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A poset is said to be (2+ 2)-free if it does not contain an induced
subposet that is isomorphic to 2+ 2, the union of two disjoint
2-element chains. Two elements in a poset are indistinguishable
if they have the same strict up-set and the same strict down-set.
Being indistinguishable defines an equivalence relation on the ele-
ments of the poset. We introduce the statistic maxindist, the max-
imum size of a set of indistinguishable elements. We show that,
under a bijection of Bousquet-Mélou et al. [1], indistinguishable
elements correspond to letters that belong to the same run in the
so-called ascent sequence corresponding to the poset. We derive
the generating function for the number of (2+ 2)-free posets with
respect to both maxindist and the number of different strict down-
sets of elements in the poset. Moreover, we show that (2+ 2)-free
posets P with maxindist(P ) at most k are in bijection with upper
triangular matrices of nonnegative integers not exceeding k, where
each row and each column contains a nonzero entry. (Here we con-
sider isomorphic posets to be equal.) In particular, (2+ 2)-free
posets P on n elements with maxindist(P ) = 1 correspond to up-
per triangular binary matrices where each row and column contains
a nonzero entry, and whose entries sum to n. We derive a generat-
ing function counting such matrices, which confirms a conjecture
of Jovovic [8], and we refine the generating function to count upper
triangular matrices consisting of nonnegative integers not exceed-
ing k and having a nonzero entry in each row and column. That
refined generating function also enumerates (2+ 2)-free posets ac-
cording to maxindist. Finally, we link our enumerative results to
certain restricted permutations and matrices.
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1. Introduction

This paper continues the study of enumerative properties of three distinct
equinumerous classes of combinatorial objects, namely, (2+ 2)-free posets
(also known as interval orders, see Fishburn [5]), ascent sequences, and upper
triangular matrices with nonnegative integer entries and where each row
and column contains a nonzero entry. We build on the work of Bousquet-
Mélou et al. [1], who presented a bijection between (2+ 2)-free posets and
ascent sequences, and that of Dukes and Parviainen [3], who gave a bijection
between ascent sequences and upper triangular matrices with nonnegative
integer entries and no rows or columns of all zeros.

It is important to note that, as in [1], we consider, and count, (2+ 2)-free
posets up to isomorphism. That is, we consider two such posets to be equal if
there is an order preserving bijection between them. In [1] the isomorphism
classes are referred to as “unlabeled posets”.

The central result of this paper is the determination of the generating
function for the number of ascent sequences of length n with k pairs of
consecutive elements that are equal. We call an ascent sequence with no two
consecutive equal entries a primitive ascent sequence. A special case gives
the generating function for the number of primitive ascent sequences. We
show that under the bijections mentioned above, primitive ascent sequences
correspond to primitive (2+ 2)-free posets, defined by having no pair of
elements with the same strict down-sets and the same strict up-sets, and
also to upper triangular binary matrices with no rows or columns of zeros.
This allows us to prove a conjecture of Jovovic [8] which states that the
generating function for the number of upper triangular binary matrices with
no rows or columns of zeros is given by

(1) K(t) =
∑
n≥0

n∏
i=1

(
1− 1

(1 + t)i

)
.

In order to state our results more precisely, we now introduce the three
main classes of combinatorial structures treated in the paper, namely, ascent
sequences, (2+ 2)-free posets, and upper triangular matrices with nonneg-
ative integer entries and no rows or columns of all zeros.

1.1. Ascent sequences

An ascent in an integer sequence (x1, . . . , xi), is a j such that xj < xj+1.
The number of ascents in such a sequence X is denoted asc(X).
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A sequence (x1, . . . , xn) ∈ N
n is an ascent sequence of length n if and

only if it satisfies x1 = 0 and

0 ≤ xi ≤ 1 + asc(x1, . . . , xi−1)

whenever 2 ≤ i ≤ n.
Let Ascn be the collection of ascent sequences of length n and let Asc be

the collection of all ascent sequences, including the empty ascent sequence.
If a ∈ Ascn then we will write |a| = n. For example, (0, 1, 0, 2, 3, 1, 0, 0, 2) is
an ascent sequence in Asc9.

A run in an ascent sequence is a maximal subsequence of consecutive
letters that are all equal. Let Asc(k) be the collection of ascent sequences

whose runs have length at most k, and let Asc
(k)
n be those a ∈ Asc(k) that

have |a| = n. A primitive ascent sequence is an ascent sequence with no

runs of length greater than 1. Thus, Asc
(1)
n is the set of all primitive ascent

sequences.
Given a = (a1, . . . , an) ∈ Ascn, we call a pair (ai, ai+1) with ai = ai+1

an equal pair of the sequence1. We denote the number of equal pairs in a
sequence a by epairs(a). For example epairs(0, 0, 0, 0, 0, 1, 1, 2, 1, 1) = 6 since
(a1, a2) = (a2, a3) = (a3, a4) = (a4, a5) = (0, 0) and (a6, a7) = (a9, a10) =
(1, 1).

1.2. (2 + 2)-free posets

Recall that we consider two posets to be equal if they are isomorphic. A
poset is said to be (2+ 2)-free if it does not contain an induced subposet
that is isomorphic to 2+ 2, the union of two disjoint 2-element chains. We
let P denote the set of (2+ 2)-free posets (including the empty poset) and
Pn the set of all such posets on n elements. For P ∈ P, let |P | be the number
of elements in P .

An important characterization (see [5, 6, 11]) says that a poset is (2+ 2)-
free if and only if its strict down-sets can be ordered linearly by inclusion.
For a poset P = (P,≺p) and x ∈ P , the strict down-set of x, denoted D(x),
is the set of all y ∈ P such that y ≺p x. Clearly, any poset is uniquely
specified by listing the collection of strict down-sets of each element. The
trivial down-set is the empty set. Thus if P is a (2+ 2)-free poset, we can
write D(P ) = {D(x) : x ∈ P} as

D(P ) = (D0, D1, . . . , Dk)

1This is sometimes called a level in the literature on sequences, not to be confused
with the definition of level in the present paper.
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where ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk. We then say that x ∈ P is at level i if
D(x) = Di = Di(P ) and write �(x) = i. We also define levels(P ) by setting
levels(P ) = k, where k is the index of the highest level in P .

We denote by Li(P ) = {x ∈ P : �(x) = i } the set of all elements at
level i and we set

L(P ) =
(
L0(P ), L1(P ), . . . , Llevels(P )(P )

)
.

Let mP be a maximal element of P whose strict down-set is the smallest of
the strict down-sets of P ’s elements. This element may not be unique but
all such elements belong to the same level. We define minmax(P ) by setting
minmax(P ) = �(mP ). The maximal elements of P are P\Dlevels(P )(P ). Thus
minmax(P ) = min{�(x) : x ∈ P\Dlevels(P )(P )}.

As a counterpart to the strict down-set D(x) of an element x in a poset,
we let U(x) denote the strict up-set of x, that is, U(x) = { y : x ≺p y }.
Given P ∈ Pn, we say that two elements x, y ∈ P are indistinguishable if
D(x) = D(y) and U(x) = U(y). We write this as x ∼P y and note that ∼P

is an equivalence relation on P . Let us define maxindist(P ) to be the size of
the largest equivalence class in P .

For example, the elements c and d in the poset of Example 1 below, as
well as the elements 2 and 3 in the poset of Example 3, are indistinguish-
able. We say that a (2+ 2)-free poset is primitive if it contains no pair of
indistinguishable elements.

We let P
(k)
n denote the set of all (2+ 2)-free posets P on n elements

for which maxindist(P ) is at most k. In particular, P
(1)
n is the set of prim-

itive (2+ 2)-free posets on n elements. We define the statistic rep(P ) for
P ∈ P to be the minimum number of elements that need to be removed to
create a primitive poset. For example, the value of this statistic is 1 on the
posets in both Examples 1 and 3. Note that maxindist(P ) = 1 if and only
if rep(P ) = 0.

Example 1. Let P be the following (2+ 2)-free poset (reproduced from [1]
with kind permission of the authors):



Enumerating (2+ 2)-free posets by indistinguishable elements 143

On the right the poset has been redrawn to show the level numbers deter-
mined by the strict down-set of each element (when compared to the strict
down-sets of other elements). Notice that levels(P ) = 4. The strict down-set,
level, and strict up-set of each element is as follows:

x a b c d e f g

D(x) ∅ ∅ {a} {a} {a} {a, b} {a, b, c, d}
�(x) 0 0 1 1 1 2 3
U(x) {c, d, e, f, g, h} {f, g, h} {g, h} {g, h} {h} ∅ {h}

x h

D(x) {a, b, c, d, e, g}
�(x) 4
U(x) ∅

We therefore have D(a) = D(b) ⊂ D(c) = D(d) = D(e) ⊂ D(f) ⊂ D(g) ⊂ D(h).

The strict down-sets for each level are listed along with the elements of each level:

i 0 1 2 3 4

Di(P ) ∅ {a} {a, b} {a, b, c, d} {a, b, c, d, e, g}
Li(P ) {a, b} {c, d, e} {f} {g} {h}

The maximal elements of P are P\D4(P ) = {f, h}. Since D(f) ⊂ D(h) we have

mP = f and minmax(P ) = 2.

1.3. Upper triangular matrices

Let Mn be the set of upper triangular matrices of nonnegative integers such

that no row or column contains all zero entries, and the sum of the entries is

n. Let M be the set of all such matrices, that is, M =
⋃

n≥0Mn. For example,

M3 consists of the following 5 matrices:

(3),

(
2 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
0 2

)
,

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ .

For any A ∈ M, we let |A| be the sum of the entries in A, and we set

extra(A) = |A|−NZ(A), where NZ(A) is the number of nonzero entries in A.

Also, let index(A) be the smallest value of i such that Ai,dim(A) is nonzero,
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where dim(A) is the number of rows (or columns) in A. As an example, let

A =

⎛
⎜⎜⎝
1 3 0 0
0 0 2 0
0 0 0 5
0 0 0 2

⎞
⎟⎟⎠ .

Then |A| = 1 + 3 + 2 + 5 + 2 = 13, NZ(A) = 5, extra(A) = 13− 5 = 8, and
index(A) = 3 since the topmost non-zero entry in the final column is in the

third row. Let M
(k)
n be the collection of matrices in Mn that have no entries

exceeding k. In particular, M
(1)
n is the set of binary matrices in Mn.

1.4. Enumerative results

Let pn be the number of (2+ 2)-free posets on n elements. Bousquet-Mélou
et al. [1] showed that the generating function for the number pn of (2+ 2)-
free posets on n elements is

(2) P (t) =
∑
n≥0

pn t
n =

∑
n≥0

n∏
i=1

(
1− (1− t)i

)
.

A more general power series F (t, u, v) that takes into account the statis-
tics number of levels and level number of the lowest maximal element is
implied by inserting the power series given in [1, Proposition 15] into [1,
Lemma 14]. See [1, Section 6] for an overview of these generating functions.
More recently, Kitaev and Remmel [9] generalized the result of [1, Section
6] to derive a generating function that incorporated two further statistics
related to (2+ 2)-free posets.

1.5. Statements of main results

In this paper we study the generating function

G(u, v, y, t) =
∑
P∈P

ulevels(P )vminmax(P )yrep(P )t|P |.

Using the bijections of Bousquet-Mélou et al. [1] and Dukes and Parviainen
[3], respectively, this is also the generating function of several statistics on
ascent sequences and matrices. (This is made clear at the beginning of Sec-
tion 5.)
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We show that H(u, v, y, t) = G(u, v, y, t) − 1 satisfies the following re-
currence:

H(u, v, y, t)(v − 1− t− tyv + ty + tuv)(3)

= t(v − 1)− tH(u, 1, y, t) + tuv2H(uv, 1, y, t).

Using the kernel method, we then show that

(4) G(u, 1, y, t) = 1+
t(1− u)

Δ1
+

∞∑
n=1

t(1− u)(1− ty)n(1 + t− ty)n
∏n

i=1 Γi

ΔnΔn+1
,

where Δk = (1− ty)k(1− u) + u(1 + t− ty)k and Γk = (u(1 + t− ty)k)/Δk.
We can then use (3) and (4) to give an explicit formula for G(u, v, y, t).

We also show that the generating function for primitive (2+ 2)-free
posets is given by

(5) K(t) =
∑
n≥0

n∏
i=1

(
1− 1

(1 + t)i

)

which confirms a conjecture of Jovovic [8]. Primitive (2+ 2)-free posets are
of special interest as one can easily generate all (2+ 2)-free posets from the
primitive ones by specifying the number of copies of each element.

Finally, we show that (2+ 2)-free posets for which the maxindist statis-
tic is at most k correspond to ascent sequences with runs of length at most
k, and to upper-triangular matrices with entries not exceeding k. This allows
us to generalize formula (5) to prove that

∑
n≥0

|P(k)
n |xn =

∑
n≥0

|M(k)
n |xn =

∑
n≥0

|Asc(k)n |xn =
∑
n≥0

n∏
i=1

(
1−

(
1− x

1− xk

)i
)
.

1.6. Outline of the paper

In Section 2 we recall the bijection of Bousquet-Mélou et al. [1] between
(2+ 2)-free posets and ascent sequences. In Subsection 2.2 we show that

|Asc(k)n | = |P(k)
n | = |M(k)

n |. In Section 3 we derive the generating function
for primitive ascent sequences and for ascent sequences with runs of length
at most k. In Section 4 we derive our formula for G(u, v, y, t) and discuss
its specialization G(u, 1, 0, t) corresponding to primitive ascent sequences.
Finally, in Section 5, we show that restricting ascent sequences by bounding
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the run-length corresponds, via the bijection in [1], to bounding the length

of a sequence of consecutive descents on the restricted permutations in [1,

Sect. 2]. We also show that a similar statement holds for the relationship

between ascent sequences and Stoimenow matchings.

2. (2 + 2)-free posets, ascent sequences and matrices

2.1. Constructing (2 + 2)-free posets from ascent sequences

In this subsection we review the essential parts of [1, Section 3] with proofs

omitted. We describe a bijective map B from the collection of ascent se-

quences of length n to the collection of (canonically labeled) (2+ 2)-free

posets on n elements. The mapping is a step by step procedure which con-

structs a poset element by element. One always starts with the single poset

having one element labeled ‘1’. The jth element of the poset to be inserted

is labeled ‘j’.

Central to the construction are the three addition rules: Add1, Add2 and

Add3. Given a poset P ∈ Pm, and a value i ∈ [0, 1+levels(P )], we produce a

poset Φ(P, i) ∈ Pm+1 where the new poset element, regardless of its position,

has label m + 1. The appropriate addition rule to use depends on whether

i ∈ [0,minmax(P )], i = 1 + levels(P ) or i ∈ [minmax(P ) + 1, levels(P )].

Since a (2+ 2)-free poset P is uniquely determined by the pair
(
D(P ),

L(P )
)
, in defining the addition operations below it suffices to only specify

how D(P ) and L(P ) change. Note that Add1 leaves levels(P ) unchanged,

whereas Add2 and Add3 increase levels(P ) by one.

Given P ∈ Pn, let us write Di = Di(P ) and Li = Li(P ). Given a value

i with 0 ≤ i ≤ 1 + levels(P ), let Φ(P, i) be the poset Q obtained from P in

the following way:

(Add1) If 0 ≤ i ≤ minmax(P ) then set D(Q) = D(P ) and

L(Q) = (L0, . . . , Li ∪ {n+ 1}, . . . , Llevels(P )).

(Add2) If i = 1 + levels(P ) then set

D(Q) = (D0, . . . , Dlevels(P ), P )

L(Q) = (L1, . . . , Llevels(P ), {n+ 1}).
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(Add3) If minmax(P ) < i < 1 + levels(P ) then set

M = L0 ∪ · · · ∪ Li−1\Dlevels(P )

D(Q) = (D0, . . . , Di, Di ∪M, . . . , Dlevels(P ) ∪M)

L(Q) = (L0, . . . , Li−1, {n+ 1}, Li, . . . , Llevels(P )).

An important property of the above addition operations is that
minmax(Φ(P, i)) = i, since all maximal elements below level i are covered
and therefore not maximal in Φ(P, i). Note that the single poset P ∈ P (1)

is such that D(P ) = (∅), L(P ) = ({1}) and levels(P ) = 0.

Definition 2. Given x = (x1, . . . , xn) ∈ Ascn, let B(x) = P (n) where
P (m) := Φ(P (m−1), xm) for all 1 < m ≤ n.

Example 3. In this example we construct the poset P = B(x) where x =
(0, 1, 1, 0, 2, 0, 1) ∈ Asc7. We begin from the poset P (1) with just a single
element, and successively construct P (2), . . . , P (7) = P according to the
addition rules. The poset P (1) is the poset with one element labeled ‘1’.
This element is the only element at level 0 of P (1), illustrated as follows:

Since 1 = 1 + levels(P (1)), the poset P (2) =
Φ(P (1), 1) is constructed by applying rule Add2.
The new element is labeled ‘2’:

Since 1 ∈ [0,minmax(P (2))], the poset P (3) =
Φ(P (2), 1) is constructed by applying Add1:

The poset P (4) = Φ(P (3), 0) is constructed by
applying Add1:

The poset P (5) = Φ(P (4), 2) is constructed by
applying Add2:

The poset P (6) = Φ(P (5), 0) is constructed by
applying Add1:
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The poset P (7) =
Φ(P (6), 1) is constructed
by applying Add3. Note
that we introduce a new
empty level between
levels x6 − 1 and x6
and insert a new single
element with the same
downset as the elements
that were on that level.
Then all the elements
above it have the set
M = {6} included in
their downsets.

Finally P = P (7) and we have
the canonically labeled poset
B(x) ∈ P7.

2.2. Bounded run lengths in ascent sequences

In this subsection we prove Propositions 4 and 7 establishing the relation
between runs in ascent sequences, indistinguishable elements in (2+ 2)-free
posets, and entries of restricted upper-triangular matrices. To be more pre-
cise, we show that

|Asc(k)n | = |P(k)
n | = |M(k)

n |.
We use the following proposition to deal with ascent sequences in order

to obtain results for posets.

Proposition 4. Let x ∈ Ascn and P ∈ Pn with P = B(x). Given i < j we
have that i ∼P j if and only if xi = xi+1 = · · · = xj.

Proof. We first show that i ∼P (i+1) iff xi = xi+1. Let xi = xi+1. Think of
P being created by adding elements one by one and using the rules (Add1)–
(Add3) and assume that i+1 has just entered P (i has already been added
to P on the previous step). Since xi = xi+1, at this point (D(i), U(i)) =
(D(i+1), U(i+1)) where U(i) = U(i+1) = ∅. Moreover, from the definitions
of (Add1)–(Add3), D(i) and D(i+1) will either both stay unchanged or will
be changing in the same way while adding extra elements to P . The same
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applies to U(i) and U(i + 1). Thus, i ∼P (i + 1). On the other hand, if
xi 	= xi+1, then D(i) 	= D(i + 1) after adding i + 1 to P (i and (i + 1) will
be on different levels) and the definitions of (Add1)–(Add3) guarantee that
i and (i + 1) will remain on different levels while adding extra elements to
P . That is, i 	∼P (i+ 1).

Next we show that if xi = xj and there exists xk 	= xi such that i < k < j
then i 	∼P j. To prove this we need the notion of the modified ascent sequence
x̂ and its properties introduced in [1, Section 4]. If xixi+1 . . . xj contains
an element xs > xi then we can take the minimum such s to see that
s ∈ U(i) but s 	∈ U(j) showing that i 	∼P j. Otherwise, there must exist
an ascent xsxs+1 with xs+1 ≤ xi and i < s < j. This would mean that in
x̂ = x̂1x̂2 . . . x̂n, we have x̂i > x̂j , so i will be on a higher level than j in P
and i 	∼P j.

To complete the proof we show that if i 	∼P j then either xi 	= xj or
xi = xj but there exists xk 	= xi such that i < k < j. This, however, is
a direct corollary to the definition and properties of the modified ascent
sequence x̂ whose maximal runs of equal elements correspond to the level
distribution of elements in P . Namely, two different runs of the same element
in x̂ correspond to elements in P with the same down-sets but with different
up-sets — this is a fact that is not explicitly mentioned in [1, Section 4] but
it can be proved.

We have the following immediate corollary to Proposition 4.

Corollary 5. Primitive (2+ 2)-free posets on n elements are in one-to-one
correspondence with primitive ascent sequences of length n.

One more corollary follows from the proof of Proposition 4.

Corollary 6. The statistic rep on P
(k)
n corresponds to the statistic epairs

on Asc
(k)
n under B.

2.3. Restricted matrices and ascent sequences

In Dukes and Parviainen [3] a bijection Γ : Mn → Ascn was presented. Here
we find it convenient to describe the inverse ζ : Ascn → Mn of this map.
Given A ∈ Mn, let index(A) be the smallest value of i such that Ai,dim(A) is
nonzero. Given a value m such that 0 ≤ m ≤ dim(A), we define the matrix
φ(A,m) according to the following:

(i) If 0 ≤ m < index(A) then let φ(A,m) be the matrix A with the entry
at position (m+ 1, dim(A)) increased by 1.
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(ii) If index(A) ≤ m ≤ dim(A) then we form φ(A,m) in the following way.
Let A′ be the matrix with dim(A′) = dim(A) + 1 formed by inserting
a row of zeros immediately after row m of A, and a column of zeros
immediately after column m of A. Let A′

m+1,dim(A)+1 = 1. Swap the

values A′
i,m+1 and A′

i,dim(A)+1 for all 1 ≤ i ≤ m. Call the resulting

matrix φ(A,m).

As an example of the second construction, let

A =

⎛
⎝1 7 1
0 9 3
0 0 2

⎞
⎠ .

Then φ(A, 2) is given by⎛
⎜⎜⎝
1 7 1
0 9 3

0 0 2

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝
1 7 0 1
0 9 0 3
0 0 0 1
0 0 0 2

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝
1 7 1 0
0 9 3 0
0 0 0 1
0 0 0 2

⎞
⎟⎟⎠ = φ(A, 2).

Given x = (x1, . . . , xn) ∈ Ascn, let ε be the empty matrix. Define
φ(ε, 0) := (1) and

ζ(x) = φ(· · ·φ(φ(ε, x1), x2) · · · , xn).

Proposition 7. For each n ≥ 0 and k ≥ 1, we have ζ(x) ∈ M
(k)
n if and only

if x ∈ Asc
(k)
n .

Proof. Let x = (x1, . . . , xn) ∈ Ascn. Define A(i) = ζ(x1, . . . , xi) for all 1 ≤
i ≤ n. Let us suppose that x 	∈ Asc

(k)
n so that there exists i such that xi =

xi+1 = · · · = xi+k = c. Since A(i) = φ(A(i−1), xi), we have index(A(i))− 1 =

xi = c. Let d = dim(A(i)). So the entry A
(i)
c+1,d ≥ 1. Since A(i+1) = φ(A(i), c),

and xi+1 = c < index(A(i)) = 1 + c, the rule (i) is used and we have A(i+1)

as the matrix A(i) with the entry at position (c + 1, d) increased by 1. So

A
(i+1)
c+1,d ≥ 2. Doing this repeatedly, we find that A

(i+k)
c+1,d ≥ 1+k, which means

that A(i+k) 	∈ Asc
(k)
i+k, and so A(n) 	∈ M

(k)
n since neither of the construction

rules (i) or (ii) can decrease an entry of a matrix (although entries may be
moved).

Next we prove that ζ(x) 	∈ M
(k)
n ⇒ x 	∈ Asc

(k)
n . The inverse of ζ was recur-

sively described in [3]. In order to find the ascent sequence (x1, . . . , xn) corre-
sponding to A ∈ Mn, one finds that there is a unique f(A) ∈ Mn−1 and value
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xn = index(A) − 1 such that A = φ(f(A), xn) and f(A) = ζ(x1, . . . , xn−1).
To determine the reduced matrix f(A) one must invoke one of the three
removal rules, called Rem1−Rem3 in [3]. We present the argument without
describing these rules explicitly.

Let X = ζ(x) ∈ Mn\M(k)
n . Then there is at least one entry Xab in X

with Xab ≥ k + 1. At some stage during the deconstruction process, the
value Xab will be in the rightmost column of f(f(· · · f(A) · · · )). If there
are non negative values above it, they will be removed in due course of the
deconstruction. One then has a matrix B ∈ Mm, where value(B) = Xab and

A = φ(· · ·φ(φ(B, xm+1), xm+2) · · · , xn).

Since Xab ≥ k + 1, the next k removals will invoke Rem1, thereby giving
xm−1 = xm−2 = · · · = xm−k. Since value(B) ≥ 1, regardless of which removal
rule is used next, one finds that xm−k−1 = xm−k. This implies there are at
least k + 1 consecutive entries in the ascent sequence which take the same

value. Hence x 	∈ Asc
(k)
n .

3. Enumerating ascent sequences with restricted runs

The primitive ascent sequences of length n are in one-to-one correspondence

with matrices in M
(1)
n , see [3, Thm. 13]. Jovovic [8] conjectured the generat-

ing function (1) for the number of matrices in M
(1)
n (see [12, A138265]). Here

we prove this conjecture (Theorem 8) by using the bijective correspondence
with ascent sequences, and we also generalize the generating function (1) to
count more complicated objects (Theorem 9).

In Bousquet-Mélou et al. [1] it was shown that

(6) P (x) =
∑
a∈Asc

x|a| =
∑
n≥0

n∏
i=1

(
1− (1− x)i

)
.

Let K(x) =
∑
n≥0

knx
n where kn = |Asc(1)n | is the number of primitive ascent

sequences of length n. Due to Propositions 4 and 7 we have

K(x) =
∑
n≥0

|M(1)
n |xn =

∑
n≥0

|P(1)
n |xn.

We now give an explicit formula for K(x), proving a conjecture of
Jovovic [8].
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Theorem 8. We have

K(x) =
∑
n≥0

n∏
i=0

(
1− 1

(1 + x)i

)
.

Proof. Every ascent sequence a = (a1, . . . , an) may be written uniquely in
the form

(bm1

1 , . . . , bmk

k )

where (b1, . . . , bk) is a primitive ascent sequence, and mi is the number of
consecutive entries of bi in a. For example, if a = (0, 0, 1, 1, 1, 0, 2, 2, 3, 1, 1, 0, 4)
then a = (02, 13, 01, 22, 31, 12, 01, 41) and b = (0, 1, 0, 2, 3, 1, 0, 4) is the un-
derlying primitive ascent sequence with multiplicities (2, 3, 1, 2, 1, 2, 1, 1). A
primitive ascent sequence of length n ≥ 1 gives rise to an infinite number of
ascent sequences by choosing multiplicities (m1, . . . ,mn) ∈ N

n. Therefore,

(7) P (t) =
∑
n≥0

kn(t+ t2 + · · · )n =
∑
n≥0

kn

(
t

1− t

)n

= K

(
t

1− t

)
.

Setting x = t/(1− t), we see that t = x/(1 + x) so that

(8) K(x) = P

(
x

1 + x

)
=

∑
n≥0

n∏
i=1

(
1− 1

(1 + x)i

)
.

Let

Bk(x) =
∑
n≥0

|Asc(k)n |xn =
∑
n≥0

|M(k)
n |xn =

∑
n≥0

|P(k)
n |xn,

where the latter two identities were established in Theorem 7 and Propo-
sition 4. Then we have the following theorem which generalizes Theorem 8
(the case k = 1) and gives the generating function for the number of ascent
sequences that have a run of length at most k.

Theorem 9. We have

∑
n≥0

|Asc(k)n |xn =
∑
n≥0

|M(k)
n |xn =

∑
n≥0

|P(k)
n |xn =

∑
n≥0

n∏
i=1

(
1−

(
1− x

1− xk+1

)i
)
.
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Proof. It is easy to see that

Bk(x) =
∑
n≥0

kn(x+ x2 + · · ·+ xk)n = K

(
x(xk − 1)

(x− 1)

)

=
∑
n≥0

n∏
i=1

(
1−

(
1− x

1− xk+1

)i
)
.

4. Enumeration of ascent sequences by ascents, equal pairs,
and last letter

The theorems in this section concern the enumeration of ascent sequences.

Let

G(u, v, y, t)(9)

=
∑
s∈Asc

uasc(s)vlast(s)yepairs(s)t|s| =
∑

a,m,b,n≥0

Ga,m,b,nu
avmybtn

be the generating function for ascent sequences according to the statistics

introduced in Section 1. The value Ga,b,m,n is the number of ascent sequences

of length n with a ascents, b equal pairs, and last letter m.

From the correspondences in [1, 3] and Corollary 6, we see that this

generating function is also the generating function of (2+ 2)-free posets

and our upper-triangular matrices:

G(u, v, y, t) =
∑
P∈P

ulevels(P )vminmax(P )yrep(P )t|P |(10)

=
∑
A∈M

udim(A)−1vindex(A)−1yextra(A)t|A|.(11)

Let H(u, v, y, t) = G(u, v, y, t) − 1 be the generating function for these

statistics over all nonempty ascent sequences.

Lemma 10. The formal power series H(u, v, y, t) satisfies

H(u, v, y, t)(v − 1− t− tyv + ty + tuv)(12)

= t(v − 1)− tH(u, 1, y, t) + tuv2H(uv, 1, y, t).
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Proof. It is easy to see that

G(u, v, y, t) = 1 + t

+ t
∑
n≥1,

a,b,m≥0

Ga,b,m,nt
n

((
m−1∑
i=0

uaviyb

)
+ uavmyb+1 +

a+1∑
i=m+1

ua+1viyb

)

= 1 + t+ t
∑
n≥1,

a,b,m≥0

Ga,b,m,nt
nuayb

(
vm − 1

v − 1
+ yvm + u

va+2 − vm+1

v − 1

)

= 1 + t+ t(G(u, v, y, t)− 1)

(
1 + y(v − 1)− uv

v − 1

)

− t

v − 1
(G(u, 1, y, t)− 1) +

tuv2

v − 1
(G(uv, 1, y, t)− 1).

Since G(u, v, y, t) = 1 +H(u, v, y, t) we find that

(v − 1)H(u, v, y, t) = t(v − 1) +H(u, v, y, t)(t+ tyv − ty − tuv)

− tH(u, 1, y, t) + tuv2H(uv, 1, y, t).

We use the above lemma to give an expression for the power series
G(u, 1, y, t).

Theorem 11. We have

G(u, 1, y, t) = 1 +
t(1− u)

Δ1
+

∞∑
n=1

t(1− u)(1− ty)n(1 + t− ty)n
∏n

i=1 Γi

ΔnΔn+1
,

where Δk = (1− ty)k(1− u) + u(1 + t− ty)k and Γk = (u(1 + t− ty)k)/Δk.

Proof. The left-hand side of the functional equation (12) vanishes when the
coefficient to H(u, v, y, t) is zero. This happens precisely when v is

(13) W (u, y, t) =
1 + t− ty

1 + tu− ty
.

Replacing v by W (u, y, t) in (12) gives

0 =
t2(1− u)

1 + tu− ty
−tH(u, 1, y, t)+tu

(
1 + t− ty

1 + tu− ty

)2

H

(
u
1 + t− ty

1 + tu− ty
, 1, y, t

)



Enumerating (2+ 2)-free posets by indistinguishable elements 155

and hence

H(u, 1, y, t)(14)

=
t(1− u)

1 + tu− ty
+ u

(
1 + t− ty

1 + tu− ty

)2

H

(
u
1 + t− ty

1 + tu− ty
, 1, y, t

)
.

Next let

Δk = (1− ty)k(1− u) + u(1 + t− ty)k.

It is easy to check that Δ1 = 1 + tu− ty. Also let

Γk =
u(1 + t− ty)k

Δk
.

The following identities are immediate:

(1− u)|u=Γs
=

Δs

Δs
− u(1 + t− ty)s

Δs
=

(1− ty)s(1− u)

Δs
,

Δk|u=Γs
=

(1− ty)k(1− ty)s(1− u)

Δs
+

u(1 + t− ty)s(1 + t− ty)k

Δs
=

Δk+s

Δs
,

(1− u)

Δk
|u=Γs

=
Δs

Δk+s

(1− ty)s(1− u)

Δs
=

(1− ty)s(1− u)

Δk+s
,

Γk|u=Γs
= (1 + t− ty)k

u(1 + t− ty)s

Δs

Δs

Δs+k
= Γs+k.

We can then rewrite (14) as

(15) H(u, 1, y, t) =
t(1− u)

Δ1
+

(1 + t− ty)

Δ1
Γ1H(Γ1, 1, y, t).

Iterating (15) gives

H(u, 1, y, t) =
t(1− u)

Δ1
+

(1 + t− ty)

Δ1
Γ1

{
t
(1− ty)(1− u)

Δ1

Δ1

Δ2
(16)

+(1 + t− ty)
Δ1

Δ2
Γ2G(Γ2, 1, y, t)

}

=
t(1− u)

Δ1
+

t(1− u)(1− ty)(1 + t− ty)Γ1

Δ1Δ2

+
(1 + t− ty)2Γ1Γ2

Δ2
H(Γ2, 1, y, t).
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If we iterate (16), then we find that

H(u, 1, y, t) =
t(1− u)

Δ1
+

t(1− u)(1− ty)(1 + t− ty)Γ1

Δ1Δ2
(17)

+
t(1− u)(1− ty)2(1 + t− ty)2Γ1Γ2

Δ2Δ3

+
t(1− u)(1− ty)3(1 + t− ty)3Γ1Γ2Γ3

Δ3Δ4

+
(1 + t− ty)4Γ1Γ2Γ3Γ4

Δ4
H(Γ4, 1, y, t).

One can then easily prove by induction that

H(u, 1, y, t)(18)

=
t(1− u)

Δ1
+

2n−1∑
n=1

t(1− u)(1− ty)n(1 + t− ty)n
∏n

i=1 Γi

ΔnΔn+1

+
(1 + t− ty)2

n ∏2n

i=1 Γi

Δ2n

H(Γ2n , 1, y, t).

Since each Γi has a factor of u, it is easy to see that, as a formal power series
in u,

(19) H(u, 1, y, t) =
t(1− u)

Δ1
+

∞∑
n=1

t(1− u)(1− ty)n(1 + t− ty)n
∏n

i=1 Γi

ΔnΔn+1
.

The first few terms of G(u, 1, y, t) are
(20)

G(u, 1, y, t) = 1+
P0(t, y)

(1− ty)
+

P1(t, y)

(1− ty)3
u+

P2(t, y)

(1− ty)6
u2+

P3(t, y)

(1− ty)10
u3+O(u4)

where the power series Pi(t, y) are given in Figure 1.
For example, for the ascent sequences with a single ascent one can see

that

P1(t, y)

(1− ty)3
=

t2(1− ty) + t3

(1− ty)3
=

t2

(1− ty)2
+

t3

(1− ty)3

=
∑
n≥2

(n− 1)yn−2tn +
∑
n≥3

(
n− 1

2

)
yn−3tn.
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i Pi(t, y)

0 t
1 t2(1− ty) + t3

2 t3 + 4t4 + 4t5 + t6 − 3t4y − 8t5y − 4t6y + 3t5y2 + 4t6y2 − t6y3

3 t4 + 11t5 + 33t6 + 42t7 + 26t8 + 8t9 + t10 − 6t5y − 55t6y
−132t7y − 126t8y − 52t9y − 8t10y + 15t6y2 + 110t7y2 + 198t8y2

+126t9y2 + 26t10y2 − 20t7y3 − 110t8y3 − 132t9y3 − 42t10y3

+15t8y4 + 55t9y4 + 33t10y4 − 6t9y5 − 11t10y5 + t10y6

Figure 1: The first four power series Pi(t, y).

Here the first sum accounts for ascent sequences of the form 0a1b where

a, b ≥ 1 and the second sum accounts for ascent sequences of the form

0a1b0c where a, b, c ≥ 1.

We can now use Lemma 10 and Theorem 11 to give an expression for

G(u, v, y, t). That is, if we define Δ0 = 1, then by Theorem 11, we have that

(21) G(u, 1, y, t) = 1 +
∑
n≥0

t(1− u)(1− ty)n(1 + t− ty)n
∏n

i=1 Γi

ΔnΔn+1

and

(22) G(uv, 1, y, t) = 1 +
∑
n≥0

t(1− uv)(1− ty)n(1 + t− ty)n
∏n

i=1 Γ̄i

Δ̄nΔ̄n+1

where Δ̄0 = 1 and Δ̄k = (1 − ty)k(1 − uv) + uv(1 + t − ty)k and Γ̄k =

(uv(1 + t− ty)k)/Δ̄k for k ≥ 1. Thus we have the following theorem.

Theorem 12.

G(u, v, y, t)

= 1 +
t

(v − 1− t− tyv + ty + tuv)

(
v − 1

− t
∑
n≥0

(1− ty)n(1 + t− ty)n
{
(1− u)

∏n
i=1 Γi

ΔnΔn+1
− uv2(1− uv)

∏n
i=1 Γ̄i

Δ̄nΔ̄n+1

})
.
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The first few terms of this power series are as follows:

G(u, v, y, t)

= 1 + t+ (uv + y)t2 +
(
u+ u2v2 + 2uvy + y2

)
t3

+
(
u2 + 2u2v + u2v2 + u3v3 + 3uy + 3u2v2y + 3uvy2 + y3

)
t4

+O(t5).

4.1. Enumeration of primitive ascent sequences by ascents

Primitive ascent sequences, that is, ascent sequences with no 2-runs, cor-
respond to setting y = 0 in G(u, 1, y, t). When y = 0, the expression Δk

becomes (1−u)+u(1+ t)k and Γk becomes u(1 + t)k/δk. Thus we have the
following;

Corollary 13. Let δk = (1− u) + u(1 + t)k and γk = u(1 + t)k/δk. Then

(23) G(u, 1, 0, t) = 1 +
t(1− u)

δ1
+

∞∑
n=1

t(1− u)(1 + t)n
∏n

i=1 γi
δnδn+1

.

Unfortunately we cannot derive a generating function for the number of
primitive ascent sequences from G(u, 1, 0, t) by setting u = 1 (this generating
function is derived in Section 3 using different arguments). The power series
for the first few terms in the expansion of G(u, 1, 0, t) (about u = 0),

(24) G(u, 1, 0, t) = 1 +

4∑
n=0

qn(t)u
n +O(u5)

are given in Figure 2.
Note that the power series qn(t) are unimodal for 0 ≤ n ≤ 7. It would

be nice to have a combinatorial proof of this for general n.

5. Permutations and matchings corresponding to ascent
sequences with bounded run-length

We conclude by mentioning the restricted permutations and matchings that
correspond, via the maps in [1, 3], to ascent sequences with bounded run-
length. First, we recall a few definitions from the papers [1, 2].

Let V = {v1, v2, . . . , vn} with v1 < v2 < · · · < vn be any finite subset
of N. The standardization of a permutation π of the elements of V is the
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i qi(t)

0 t
1 t2 + t3

2 t3 + 4t4 + 4t5 + t6

3 t4 + 11t5 + 33t6 + 42t7 + 26t8 + 8t9 + t10

4 t5 + 26t6 + 171t7 + 507t8 + 840t9 + 865t10 + 584t11 + 262t12 + 76t13

+13t14 + t15

5 t6 + 57t7 + 718t8 + 4017t9 + 12866t10 + 26831t11 + 39268t12

+42211t13 + 34221t14 + 21184t15 + 10015t16 + 3571t17 + 933t18

+169t19 + 19t20 + t21

Figure 2: The first six power series qi(t).

permutation std(π) of {1, . . . , n} obtained from π by replacing the letter vi
with the letter i. As an example, std(39685) = 15342. Let

Rn = {π1 . . . πn ∈ Sn : if std(πiπjπk) = 231 then j 	= i+ 1 or πi 	= πk + 1 },

where Sn is the set of permutations of {1, 2, . . . , n}.
In other words, Rn is the set of permutations of [n] where, in each

occurrence of the pattern 231, either the letters corresponding to the 2 and

the 3 are nonadjacent, or else the letters corresponding to the 2 and the 1

are not adjacent in value. For instance, the occurrence 463 in π = 546123

violates both conditions, since 4 and 6 are adjacent letters in π and 4 and

3 are adjacent values. Note that both Rn and Tn are defined in terms of

avoidance of bivincular patterns, which were defined in [1].

Also, let Tn be the subset of Rn whose permutations have no adjacent

letters that are adjacent in value and in decreasing order, that is, no descent

consisting of letters that differ in size by one. In the permutation 546123,

mentioned above, there is one violation of that condition, namely the 54.

Let R(k)
n be the subset of permutations π ∈ Rn such that there do not

exist integers i and m with πi = m, πi+1 = m− 1, . . . , πi+k = m− k. Also,

for any general pattern p, let p(π) be the number of occurrences of p in π.

A matching of the set [2n] = {1, 2, . . . , 2n} is a partition of [2n] into

subsets of size 2, each of which is called an arc. The smaller number in an

arc is its opener and the larger one its closer. A matching is said to be

Stoimenow if it has no pair of arcs {a, b} and {c, d}, with a < b and c < d,

satisfying one (or both) of the following conditions:
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1. a = c+ 1 and b < d,

2. a < c and b = d+ 1.

In other words, a Stoimenow matching has no pair of arcs such that one is

nested within the other and the openers, or closers, of the two arcs differ

by 1.

Let Matchn denote the set of Stoimenow matchings on [2n] and Match

the set of all such matchings. If (i, j) and (i+1, j+1) are arcs in a matching

M , we say that they are similar . Let echords(M) be the minimum number

of arcs in M one has to remove to obtain a matching without similar arcs.

Let Match
(k)
n be the collection of matchings M ∈ Matchn such that for no

pair i and j do all of (i, j), (i+ 1, j + 1), . . . , (i+ k, j + k) belong to M .

Bijections Λ : Rn → Ascn and Ψ′ : Matchn → Ascn were presented in

[1, Thm. 1] and [2, Thm. 7], respectively. Let us write Υ and Ω for their

respective inverses, so that we have Υ : Ascn → Rn and Ω : Ascn → Matchn.

It is then fairly easy to prove the following theorem and corollary, and we

omit these proofs.

Theorem 14. We have

(i) Υ(Asc
(k)
n ) = R(k)

n , and

(ii) Ω(Asc
(k)
n ) = Match

(k)
n .

In particular,

(iii) Υ(Asc
(1)
n ) = Tn, and

(iv) Ω(Asc
(1)
n ) = {M ∈ Matchn : echords(M) = 0}.

For a permutation π, let adjdes(π) be the number of descents in π whose

letters differ by one in size. For instance, adjdes(2543176) = 3, accounted

for by 54, 43 and 76.

Corollary 15. Given x ∈ Asc, we have epairs(x) = echords(Ω(x)) =

adjdes(Υ(x)).

Example 16. Given the ascent sequence x = (0, 1, 1, 0, 2, 0, 1) the corre-

sponding permutation is Υ(x) = 6417325 and the corresponding matching

is Ω(x):
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Note that adjdes(6417325) = 1 because we have the two adjacent entries

π5π6 = 32. Also echords(Ω(x)) = 1 since we have one pair of similar arcs in

Ω(x), namely (7, 10), (8, 11).

For a matching M ∈ Matchn let |M | = n and, for n ≥ 1, let A∗ denote

the arc in M having the rightmost closer. Let cruns(M) be the number of

runs of closers to the left of A∗. Moreover, let larcs(M) be the number of

runs of closers to the left of the arc having the closer next to the right of

A*’s opener. For the matching M in Example 16, |M | = 7, A∗ = (12, 14),

cruns(M) = 3 (the runs of closers are 4, 6, 9(10)(11)), and larcs(M) = 1

(there is one run of closers, 4, to the left of (5,13)).

Given π ∈ Rn, let us label the positions of π from left to right where we

can insert (n+ 1) in order to create π′ ∈ Rn+1. Define b(π) to be the label

immediately to the left of n in π. For example, if π = 6132547 ∈ R7, then π

is labeled as 061132254374 and b(π) = 3 since 3 is the label immediately to

the left of 7.

Let R =
⋃

n≥0Rn. Using the properties of the corresponding bijections

in [1] and [2],

G(u, v, y, t) =
∑
π∈R

uasc(π
−1)vb(π)yadjdes(π)t|π|

=
∑

M∈Match

ucruns(M)vlarcs(M)yechords(M)t|M |.

Thus, Theorem 12 provides the generating function for the number of per-

mutations and matchings in question subject to 3 statistics.

Finally, as a corollary to Theorems 9 and 14, we have the following

enumerative result.

Theorem 17.
∑
n≥0

|R(k)
n |xn =

∑
n≥0

|Match(k)n |xn =
∑
n≥0

n∏
i=1

(
1−

(
1− x

1− xk

)i
)
.
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Department of Computer and Information Sciences

University of Strathclyde

Glasgow, G1 1XH

UK

E-mail address: einar.steingrimsson@cis.strath.ac.uk

Received June 14, 2010

mailto:remmel@math.ucsd.edu
mailto:einar.steingrimsson@cis.strath.ac.uk

	Introduction
	Ascent sequences
	(2+2)-free posets
	Upper triangular matrices
	Enumerative results
	Statements of main results
	Outline of the paper

	(2+2)-free posets, ascent sequences and matrices
	Constructing (2+2)-free posets from ascent sequences
	Bounded run lengths in ascent sequences
	Restricted matrices and ascent sequences

	Enumerating ascent sequences with restricted runs
	Enumeration of ascent sequences by ascents, equal pairs, and last letter
	Enumeration of primitive ascent sequences by ascents

	Permutations and matchings corresponding to ascent sequences with bounded run-length
	References

