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Independence and chromatic densities of graphs
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We consider graph densities in countably infinite graphs. The in-

dependence density of a finite graph G of order n is its proportion

of independent sets to all subsets of vertices, while the chromatic

density is its proportion of proper n-colourings to all mappings

from vertices of G to {1, 2, . . . , n}. For both densities, we extend

their definition to countable graphs via limits of chains of finite

graphs. We show that independence densities exist for all chains,

and are unique regardless of which limiting chain is used. We prove

that independence densities are always rational; in fact, we prove

the stronger fact that the closure of the set of possible values is

contained in the rationals. In contrast, we show that the infinite

random graph contains chains realizing all real numbers in [0, 1] as

a chromatic density.

Keywords and phrases: Infinite graph, independent sets, graph colour-

ing, graph density, infinite random graph.

1. Introduction

An approach to generalizing certain finite graph parameters to infinite graphs

is to consider graph densities. Broadly speaking, graph densities are normal-

ized ratios of certain graph parameters. A well-known example is the edge

density, or proportion of edges in a graph to all two-element sets of ver-

tices. For an infinite graph, define its upper density as the infimum of all

reals α such that the finite subgraphs with edge density greater than α have

bounded order. As a corollary of the Erdős-Stone theorem from extremal

graph theory (see, for example, [9]), the upper density of a graph is a super-

particular number ; that is, a number in the set

{1− 1/n : n ≥ 1} ∪ {1}.
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Other graph densities include homomorphism density [13], cop density [3]

and limiting survival rates in firefighter games [4, 16].

A countably infinite graph G may be expressed as the limit of a chain of

finite graphs. Suppose we are given a sequence of finite induced subgraphs

C = (Gn : n ≥ 0) of G with the properties that Gn is an induced subgraph

of Gn+1, and

V (G) =

∞⋃
n=0

V (Gn).

We write limn→∞Gn = G, and say that G is the limit of the chain C. As

we will see, limits are powerful tools for proving density results for infinite

graphs.

For a non-negative parameter ρ defined for finite graphs, it is natural to

extend the definition of ρ to countable graphs by continuity :

ρ
(
lim
n→∞

Gn

)
= lim

n→∞
ρ(Gn).

If the limit graph is a finite graph, then the chain is eventually constant,

and the limit exists. However, in the infinite case, limits may either depend

on the chain used, fail to exist, or be infinite. We only consider cases where

the limit exists; further, we consider parameters where ρ(Gn) is bounded.

As with edge densities, we first normalize the parameter ρ (in some way) so

that its value is in the interval [0, 1].

We consider two examples of such parameters in the present work: the

independence and chromatic densities. The independence density of a finite

graph G of order n is its proportion of independent sets to all subsets of ver-

tices, while the chromatic density is its proportion of proper n-colourings to

all mappings from V (G) to {1, 2, . . . , n}. We show in Theorem 2.2 that inde-

pendence densities exist for all chains, and that independence densities are

unique regardless of which limiting chain is used. We prove in Theorem 2.4

the surprising result that independence densities are always rational; in fact,

we prove a stronger result that the closure of the set of possible values is

contained in the rationals. In contrast to these results the main result of

Section 3 is Theorem 3.1, where we show that by choosing different chains

the infinite random graph realizes all real numbers in [0, 1] as a chromatic

density.

Throughout, all graphs we consider are undirected, simple, and count-

able (that is, either finite or countably infinite). As we only discuss countably

infinite sets, we refer to the cardinality of an infinite set by ∞.
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2. Independence density

Let I(G) denote the set of independent sets of a graph G (including the
empty set), and let i(G) = |I(G)|. Several authors have studied the number
of independent sets in graphs arising from various families (see, for exam-
ple, [11, 12, 14, 18]). The parameter i(G) is sometimes called the Fibonacci
number of a graph [15], since i(Pn) = F (n + 2), where Pn is the path with
n vertices and F (m) is the mth Fibonacci number. We note in passing that
i(G) is the evaluation of the independence polynomial of G at the value 1;
see [6, 7, 8] for more on the independence polynomial. If G is a graph of
order n, then we have the tight bounds

n+ 1 ≤ i(G) ≤ 2n.

As is well-known (see [15]), if G is a spanning subgraph of H, then

(2.1) i(H) ≤ i(G),

and if G ∪H is the disjoint union of G and H, then

(2.2) i(G ∪H) = i(G)i(H).

We define the independence density of graph G of order n to be

id(G) =
i(G)

2n
.

Note that id(G) is a rational in (0, 1]. We may view id(G) as the probability
of choosing an independent set (uniformly at random) from all subsets of
V (G). The following lemma follows from (2.1) and (2.2).

Lemma 2.1. Let G and H be finite graphs.

(1) If G is a subgraph of H, then id(H) ≤ id(G).
(2) If G and H are vertex disjoint graphs, then id(G ∪H) = id(G)id(H).

Given a chain C = (Gn : n ≥ 0) whose limit is G, we define the indepen-
dence density of G relative to C by

id(G, C) = lim
n→∞

id(Gn)

(assuming the limit exists, which we will show in Theorem 2.2). An immedi-
ate but important consequence of Lemma 2.1 is that independence densities
relative to chains always exist and are independent of the chain used.
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Theorem 2.2. Let G be a countable graph.

(1) For all chains C with limit G, id(G, C) exists.
(2) Let C = (Gn : n ≥ 0) and C′ = (Hn : n ≥ 0) be two chains with the

same limit graph G. Then

id(G, C) = id(G, C′).

Proof. Item (1) follows from Lemma 2.1(1), as the independence densities
of a chain form a non-increasing, bounded set in [0, 1]. For (2), fix ε > 0 a
real number. Let I = id(G, C) and I ′ = id(G, C′). There is an n ≥ 0 such
that id(Gn) ≤ I + ε. We have that Gn is an induced subgraph of Hk for
some k ≥ 0. This implies that

I ′ ≤ id(Hk) ≤ id(Gn) ≤ I + ε.

By symmetry, I ≤ I ′ + ε.

Theorem 2.2 simplifies the theory of independence densities considerably,
since we may work with any chain and arrive at the same limit. Hence, we
drop reference to chains, and simply refer to the independence density of G,
written id(G).

The independence densities of the infinite complete and empty graphs
are 0 and 1, respectively. For a ray (that is, a one-way infinite path), the
independence density is 0 as F (n+2)/2n goes to zero. The infinite star K1,∞
is the limit of the chain of finite stars K1,n, which has independence density

(2n + 1)/2n+1 = 1/2 + 2−n−1.

Hence, id(K1,∞) = 1/2.
We emphasize that independence densities are insensitive to adding in-

dependent sets to the graph. Further, graphs which appear considerably
sparser than each other can have the same independence density: for this,
consider a countably infinite complete graph and the graph formed by taking
the disjoint union of countably many edges.

Nevertheless, we think independence densities have interesting proper-
ties, as our next result demonstrates. Our main result considers the pos-
sible values for independence densities. In a non-empty finite graph G, by
Lemma 2.1(1) we have that

id(G) ≤ id(K2) =
3

4
,
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so there are no real numbers in (3/4, 1) that are independence densities.
Other such gaps exist by considering graphs with at most n edges, where
n ≥ 2.

Define

S = {id(G) : G is a countable graph},

and

S′ = {id(G) : G is a finite graph}.

Then S′ ⊆ S, 0 ∈ S \ S′, and by Lemma 2.1 and the continuity of limits, S
forms a monoid with 0 with multiplication defined by

id(G)id(H) = id(G ∪H).

The closures (in the usual topology of R) of S and S′, written S and S′,
respectively are equal. (To see this, suppose that G is an infinite graph. Then
for all ε > 0 there is a finite induced subgraph H of G with |id(H)−id(G)| <
ε.)

A graph G containing an infinite matching has id(G) = 0. In fact, the
size of a maximum matching plays an important (albeit unexpected) role
for independence densities. The matching number of G, written μ(G) (also
sometimes called α1(G)), is the cardinality of a maximum matching in G. If
there is an infinite matching in G, then we write μ(G) = ∞.

Theorem 2.3. For a countable graph G, if id(G) > 0, then μ(G) < ∞, and

(μ(G) + 1)2−2μ(G) ≤ id(G) ≤
(
3

4

)μ(G)

.

In particular, id(G) = 0 if and only if μ(G) = ∞.

Proof. The upper bound follows by noting that by Lemma 2.1(1) that id(G)
is maximized in the case G consists of a disjoint union of μ(G) edges. For
the lower bound, define A to be the set of 2μ(G) = 2m vertices in a fixed
maximum matching M with m edges, and B = V (G)\A. Observe that
B is an independent set. Let (Gn : n ≥ 0) be a chain with G0 as the
subgraph induced by A, and suppose that Gn has N vertices. Considering
vertices in B ∩ V (Gn) supplies (2N−2m)-many independent sets. For each
edge of our fixed matching, we show that there are (2N−2m)-many additional
independent sets. This will give us (m+1)2N−2μ(G) independent sets in total,
proving the lower bound.
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Fix an edge e = uv of M . If e has an endpoint with no neighbours
in B, then that endpoint can be combined with any subset of B, forming
(2N−2m)-many independent sets. Otherwise, both u and v have at least one
neighbour in B. If the endpoints had different neighbours, then a larger
matching could be formed, so the endpoints must have a unique common
neighbour w and no other neighbours. We can form an independent set by
combining either endpoint with any subset of B\{w}, supplying the desired
2N−2m independent sets.

Our main result of this section is the following theorem, which shows
that the closure of the set of independence densities is contained in the
rationals.

Theorem 2.4. For any fixed irrational q, there exists ε = ε(q) > 0 such
that |q − x| ≥ ε for all x ∈ S, and so S ⊆ Q ∩ [0, 1].

The following corollary follows immediately from Theorem 2.4.

Corollary 2.5. The independence density of a graph is rational.

Before we move to the proof of Theorem 2.4, we need one more lemma.
For a finite graph G, define F (G) to be the family of graphs (not necessarily
finite) consisting of G and an independent countable set of vertices (which
may be joined to vertices in G). A graph H ∈ F (G) is called a G-flower
or flower. We first show the following key observation that independence
densities of G-flowers are bounded away from any irrational number.

Lemma 2.6. For any irrational q ∈ (0, 1) and any finite graph G, there
exists ε = ε(q,G) > 0 such that |q − id(H)| ≥ ε for all H ∈ F (G).

Proof. Fix a graph H ∈ F (G). For each subset S of V (G), let xS be the
number of vertices in V (H) \ V (G) that are joined to every vertex of S
and no vertex in V (G) \ S. Hence, we partition the set of vertices outside
of G into (2|V (G)|)-many classes, with membership in a class determined by
their adjacency to vertices of G. Thus, we may represent H ∈ F (G) by the
vector xH with (2|V (G)|)-many coordinates. (For example, K1,n ∈ F (K1) has
a representation of (n, 0).) The number of independent sets of H is

∑
I∈I(G)

2
∑

{S⊆V (G):S∩I=∅} xS .

Hence,

id(H) =

∑
I∈I(G) 2

−
∑

{S⊆V (G):S∩I �=∅} xS

2|V (G)| .
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If xS = ∞ (that is, in the case there are infinitely many vertices joined to S

and no vertex outside S) then we remove all terms in the (outermost) sum

involving xS .

For H with vector xH for which id(H) > q, then we have two possible

situations.

(1) One coordinate of xH may be increased and the resulting independence

density is at least q.

(2) No coordinate can be increased (perhaps some of them are already ∞)

without the resulting independence density becoming smaller than q.

We call such vectors saturated.

Dually, if we have a vector xH for which id(H) is smaller than q, we can

have two possible situations.

(1) Some finite coordinate may be decreased (perhaps to 0) and the re-

sulting independence density is at most q.

(2) Decreasing any finite coordinate yields an independence density greater

than q. We call such vectors minimal.

In the case that id(H) > q where its corresponding vector is not sat-

urated, we can increase the coordinates of xH , keeping the independence

density above q, until we reach a graph corresponding to a saturated vector

(this vector may have all coordinates equal to ∞, but is still saturated by

definition). Since for any saturated or minimal vector we obtain a positive

rational value for id(H), it is enough to show that the number of such vectors

is finite. If this is indeed the case, then we may define

ε(q,G) = min {|q − id(H)|} > 0,

where the minimum is taken over all graphs that can be represented as a

saturated or minimal vector. (If the number of such vectors is not finite,

then the minimum becomes an infimum and it is possible that ε(q,G) = 0,

which implies that we can get as close to q as we want.)

We now show there are only finitely many saturated or minimal vec-

tors. We first consider saturated vectors. Since there are a finite number of

possibilities to place infinities in any saturated vector (exactly 22
|V (G)|

), we

may fix these positions arbitrarily in advance, and show that the number

of vectors of this type is finite. For a contradiction, suppose that for some

configuration of infinities, there is an infinite number of saturated vectors.

We need to focus on finite coordinates only, so let us rearrange coordinates
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of our saturated vectors as follows: vector Vk has the following form:

Vk = (x1k, x
2
k, . . . , x

l
k,∞,∞, . . . ,∞),

where xik are finite nonnegative integers. Since we have an infinite family

of vectors, there must be at least one coordinate xik (for some 1 ≤ i ≤ l)

that is not bounded. Without loss of generality, we can assume that there

is a sequence of vectors (V 1
k )

∞
k=1 such that x1k+1 > x1k for k ≥ 1. Since

we restrict ourselves to saturated vectors, no two vectors can be different on

the first coordinate only. This implies that there are infinitely many different

configurations (x2k, x
3
k, . . . , x

l
k) that we encounter in the sequence (V 1

k )
∞
k=1,

so at least one more coordinate xik is not bounded (for some 2 ≤ i ≤ l).

Without loss of generality, we suppose that x2k is not bounded and so there

exists a subsequence (V 2
k )

∞
k=1 of (V 1

k )
∞
k=1 such that xik+1 > xik for k ≥ 1

and i ∈ {1, 2}. Using the fact that no saturated vector can be obtained by

increasing some coordinates of some other saturated vector, we may continue

constructing subsequences to show the existence of a sequence of saturated

vectors (V l
k)

∞
k=1 such that xik+1 > xik for k ≥ 1 and i ∈ {1, 2, . . . , l}. As V l

2 is

saturated it follows that V l
1 is not (one cannot increase l coordinates of V l

1

to get another saturated vector), which gives a contradiction.

The proof that for a given q and G, there are finitely many minimal vec-

tors is symmetric and thus, is omitted. (For that, one can use the symmetry

that no minimal vector can be obtained by decreasing some coordinates of

some other minimal vector.)

Proof of Theorem 2.4. Fix an irrational q ∈ [0, 1]. It follows from Lemma 2.6

that for every finite graph G, there exists ε = ε(q,G) > 0 such that |q −
id(H)| ≥ ε for any H ∈ F (G). However, there might be a sequence of graphs

(Gi)i∈N such that ε(q,Gi) tends to zero as i goes to infinity. We will show

that this is impossible which finishes the proof of the theorem.

Suppose G is a graph with id(G) close to q; without loss of generality,

assume that id(G) > 0. Recall that by Theorem 2.3, id(G) ≤ (3/4)μ(G).

Hence, if we want to be close to q, we cannot have μ(G) ≥ kq, where

kq =

⌈
log q

log(3/4)

⌉
+ 1.

Therefore, to be close to q we need to have some graph G of order at most

2kq as a subgraph and all other vertices are attached to G. (If there is a
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vertex with distance at least two from G, then G has a larger matching.

Similarly, if there is another connected component, we can increase the size

of the matching. Isolated vertices in G may be removed without changing

the independence density.) Since we have a finite number of graphs on at

most 2kq vertices, we define

ε(q) = min{ε(q,G)}

where the minimum is taken over all G with at most 2kq vertices.

An interesting problem is whether S − S′ = {0}. One approach to this

problem is to classify the independence number of countable graphs with a

given finite matching number. We completed this classification in the case

μ(G) is 1 or 2; in each case, the independence numbers for all countable

graphs correspond to those for finite graphs. For example, if μ(G) = 1,

then

id(G) ∈ {2−1 + 2−A : A ≥ 2} ∪ {2−1}.

A tedious (and so omitted) case analysis shows that if μ(G) = 2, then

id(G) ∈ T1 ∪ T2 ∪ T3 ∪ T4, where

T1 ={1/4, 3/16, 7/32},
T2 ={2−2 + 2−A : A ≥ 3},
T3 ={2−2 + 2−A + 2−B : 3 ≤ A ≤ B},

and

T4 = {2−2 + 2−A + 2−B + 2−C : 3 ≤ A ≤ B ≤ C ≤ A+B − 2}.

We note that existence and uniqueness of independence density for infi-

nite graphs generalizes to many other graph parameters. A class X of graphs

closed under isomorphism is hereditary if it is closed under taking induced

subgraphs. For example, the class of independent sets, the class of cliques,

k-colourable graphs with k ≥ 2 fixed, perfect graphs, or H-free graphs with

H a fixed graph are all hereditary. For X a hereditary class of graphs, de-

fine Xd(G) to be the proportion of subsets which induce a graph in X, and

extend this definition to countable graphs via chains. It is not hard to see

that Xd(G) exists and is unique for all countable graphs. We will consider

the Xd(G) parameters for various classes in the sequel.
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3. Chromatic densities

We now consider the chromatic density of a graph. For a finite graph G of
order n, let c(G, x) denote the chromatic polynomial (or chromial) of G,
and consider c(G,n) the number of proper n–colourings of G. It is evident
that c(G,n) ≤ nn with equality if and only if G has no edges. We define the
chromatic density of G by

cd(G) =
c(G,n)

nn
.

The parameter cd(G) may be viewed as the probability that a random map-
ping from V (G) to {1, 2, . . . , n} is a proper n-colouring (which is a special
case of homomorphism density; see [13]).

Given a chain of finite graphs C = (Gn : n ≥ 0) with limit G, we
define the chromatic density of G relative to the chain C, written cd(G, C),
to be limn→∞ cd(Gn), assuming the limit exists. Other notions of limits of
chromials (unrelated to our definition) were studied in [1, 17].

Regardless of the chain used, the infinite complete graph and its com-
plement, have chromatic densities 0 and 1, respectively. A tree of order n
has n(n−1)n−1 many proper n-colourings, and hence, has chromatic density(
n−1
n

)n−1
. If we consider a chain C of trees Tn of order n with limit T, then

cd(T, C) = lim
n→∞

(
n− 1

n

)n−1

=
1

e

(and hence, cd(T, C) is irrational). Similarly, the limit of a chain of k-trees
(see [5] for a definition) has chromatic density (1/e)k. However, other chains
in a tree may have different limits. For example, index the vertices of the
ray by the natural numbers, and define Gn inductively as follows. Let G0 be
the subgraph induced by {0}. Assume that Gn is defined, finite, and V (Gn)
contains {0, 1, . . . , n}. Define Gn+1 to consist of the smallest order path in
the ray containing V (Gn)∪{n+1}, along with 2|V (Gn)|-many isolated nodes
(chosen from vertices with an index greater than n+3). Then the ray is the
limit of (Gn : n ≥ 0) and has chromatic density 1 relative to this chain.

Define the probability space G(N, p) to be graphs whose vertex set is
the set of all positive integers, and each distinct pair of integers is joined
independently with probability p ∈ (0, 1). We will call this space the infinite
random graph. Erdős and Rényi [10] discovered the following theorem.

Theorem 3.1. For p ∈ (0, 1), with probability 1 the graph G(N, p) is unique
up to isomorphism.
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Define a graph to be existentially closed or e.c. if all finite disjoint sets of
vertices A and B (one of which may be empty), there is a vertex z joined to
all of A and to no vertex of B. The proof of Theorem 3.1 follows by proving
that with probability 1, G(N, p) is e.c., and then proving that any two e.c.
graphs are isomorphic. For more on e.c. graphs, see [2, 9].

The unique isomorphism type of the infinite random graph is written
R. We exploit the following explicit representation of R as a limit graph.
For a graph G, for each non-empty subset S of V (G), add a new vertex
joined to S and to no other vertices. The resulting graph contains G as an
induced subgraph. We may iterate this process, to form a chain of graphs
(Gn : n ≥ 0) whose limit is e.c., and so is isomorphic to R. (Choose n large
enough such that Gn contains both A and B. A vertex joined to A and not
B may be found in Gn+1.)

Our main theorem of this final section demonstrates that chromatic den-
sity depends heavily on the chain used. Unlike the results from Theorem 2.4,
R realizes all real numbers in [0, 1] as a chromatic density.

Theorem 3.2. For all r ∈ [0, 1], there is a chain Cr = (Rn : n ≥ 0) of finite
graphs whose limit is R, with cd(R, Cr) = r.

In order to prove the result, we first prove a sequence of three lemmas.
A vertex is universal if it is joined to all others.

Lemma 3.3. Given a graph G of order n, let G+ be the graph formed by
adding a universal vertex to G. If cd(G) = x, then

cd(G+) = (1 +O(1/n))(x/e).

Proof. We have that

cd(G+) =
(n+ 1)c(G,n)

(n+ 1)n+1

=
c(G,n)

nn
(1 + 1/n)−n

= x exp
(
1/n+O(1/n2)

)−n

= (x/e) exp (−O(1/n))

= (1 +O(1/n))(x/e).

In particular, by adding k universal vertices in succession, we divide the
chromatic density by a factor of ek (with vanishing error term). Hence, we
can make the chromatic density as close to 0 as we like.
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Lemma 3.4. Form G(−m) by adding an independent set of cardinality m
to a finite graph G of order n. If m 	 n (with both m and n tending to
infinity), then cd(G(−m)) = 1 + o(1).

Proof. We have that

cd(G(−m)) =
(m+ n)mc(G(−m), n+m)

(n+m)n+m

≥ c(Kn, n+m)

(m+ n)n

=
(m+ n)!/m!

(m+ n)n
.(3.1)

Using Stirling’s formula (that is, n! = (1+ o(1))
√
2πn

(
n
e

)n
) twice, (3.1)

is asymptotically equal to

(√
1 + n/m

)
e−n

(
m+ n

m

)m

= (1 + o(1))e−n
(
1 +

n

m

)m
,

which in turn is asymptotically equal to 1.

Lemma 3.5. Adding one edge e = uv to a finite graph G of order n does
not change the chromatic density by more than 1/n.

Proof. By the deletion-contraction rule for the chromial,

∣∣∣∣c(G,n)

nn
− c(G+ uv, n)

nn

∣∣∣∣ = c(G/uv, n)

nn

≤ nn−1

nn

=
1

n
.

Proof of Theorem 3.2. Fix r ∈ [0, 1). Let R0 = K1, and assume Rn is defined
for n ≥ 0. First, for each subset S of vertices of Rn add a vertex xS joined
only to the vertices of S; call the resulting graph Gn. Doing this for all S and
for all n will ensure that the resulting limit graph is e.c., and so is isomorphic
to R. We note that the graph Gn is an auxiliary step in the construction of
Rn+1.

Now cd(Gn) = y for some rational y in (0, 1]. The idea for the remainder
of the proof is to add an independent set to Gn yielding a graph with chro-
matic density above r, and then add edges to bring the chromatic density to
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within distance 1/n of r. Now, first form Gn(−m) from Gn for some large m
so that cd(Gn(−m)) ≥ r (using Lemma 3.4). By Lemma 3.5 adding an edge
to Gn(−m) decreases the chromatic density by at most 1/n (in fact, since
n < |V (Gn)|, the chromatic density decreases by at most 1/|V (Gn)| < 1/n).
Lemma 3.3 implies that adding all edges will decrease the chromatic density
by dividing by em, which we may make as close to 0 as we like by mak-
ing m large enough. Hence, we may obtain a graph Rn+1 by adding some
(deterministic but unspecified) number of edges to Gn(−m) so that

|cd(Rn+1)− r| ≤ 1/n.

The limit of the chain Cr = (Rn : n ≥ 1) is e.c. as we already made all
extensions of Rn in the graph Gn, and Rn is an induced subgraph of Rn+1.
Hence, the limit of the chain is indeed the infinite random graph R and
cd(R, Cr) = r.

In the case r = 1, proceed similarly as before. However, to form Rn+1 in
this case, take m sufficiently large that cd(Gn(−m)) > 1− 1/n.
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[10] P. Erdős, A. Rényi, Asymmetric graphs, Acta Mathematica Academiae

Scientiarum Hungaricae 14 (1963) 295–315. MR0156334
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