous to
the Besicovitch path zα.

Determining the escape paths for more general triangles seems to be
quite a difficult geometric problem.
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