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Packing a binary pattern in compositions

Ragnar Freij and Toufik Mansour

In this article we generalize packing density problems from permu-
tations and words to compositions. We are able to find the packing
density for some classes of subsequence and generalized patterns
and all the three letter binary patterns.
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1. Introduction

Let π = π1 · · ·πm and τ = τ1 · · · τ� be two words. An occurrence of τ in
π is a subsequence 1 ≤ i1 < i2 < · · · < i� ≤ m such that πi1 , . . . , πi� is
order-isomorphic to τ ; in such a context, τ is usually called a pattern.

Recently, much attention has been paid to the problem of counting the
number of permutations of length n (k-ary words of length n, compositions
of n) containing a given number r ≥ 0 of occurrences of a certain pattern
τ . Most of the authors consider only the case r = 0, thus studying per-
mutations (k-ary words, compositions) avoiding a given pattern, see [4, 9].
There is considerably less research on other aspects of pattern containment,
specifically, on packing patterns into words over a totally ordered alphabet,
but see [1, 7, 8, 10, 11, 12] for the permutation case and [2, 5, 6, 13, 14, 15]
for the more general pattern case.

While several of the above cited papers have defined packing density
on the set of permutations and on the set of k-ary words, in this paper
we take the first systematic step in studying the packing density on the
set of compositions. This generalization to compositions follows the current
interest in compositions which have been studied from different aspects in
the literature, see [9] and references therein. The results in this paper add a
facet to this research.

2. Notation

Let N = {1, 2, . . .} be the set of positive integers. A composition π =
π1 · · ·πm of n in N is an ordered collection of one or more positive inte-
gers whose sum is n. We will call n the size of π, and denote it n = |π|. The
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number of summands or letters, namely m, is called the number of parts
of the composition. Clearly, the number of compositions of n is given by
2n−1 and the number of compositions of n with m parts is given by

(
n−1
m−1

)
,

for all n ≥ m ≥ 1. We denote the set of compositions of n by Cn and we
denote the set of compositions of n with m parts by Cn,m. We define a com-
position to be reduced if its letters are the k first integers for some k. For
example, 131 is not reduced, but 121 is. Clearly, every pattern is equivalent
(order-isomorphic) to a reduced one.

Given a composition π = π1 · · ·πm of n in N and a pattern τ = τ1 · · · τ�,
let ν(τ, π) be the total number of occurrences of the pattern τ in π. Define

μ(τ, n) = max{ν(τ, π) | π ∈ Cn},

d(τ, π) =
ν(τ, π)(

n
�

) ,

δ(τ, n) =
μ(τ, n)(

n
�

) = max{d(τ, π) | π ∈ Cn}.

Let τ be a pattern. We will say that a composition λ of n is τ -optimal if
d(τ, λ) ≥ d(τ, η) for every composition η of n. If we let σ̄ denote the reversal
of the word σ, it is clear that ν(τ̄ , π̄) = ν(τ, π), so packing densities are
invariant under reversal.

Note that we compare ν(τ, π) to the largest number of subwords of length
	 in a word of size n which is

(
n
�

)
. This should be compared with the case of

packing into words, studied in [2, 6], where we instead normalize with the
maximal number of subwords of length 	 in a word with m letters, i.e.

(
m
�

)
.

The main reason for this definition is finding that the number δ(τ, n) for
large n converges to a real number, see our results below. Thus, we denote
limn→∞ δ(τ, n) by δ(τ) when it exists, and δ(τ) is said to be the packing
density of the pattern τ . Our interest is to study the asymptotic behavior
of δ(τ, n) as n → ∞, that is, finding δ(τ).

We will use a minimal amount of asymptotic notation, but we will let

f(n) ≈ g(n) mean that f(n)
g(n) → 1 as n → ∞. Throughout, we will let xa

denote the word xx · · ·x of length a.

3. Subsequence patterns

3.1. Letter reduction

First, we will show how some very natural operations on a composition gives
a denser packing of our pattern
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Lemma 3.1. Let τ = τ1τ2 · · · τ� be a reduced pattern, and let n be any
integer. Then there is a τ -optimal composition of n that is reduced.

Proof. Let λ = λ1 · · ·λj be a composition of n, and suppose there is some
m ∈ N such that m ∈ {λi}, but m − 1 �∈ {λi}. Then we can replace every
occurrence of m in λ by 1,m − 1. This operation can only increase the
number of occurrences of τ in λ. Repeating this operation, we will obtain a
reduced composition of the same size, without destroying τ -optimality.

Lemma 3.2. If τ is a monotone non-decreasing pattern, then there is a
τ -optimal composition that is also monotone non-decreasing.

Proof. Let π be any composition of n, and let π′ be the composition obtained
by sorting π increasingly. Since τ is non-decreasing, any occurrence of τ in
π will give an occurrence in π′. Thus, if π were τ -optimal, then so is π′.

Lemma 3.3. Let τ = 1 · · · 	 be a reduced and strictly increasing pattern.
Then there is a τ -optimal composition using only the letters 1, . . . ,

(
�+1
2

)
−1.

Proof. Suppose that π is a τ -optimal composition using a letter k ≥
(
τ�+1
2

)
.

By Lemma 3.2 we can assume π = 1a12a2 · · · kak . Construct π′ from π by
replacing one letter k by 1, 2, · · · , 	−1, k−

(
�
2

)
, and sorting the letters increas-

ingly. Note that k −
(
�
2

)
≥ 	, so we have added 	 distinct letters. Consider

any occurrence of τ in π. If it does not use the letter k, it is still an occur-
rence in π′. If it does use the letter k, however, it can not use all the letters
1, 2, · · · , 	 − 1, k −

(
�
2

)
, because the pattern has only 	 letters. Replace the

letter k in the occurrence by the first of the added letters that were not
already in the occurrence. This gives an occurrence of τ in π′. This shows
that ν(τ, π′) ≥ ν(τ, π), while π′ has strictly fewer letters k than π does. Thus
there is some τ -optimal composition using no letters k ≥

(
�+1
2

)
.

We say that the pattern τ = τ1 · · · τk is unimodal if there is some i for
which

τ1 ≤ · · · ≤ τi ≥ · · · ≥ τk.

If there is some i for which

τ1 ≥ · · · ≥ τi ≤ · · · ≤ τk,

then τ will be called anti-unimodal.
Then we have the following proposition.

Proposition 3.4. If τ is a unimodal (anti-unimodal) pattern, then there is
a unimodal (anti-unimodal) τ -optimal composition of every size.
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Proof. We prove the unimodal case. The arguments in the anti-unimodal

case are exactly the same.

In fact, we will prove the following, stronger, statement: Let A be a

finite multiset of letters. Among the words on the letters of A, that have the

maximal number of occurrences of τ , there is a unimodal one. We will let r

denote the number of distinct letters in A.

We will prove the statement by joint induction, first on the length k of

τ , and then on r. Note that ν(1, π) = |A| for every word π on the letters

in A. Moreover, if r = 1 we have ν(τ, π) = 0 if τ is not constant, and

ν(τ, π) =
(|A|

k

)
if τ = 1k. So the statement is true if k = 1 and if r = 1.

Suppose it holds if k < k0, and if k = k0, r < r0. Let τ be a reduced

unimodal pattern of length k0, and A a multiset on r0 distinct letters, the

smallest of which is m. Let π be a word on the letters of A, that maximizes

ν(τ, π). We want to prove that π can be chosen with every occurrence of m
in its beginning or end. Then the statement will follow by induction.

If τk �= 1, it is clear that all occurrences of m in π can be put in the left

end of π, without decreasing ν(τ, π). So now we assume τ1 = τk = 1. Let
τ = 1aτ ′1b, where τ ′ contains no letter 1.

Write π = mcρmσ, where ρ contains no letters m. Let d be the number

of letters m in σ. Without loss of generality we assume that c+1
a ≤ d+1

b –

otherwise consider τ̄ and π̄ instead.

If π contained some letter m apart from the first and last ones, i.e. if σ

is not all ms, we construct π′ = ma+1ρσ by moving the first such letter to

the beginning of the composition.

This operation destroys

(
c

a

)(
d

b− 1

)
ν(τ ′, σ)

occurrences of τ . It also adds

(
c

a− 1

)(
d

b

)
ν(τ ′, σ)

occurrences. Since c+1
a ≥ d+1

b we get

(
c

a

)(
d

b− 1

)
≤

(
c

a− 1

)(
d

b

)
,

so ν(τ, π′) ≥ ν(τ, π).
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Thus we can move all letters m to the far ends of π, without destroying

optimality. So by induction, there is a unimodal τ -optimal ordering of every

multiset A. Maximizing the occurrence number over all multisets, we hence

obtain a unimodal τ -optimal composition.

In order to state our next result, we need the following notation. Let

τ = τ1τ2 · · · τ� be any reduced pattern, we denote the normal form of τ as

τ = τk1

i1
τk2

i2
· · · τks

is
such that τij �= τij+1

for all j = 1, 2, . . . , s−1. For example,

the normal form of the pattern 112133224 is 122111322241. Theorem 3.5

reduces, in many cases, the problem of finding the packing density to that

of proving that an optimal packing has “the simplest form possible”.

Theorem 3.5. Let τ be any reduced pattern with the normal form

τk1

i1
τk2

i2
· · · τks

is
,

and length 	 =
∑

i ki. Assume the τ -optimal composition of n has the form

π = τa1

i1
τa2

i2
· · · τas

is
,

for all n. Then

δ(τ) =
	!

	�

s∏
j=1

(kj/τij )
kj

kj !
.

Proof. Let aj = nαj for all j. The condition
∑s

j=1 ajτij = n is equivalent to

that
∑s

j=1 τijαj = 1, which implies that

d(τ, π) =

s∏
j=1

(
aj
kj

)
=

s∏
j=1

nαj(nαj − 1) · · · (nαj − kj + 1)

kj !
.

From the definitions we have that 1 ≤ kj ≤ 	 and 0 < αj < 1, so

(1)

s∏
j=1

(
nαj

kj

)
≈

s∏
j=1

(nαj)
kj

kj !
= nk1+···+ks

s∏
j=1

α
kj

j

kj !
= n�

s∏
j=1

α
kj

j

kj !
,

which gives that

μ(τ, n) ≈ n�

k1! · · · ks!
max

τi1α1+···+τisαs=1
αk1

1 · · ·αks
s .
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When
∑

βi = 1, the function βk1

1 · · ·βks
s is maximized at βi = ki/	. Using

this, we obtain that

μ(τ, n) ≈ n�

k1! · · · ks!

s∏
j=1

(
kj/τij

	

)kj

.

Hence, from the definition of the packing density and k1 + · · · + ks = 	 we
get the desired result.

As a trivial example, if τ = 1�, then the τ -optimal composition of n is
1n. Hence, Theorem 3.5 gives

δ(τ) =
	!

	�
· 	

�

	!
= 1.

3.2. Binary patterns

In this subsection we find the packing density for all monotone binary pat-
terns, and for all three letter patterns with repeated letters.

Theorem 3.6. For any positive integers x and y, we have

δ(1x2y) = δ(2y1x) =

(
x+ y

x

)
xxyy

2y(x+ y)x+y
.

Proof. We consider only the case τ = 1x2y, and let the case τ̄ = 2x1y follow
by reversal.

By Lemma 3.2, a τ -optimal composition of n is increasing, and has the
normal form

π = 1a12a2 · · · (k − 1)ak−1kak

Assume k ≥ 3. Then define

π′ = 1a1+ak2a2 · · · (k − 2)ak−2(k − 1)ak−1+ak .

We think of π′ as obtained from π by replacing every letter k by one letter
k − 1, and adding ak letters 1 in the beginning. This deletes

(
ak−1

x

)(
ak
y

)

occurrences of τ , namely the subsequences (k − 1)xky in π. Notice that all
subsequences jxky in π, with j < k − 1, yield a subsequence jx(k − 1)y in
π′.
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On the other hand, we have added at least

(
a1 + ak

x

)(
ak−1 + ak

y

)
−
(
a1
x

)[(
ak−1

y

)
+

(
ak
y

)]

occurrences of τ . These are the subsequences 1x(k − 1)y in π′ that are not
induced by subsequences 1x(k − 1)y or 1xky in π. We claim that

(
a1 + ak

x

)(
ak−1 + ak

y

)
−
(
a1
x

)[(
ak−1

y

)
+

(
ak
y

)]
−
(
ak−1

x

)(
ak
y

)
≥ 0.

Indeed, to prove the inequality, we distinguish three different cases. Note
that the left-hand side of the inequality is at least

(
ak
x

)(
ak−1 + ak

y

)
−
(
ak−1

x

)(
ak
y

)
,

which is ≥ 0 if y ≥ x, or if x > y and ak ≥ ak−1.
So assume x > y and ak−1 > ak. Then rewrite the left-hand side as

∑
(i,j) �∈{(0,0),(0,y)}

(
a1

x− i

)(
ak
i

)(
ak−1

y − j

)(
ak
j

)
−
(
ak−1

x

)(
ak
y

)
.

If y ≥ 2, then the term i = 0, j = 1 is greater than
(
ak−1

x

)(
ak

y

)
. Finally, if

x > y = 1, the term i = 1, j = 0 is greater than
(
ak−1

x

)(
ak

y

)
. This completes

the proof of the claim. Thus, in any case we have added more occurrences
than we deleted, so π was not optimal.

Hence we can delete every letter ≥ 3, so we have shown that any 1x2y-
optimal composition has the form 1a2b. By Theorem 3.5 and reversal, we
get

δ(1x2y) = δ(2y1x) =
(x+ y)!

(x+ y)x+y
· x

x

x!
· (y/2)

y

y!
=

(
x+ y

x

)
xxyy

2y(x+ y)x+y
.

We are now ready to determine the packing densities of all three let-
ter binary words, into compositions. Again we will prove that an optimal
composition is also binary.

Theorem 3.7. We have

δ(112) = δ(211) =
2

9
, δ(121) =

1

9
, δ(212) =

1

18
, δ(221) = δ(122) =

1

9
.
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Proof. The monotone patterns in the theorem follow from Theorem 3.6, so

we need only consider the patterns 121 and 212.

Let π be a 121-optimal composition. By Proposition 3.4, π has the struc-

ture

π = 1a12a2 · · · kak+bk · · · 2b21b1 .

We enumerate the occurrences by summing over the repeated letter in the

occurrence, and get

ν(121, π) =

k−1∑
i=1

aibi(ai+1 + bi+1 + · · ·+ ak + bk).

For fixed ai+bi, the expression is maximized over the reals when ai = bi,

and over the naturals when |ai − bi| ≤ 1. Hence, bi < bi+1 would imply

ai ≤ ai+1. If this were the case, the number of occurrences would increase,

while n would decrease, by interchanging (ai, bi) and (ai+1, bi+1). So for π

to be optimal, we must have b1 ≥ · · · ≥ bk.

Now if k > 2, we could construct

π′ = 1a1+12a2 · · · (k − 1)ak−1+1kak−1+bk · · · 1b1

by splitting one occurrence of k into one occurrence of k− 1 and one occur-

rence of 1, in the first half of the word. Then

ν(121, π′)− ν(121, π)

= b1 · (a2 + b2 + · · ·+ ak + bk) + bk−1 · (ak − 1 + bk)− ak−1bk−1

> ak−1b1 − ak−1bk−1 ≥ 0

contradicting the assumption that π was optimal.

So a 121-optimal composition has only letters 1 and 2, so we can use

Theorem 3.5 to conclude that δ(121) = 1
9 .

For the pattern 212, consider an optimal composition π using the letters

1 . . . k. By Proposition 3.4, π has the form kak · · · 1a1+b1 · · · kbk .
Again, we enumerate the occurrences by summing over the repeated

letter in the occurrence. This time, we get

ν(212, π) =

k∑
i=2

aibi(a1 + b1 + · · ·+ ai−1 + bi−1),
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and fixing ai + bi this is maximized when ai = bi. If we agree to maximize
the function over the half-integers rather than over the integers, we may
assume ai = bi.

If k > 3, we want to contradict the assumption that π was optimal, by
different reductions. If ak ≤ ai for all i �= k, we construct

π′ = (k − 1)ak−1 · · · 2a212(a1+kak)2a2 · · · (k − 1)ak−1

by replacing each occurrence of k by k occurrences of 1. This destroys
2a2k(a1 + · · · + ak−1) occurrences of 212, and adds 2kak(a

2
2 + · · · + a2k−1) ≥

2ka2k(a1 + · · ·+ ak−1) occurrences. Thus π was not optimal.
So assume ak ≥ ai for some i. Then there is some i for which ai ≤ ai+1.

Construct

π′′ = kak · · · (i+ 1)ai iai+1 · · · 12(a1+ai+1−ai) · · · iai+1 (i+ 1)ai · · · kak .

In words, we interchange the block lengths of i and i+ 1. This allows us to
insert 2(ai+1 − ai) letters 1 in the bottom.

So going from π to π′′, the number of subsequences (i + 1)i(i + 1) is
reduced from 2ai−1a

2
i to 2a2i−1ai, so has decreased by 2ai−1ai(ai−ai−1). The

number of subsequences j1j has increased by 2(ai − ai−1)(a
2
2 + · · · + a2k) ≥

2a2i (ai−ai−1). All other occurrences of 212 are naturally preserved. Thus, we
have added more occurrences than we have destroyed, so π was not optimal.

To conclude, π is not 212-optimal if k ≥ 3, so any 212-optimal composi-
tion uses only the letters 1 and 2. By Theorem 3.5, δ(212) = 1

18 .

3.3. Three letter permutation patterns

In order to complete the list of packing densities of three letter patterns
among compositions, we have to find δ(τ), where τ is a permutation pattern
of length three. By the reversal operation, we can reduce these 6 cases to
three, namely, δ(123), δ(132) and δ(213).

Proposition 3.8. We have δ(213) = 1
27 .

Proof. Let π = π1 · · ·πm be any 213-optimal composition for n ≥ 6. By
Proposition 3.4, we can assume that π has the form π′1aπ′′, where each letter
of π′ and π′′ is at least 2, π′ is decreasing and π′′ is increasing. Replacing a
letter x ≥ 3 in π′ by 21x−2, we increase the number occurrences of 213 which
gives a contradiction to the 213-optimality of π. Thus π can be written as
2b1aπ′′, where each letter of π′′ is at least 2. If we have in π′′ a letter x ≥ 4,
then changing x to 1s3t where t maximal, we get a contradiction of the
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optimality of π. If π′′ contains a letter 2 then moving it on the left side of

the first occurrence of the letter 1 we increase the number occurrence of 213.

We thus obtain that π has the form 2b1a3c. The number of occurrences of

213 in π is now the maximal abc, for which a + 2b + 3c = n, which implies

that

δ(213) = lim
n→∞

n
3
n
6
n
9

n3/6
=

1

27
,

as claimed.

We proceed by finding the packing densities of the patterns 123 and 132.

It is easy to see that 123-optimal composition has the form 1a12a2 · · · kak and

the 132-optimal composition has the form 1a1kak · · · 2a2 . Indeed, by Propo-

sition 3.4, the optimal compositions are unimodal, and moving every letter

j < k to the appropriate side of kak does not reduce the number of occur-

rences. In both cases we have
∑

i ai = N , and the number of occurrences

is ∑
1≤i<j<l≤k

aiajal.

In particular, this shows that δ(123) = δ(132).

Proposition 3.9. The packing densities δ(123) and δ(132) both equal the

unique positive root of 17496x4 + 38070x3 + 2610x2 − 100x − 3, which is

approximately 0.041126.

Proof. We already argued that it suffices to consider the pattern 123. By

Lemma 3.3 it suffices to consider compositions of the form 1a12a23a34a45a5 ,

and maximize ∑
1≤i<j<l≤5

aiajal

subject to
∑

i ai = n. Turning to the corresponding real optimization prob-

lem we get

δ(123) = 6max

⎧⎨
⎩

∑
1≤i<j<l≤5

αiαjαl : 0 ≤ α,
∑

iαi = 1

⎫⎬
⎭ .

Differentiation yields no interior extreme points, so we conclude α5 = 0 for

the optimum. Differentiating again, and setting the derivatives to zero, we
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get the equations

0 = α3 + α2 − 8α4α3 − 8α4α2 − 8α3α2 − 3α2
3 − 2α2

2

0 = α4 + α2 − 6α4α3 − 8α4α2 − 6α3α2 − 4α2
4 − 2α2

2

0 = α4 + α3 − 8α4α3 − 4α4α2 − 4α3α2 − 4α2
4 − 3α2

3

α1 = 1− (5α5 − 4α4 − 3α3 − 2α2)

This system of equations has a unique solution with all αi in (0, 1), as
can be easily seen with any computer algebra system. Indeed, αi will be a
root of the polynomial

P4 = −1 + 34t− 216t2 + 252t3 + 432t4 α4 ≈ 0.03828

P3 = −1 + 13t+ 6t2 − 234t3 + 162t4 α3 ≈ 0.08361

P2 = −1 + 2t+ 56t2 − 156t3 + 72t4 α2 ≈ 0.14245,

so α1 = 1− (4α4 − 3α3 − 2α2) ≈ 0.31116. Now we find

δ(123) = 6(α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4) ≈ 0.041126,

to be the (unique) positive root of 17496x4+38070x3+2610x2−100x−3.

4. Subword patterns

In this section, we will consider another notion of patterns. This time, an
occurrence of τ in π is a subword πiπi+1 . . . πi+� that is order-isomorphic to
τ . This is equivalent to generalized patterns with no dash, as defined in [3].
We will let νw(τ, π) denote the number of occurrences of τ as a subword in
π. We will also define

μw(τ, n) = max{νw(τ, π) | π ∈ Cn},

dw(τ, π) =
νw(τ, π)

n
,

δw(τ, n) =
μw(τ, n)

n
= max{dw(τ, π) | π ∈ Cn},

δw(τ) = lim
n→∞

δw(τ, n)

When no confusion can arise, we may omit the subscript w. Again, ν(τ̄ , π̄) =
ν(τ, π), so packing densities are invariant under reversals. This is why we
can restrict attention to patterns τ = τ1 · · · τk where τ1 ≤ τk.
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For any word τ , we define its m:th power τm to be the concatenation of
m copies of m.

It is clear that νw(τ, τ
k) ≥ k, and τk ∈ Ckn if τ ∈ Cn. On the other hand,

each letter of π can start at most one occurrence of τ , and the length of π
is no greater than its size |π|. So for any pattern we have 1

|τ | ≤ δw(τ) ≤ 1.

We define a word τ = τ1 · · · τk to be i-overlapping, 1 < i < k − 1 if
the initial segment τ1 · · · τi of τ is order-isomorphic to the final segment
τk+1−i · · · τk. If τ is not i-overlapping for any 1 < i < k − 1, then τ is said
to be non-overlapping.

The classes of i-overlapping and non-overlapping patterns are clearly
closed under reversal.

Example 4.1. 1324 is 2-overlapping, since 13 ∼= 24.
1432 is non-overlapping, since every initial sequence starts with an as-

cent, while no final segment does.

The non-overlapping patterns form a nice class, since they can only be
packed in a very limited number of ways. The following definition gives the
crucial operation

Definition 4.1. If σ has length k, τ has length 	, and σk − τ1 = j ≥ 0,
define the gluing of σ and τ to be

〈σ, τ〉 = σ1 · · ·σkτ∗2 · · · τ∗� ,

where

τ∗i =

{
τi if τi < τ1
τi + j otherwise

We note that gluing is associative, and define the m:th glued power of τ
in the natural way, by

τ 〈m〉 =

{
τ if m = 1

〈τ 〈m−1〉, τ〉 otherwise

These definitions are most naturally thought of when τ1 = 1, in which
case we just shift the second pattern up by j, so that we can identify the
last letter of the first pattern with the first letter of the latter.

If τ has length k, we note that τ 〈m〉 has an occurrence of τ starting at
position (k − 1)i+ 1 for i = 0, . . . ,m− 1. As an example, 132〈3〉 = 1324354
has three occurrences of 132, namely 132, 243 and 354.

The glued powers, and powers of these, happen to be optimal for non-
overlapping patterns, and this allows us to determine their packing density
exactly.
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Theorem 4.1. Let τ be a non-overlapping reduced pattern of length k,

and let s be the number of letters in τ that are greater than or equal to

min(τ1, τk).

If sτ1 ≤ (s− 1)τk, then δτ = 1
|τ | .

In general,

δτ =
p

p|τ | − (p− 1)τ1 + (s− 1)(τk − τ1)
(
p
2

) ,

where p = � τ1
(s−1)(τk−τ1)


.

Proof. Assume without loss of generality that τ1 ≤ τk, so s is the number of

letters in τ that are greater than or equal to τ1.

Let πm be a composition of minimal size in which there arem occurrences

of τ . The essential part of the proof will be finding the asymptotics of the

sequence {|πm|}.
It is clear that πm can not contain any superfluous letters, i.e. every letter

in πm must appear in some occurrence of τ . Since τ is non-overlapping, no

letter in any word can appear in more than two subword-occurrences of τ .

Moreover, if a letter appears in two occurrences, it appears as τ1 in one, and

as τk in the other.

So we can construct πm+1 from πm by either concatenation πmτ , or by

identifying the first letter of the next occurrence of τ with the last letter of

πm. Note that the word with the smallest size that is order-isomorphic to τ

and starts with τk = τ1 + j is τ∗, defined as before by

τ∗i =

{
τi if τi < τ1
τi + j otherwise.

Thus, either πm+1 = πmτ or πm+1 = 〈πm, τ〉. Moreover, which of the two

cases holds only depends on the last letter of πm, since this determines which

of the two compositions is smaller. Indeed, let t be the last letter of πm. Then

|πmτ | = |πm|+ |τ |, whereas

|〈πm, τ〉| = |πm|+ |τ | − τ1 + (t− τ1)(s− 1).

So we choose πm+1 = 〈πm, τ〉 if (t − τ1)(s − 1) ≤ τ1, i.e. if t ≤ sτ1
s−1 , and

πm+1 = πmτ otherwise.

By induction, we thus see that πm has the form (τ 〈p〉)�
m

p
�τ 〈q〉 for some

p and q. We also know that τ 〈p〉 is the smallest glued power of τ whose last
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letter is greater than sτ1
s−1 . But the last letter of τ 〈p〉 is τ1 + p(τk − τ1), so p

is the smallest integer such that

p(τk − τ1) >
sτ1
s− 1

− τ1 =
τ1

s− 1
.

Now the asymptotic packing density in πm is clearly seen to equal that
in τ 〈p〉, which is

p

|τ 〈p〉|
=

p

p|τ | − (p− 1)τ1 + (s− 1)(τk − τ1)
(
p
2

) .

Another class of subword patterns that is easy to study are the strictly
increasing ones.

Proposition 4.2. Let τk = 12 · · · k. Then δ(τk) =
1

2k−1 .

Proof. The letter 1 can only appear as the first letter in an occurrence of τk,
so every time the letter 1 is repeated in π, that splits the occurrences of τk
in π into “before” and “after”. For π to be optimal, both parts of π must be
optimal, so we can write π = π1 · · ·πm for some m, where each πi is optimal
and only contains one letter 1. Now each πi must be strictly increasing,
otherwise we could reduce letters and get another 1. So the maximal packing
density of τk is really obtained in some τ�, 	 ≥ k.

We will say that the price of an occurrence is the sum of the letters that
we have to add to obtain that occurrence. So the price of the first occurrence
of τk is

(
k+1
2

)
, and the price of the ith occurrence is i + k − 1 when i ≥ 2.

The optimal packing is obtained when we can no longer add an occurrence
without increasing the average price.

The average price of the j first occurrences is

∑k+j−1
i=1 i

j
=

(
k+j
2

)
j

=
(k + j)(k + j − 1)

2j
.

The price of the next occurrence is j + k, and this is more expensive than
the average if j ≤ k. Equality holds if j = k − 1, so both τ2k−1 and τ2k−2

are optimal packings of τk.
The packing density of τk is thus

d(τk, τ2k−1) =
k(
2k
2

) =
1

2k − 1
.
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Table 1: Packing densities of 3-letter subwords

τ δ(τ) τ δ(τ) τ δ(τ)

111 1 121, 212 1
3 112 1

4

123, 122 1
5 213 2

11 132 1
6

Table 2: Packing densities of 4-letter subwords

τ δ(τ)

1111 1

1212 1
3

1121, 2112 1
4

1112, 1221, 2122 1
5

1122, 1213, 1231, 1312, 2132, 3123 1
6

2113 2
13

1234, 1123, 1132, 1222 1
7

1232, 1322, 2123, 2213 1
8

1223 2
17

1324, 2413, 3124, 3214, 1233, 1323, 1332, 2133, 2313 1
9

1243, 1342, 1423, 1432, 2134, 2143, 2314 1
10

Note that every pattern with three letters is either non-overlapping,

trivial or monotone. Thus we can find their packing densities using the

results above, and these are found in Table 1.

We can also tabulate the packing densities of patterns with four letters,

as in Table 2. To do this requires some care, because it is not true that every

four letter pattern is either non-overlapping, trivial or monotone. So to add

another occurrence, it does not suffice to determine “whether to glue or to

start a new word”, but also “how many letters to glue”.

For a given pattern, it is an easy task to (let your computer) compare

the corresponding packing densities, but a general formula seems harder to

get.

For the four letter patterns (see Table 2), however, it can be verified

case by case that the optimal packing is always “glued as tightly as possi-

ble”, meaning that when packing a k-overlapping pattern, we always identify

either k letters or none.
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5. Generalized patterns

We will now consider packing generalized patterns, defined in [3]. A general-
ized pattern is a word τ with dashes – between some letters. An occurrence
of τ in π is an occurrence of τ as an ordinary pattern, where the letters
corresponding to τi and τj must be consecutive, unless there is a dash be-
tween τi and τj . For example, the subsequence 243 in 2413 is an occurrence
of 13–2, but is not an occurrence of 1–32. We call the dash-free parts of the
pattern “blocks” or “subwords” interchangeably.

An occurrence in π of a generalized pattern τ with i dashes is thus given
by i+1 disjoint subwords, and specifically by i+1 indices in π. So it makes
sense to define the packing density of τ in π as

d(τ, π) =
ν(τ, π)(

n
i+1

) .

As usual, we define

δ(τ) = lim
n→∞

max{d(τπ) | π ∈ Cn}.

This definition agrees with that of δw when τ has no dash, and with our
first definition if τ is a classical pattern (so has dashes between every letter).
As further evidence that the definition is a reasonable one, we prove that
the packing density is always strictly positive.

Theorem 5.1. Let τ be a generalized pattern with i dashes and |τ | = k.
Then k−(i+1) ≤ δ(τ) ≤ 1.

Proof. An occurrence of τ in π is given by the indices where the i + 1
subwords start. Since π ∈ Cn has at most n letters, we have ν(τ, π) ≤

(
n

i+1

)
,

so d(τ, π) ≤ 1 for every composition π. Thus δ(τ) ≤ 1.
Now let τn be the word constructed by concatenating n copies of τ , and

deleting all dashes. Then τn ∈ Cnk. For every choice of 1 ≤ a1 ≤ · · · ≤
ai+1 ≤ n, we get an occurrence of τ in τn, by picking the j:th subword in
τ from the ajth copy in τn. But there are

(
n+i
i+1

)
such sequences {ai}. Thus,

we have

ν(τ, τn) ≥
(
n+ i

i+ 1

)
,

which gives

δ(τ) ≥ lim
n→∞

d(τ, τn) ≥ lim
n→∞

(
n+i
i+1

)
(
nk
i+1

) = k−(i+1).
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In this section, we mainly consider generalized patterns on three letters.
We have already dealt with classical patterns and with subwords, so we will
now try to find the packing densities of patterns with one dash. In some
cases, we get results for more general classes of patterns for free. As before,
we will see that the task is fairly easy in the binary case, and much harder
if the pattern is a permutation.

By reflection invariance, we can restrict attention to patterns ab–c.

Proposition 5.2. A generalized pattern τ has packing density 1 if and only
if all its letters are equal.

Proof. We let k denote the length of the pattern, and i the number of dashes.
If σ = 1a1–1a2– · · · –1ai+1 , where

∑
aj = k, then an occurrence of σ in 1n is

given by the spots bj where the subwords start, with the restriction that the
subwords do not overlap, so bj+1 − bj ≥ aj for each j. Such a choice can be

made in
(
n−k
i+1

)
ways, so

d(σ, 1n) =

(
n−k
i+1

)
(

n
i+1

) −→ 1,

as n → ∞. Thus, δ(τ) = 1.
Now let τ be any pattern with δ(τ) = 1, and let a be the number of

blocks in τ that are not constantly 1. We want to show that a = 0. Let πn
be a τ -optimal composition of n, that has an letters that are not 1. So πn
has length at most n− an, whence ν(τ, πn) ≤

(
n−an

i+1

)
. We get

(
n−an

i+1

)
(

n
i+1

) ≥ d(τ, πn) −→ 1,

so n−an

n → 1, an

n → 0.
On the other hand, non-minimal elements in τ must correspond to non-

minimal elements in πn, so

d(τ, πn) =
ν(τ, πn)(

n
i+1

) ≤
(
an

a

)(
n−an

i+1−a

)
(

n
i+1

)

≤
aan(n− an)

i+1−a
(
i+1
a

)
ni+1

≤
(
i+ 1

a

)(an
n

)a
−→ 0,

if a �= 0. This is a contradiction, so δ(τ) = 1 implies that a = 0, which means
that τ is constant.
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The next thing to consider would be monotone patterns whose every
dash-free subword is constant. But even this seemingly easy case is surpris-
ingly hard. Focusing on binary patterns, we will instead continue with the
case τ = 1x+1–2y+1.

Proposition 5.3. Let τ = 1x+1–2y+1, where x, y ≥ 0. Then δ(τ) = 1
4 .

Proof. Let π be any composition. Sorting the letters in π increasingly does
not reduce the number of occurrences of τ . Hence, a τ -optimal composition
has the form π = 1a1 · · · kak , and summing over the letters in the occurrence,
we get

ν(τ, π) =
∑

1≤i<j≤k

(ai − x)+(aj − y)+,

where we use the notation x+ = max(x, 0).
If k ≥ 3, construct π′ = 1a1+ak2a2 · · · (k − 2)ak−2(k − 1)ak−1+ak , by re-

placing each letter k by k−1 and inserting ak letters 1 in the beginning. We
may certainly assume that ak ≥ y, otherwise the letters k would be of no
use in π. Then (ak−1 − x)+ · (ak − y) occurrences have been destroyed when
going from π to π′, while all others are naturally preserved. But we have also
added ak(ak+ak−1−y) ≥ akak−1 occurrences of the form 1x+1(k−1)y+1, so
we have added more occurrences than we have destroyed. This shows that
π was not optimal.

So an optimal composition has the form π = 1n−2a2a, and

ν(τ, π) = (n− 2a− x)(a− y) = −2a2 + (2y + n− x)a+ xy.

For fixed n, x and y, this is maximized when a = 2y+n−x
4 ≈ n

4 for big n.
Then

d(τ, π) ≈
n
2 · n

4(
n
2

) −→ 1

4
,

when n → ∞. So δ(τ) = 1
4 , independently of x and y.

In the next two propositions, we take a joint look at the remaining
binary three letter patterns, with one dash. These patterns have the common
property that they have a subword using both letters 1 and 2.

Proposition 5.4. The patterns 12–2, 21–2, 2–12 and 2–21 all have packing
density 1/8.

Proof. By reversal we may consider only the first two cases. Write τ = w–2,
where w is 12 or 21. Let π be any composition, and let π′ be the composition
obtained by replacing every letter in π that is ≥ 3, with the two-letter
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subword w of τ . Then every occurrence of τ in π gives an occurrence in π′.
Indeed, subsequences w–2 are preserved, while every pair 3–3 in π gives an
occurrence w–2 as a subsequence of w–w in π′.

This shows that a τ -maximal composition uses only the letters 1 and 2.
Moreover, every letter 1 must be in a subword w, i.e preceded (if w = 21)
or succeeded (if w = 12) by a letter 2. Hence we can write the optimum
as a concatenation of words w and ‘2’. An occurrence of τ comes from a
subsequence w–2 or w–w, so the number of occurrences increases if every w
is moved to the beginning of the word.

So an optimal composition has the form π = wx2y, with 3x + 2y = n
and

ν(τ, π) =

(
x

2

)
+ xy ≈ x2

2
+

x(n− 3x)

2
=

x(n− 2x)

2
.

This is maximized over the reals (and hence asymptotically) when x = n/4,
so

δ(12–2) = δ(21–2) = lim
n→∞

n
4 · n

2

2
(
n
2

) =
1

8
.

When the isolated letter in the pattern is 1, we need a slight twist of the
argument, but the big picture is the same.

Proposition 5.5. The patterns 12–1, 21–1, 1–12 and 1–21 all have packing
density 1/5.

Proof. By reversal we may consider only the first two cases. Write τ = w–1,
where w is 12 or 21. Let π be any composition. If a letter 2 occurs in π, but
not preceded (if w = 12) or succeeded (if w = 21) by a letter 1, then it can
only be used as a ‘1’ in an occurrence of τ . So we can change every such
letter into a letter 1, without destroying occurrences.

Now, we can assume that every letter 2 is preceded (succeeded) by a
letter 1 in π. But this allows us to construct π′ by replacing every letter
≥ 3 with the word w, without destroying occurrences. Indeed, every pair of
letters ≥ 3 in π will give an occurrence of τ in π′. Also, every subsequence
13–1 (31–1) in π, gives a subsequence w–1 in π′. Finally, for each subsequence
23–2 (32–2) in π, the second letter 2 comes with a letter 1 next to it, which
gives an occurrence of w–1 in π′.

This shows that a τ -maximal composition uses only the letters 1 and
2, and that every letter 2 is contained in a subword w. An occurrence of
τ comes from a subsequence w–1 or w–w, so the number of occurrences
increases if every w is moved to the beginning of the word.
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So an optimal composition has the form π = wx1y, with 3x+ y = n and

ν(τ, π) =

(
x

2

)
+ xy ≈ x2

2
+ x(n− 3x) =

x(2n− 5x)

2
.

This is maximized over the reals (and hence asymptotically) when x = n/5,
so

δ(12–1) = δ(21–1) = lim
n→∞

n
5 · n
2
(
n
2

) =
1

5
.

6. Patterns of the form xy–z where xyz is
a permutation pattern

This section will be a collection of exact packing densities for the six re-
maining three letter patterns with one dash. The patterns come naturally
in pairs with the same packing densities.

Proposition 6.1. We have δ(32–1) = δ(23–1) = 4
35 .

Proof. We start by considering the pattern 32–1. Assume that π is an op-
timal composition for 32–1. If there is i with πi = πi+1 > 1 then we can
remove the letter πi and put πi ones at the end of π, without decreasing the
occurrence number. Also any letter 1 can be moved to the end of the word
without destroying occurrences. Thus we can write π = w1w2 . . . ws111 . . . 1
where wj is strictly decreasing, and the first letter in wi+1 is strictly larger
than the last letter in wi. (Observe that the upper indices, for the time
being, do not denote exponents.)

If there is any letter in wj , say wj
m, satisfying wi

a > wj
m > wi

a+1 where

i < j then moving the letter wj
m to the position between wi

a and wi
a+1 only

increases the number of occurrences of 32–1. If wj
m > wi

1, the same holds

when moving wj
m to the beginning of wi.

Since the optimal composition can be assumed to be reduced, this means
that we can write π = (a1(a1−1) · · · 2)(a2(a2−1) · · · 2) · · · (as(as−1) · · · 2)1t
where a1 > a2 > · · · > as ≥ 3. (We are now back to using exponents, so 1t

is the word with t letters 1.)
Now, we want to bound the size of the letters of an optimal composition.

For this purpose, let k ≥ 5, and suppose

(2) d̂(32–1, σ) :=
ν(32–1, σ)

2|σ|2 ≤ 4

35
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whenever σ uses only the letters 1, . . . , k − 1. We want to prove that the
same holds if we allow the letter k. Note that this would imply that if we
can get density above 4/35, we can do so only with the letters 1, . . . , 4, since
d̂(32–1, σ) ≈ d(32–1, σ) for large |σ|.

Let π = (k · · · 2)aσ, where σ uses no letters 1, . . . , k − 1. Let σ′ = (k −
1 · · · 2)aσ. Then |π| = |σ′|+ ka and

ν(32–1, π) = ν(32–1, σ′) +

(
a

2

)
(k − 3) + ax,

where x is the number of letters ≤ k − 2 in σ. Assume for a contradiction
that

4

35
≤ d̂(32–1, π) =

2ν(32–1, π)

|π|2 .

That would imply that

2(|σ′|+ ka)2 = 2|π|2 ≤ 35(ν(32–1, σ′) +

(
a

2

)
(k − 3) + ax).

But (2) says that

2|σ′|2 ≥ 35ν(32–1, σ′).

We thus would get

2k2a2 + 4ka|σ′| ≤ 35

(
a

2

)
(k − 3) + 35ax.

Division by a yields

2k
[
a+ 4|σ′|

]
≤ 35(a+ 1)

2
(k − 3) + 35x.

Observing that |σ′| ≥ x +
(
k+1
2

)
− 1, and using k ≥ 5, we obtain a contra-

diction.
The above shows that an optimal composition is (432)a(32)b1c, where

9a+5b+c = N and ν =
(
a
2

)
+ab+2ac+bc. Now we let (α, β, γ) = 1

N (a, b, c),
and relax the problem to the reals, with the restriction (α, β, γ) ≥ 0. We see
that an optimum is obtained at (α, β, γ) = 1

35(2, 0, 17).

Thus πN = (432)
2N

35 1
17N

35 is a 32–1-optimal composition. It follows that

δ(32–1) = lim
n→∞

d(32–1, πn) = lim
n→∞

2n
35

2
+ 42n

35
17n
35

n2
= 4/35.
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We now turn to the pattern 23–1. Let τ = (234)a1b, and note that

ν(23–1, τ) = 2ab+
(
a
2

)
. If we let a = 2n

35 and b = 17n
35 , we get d(23–1, τ) → 4

35
as n → ∞. Thus we have shown that δ(23–1) ≥ 4

35 .

On the other hand, suppose δ(23–1) > 4
35 , and let τn be a sequence of

compositions with |τn| = n and d(23–1, τn) → δ(23–1). Decompose

τ = w1 . . . ws into maximal non-decreasing subwords as before. Consider

the composition τ ′ = w̄1 . . . w̄s obtained by reversing each of the maxi-

mal non-decreasing subwords, into (not necessarily maximal) non-increasing

ones. Any occurrence of 23–1 in τ induces an occurrence of 32–1 in τ ′, so
ν(32–1, τ ′) ≥ ν(23–1, τ).

This is a contradiction, knowing that δ(32–1) = 4
35 . Thus we have

δ(23–1) = 4
35 .

Proposition 6.2. We have δ(13–2) = δ(31–2) = 2
31 .

Proof. Let π = π1 · · ·πm be any 13–2-optimal composition for n ≥ 6, and

assume π has an increasing subword πi−1 ≤ πi ≤ πi+1, where at least one

of the inequalities is strict. Then construct π′ = π1 · · ·πi−1πi+1 · · ·πmπi, by

moving the middle letter of the subword to the end of π. If j ≥ i and either

of πi−1πiπj and πiπi+1πj is an occurrence of 13–2 in π, and then πi−1πi+1πj
is an occurrence in π′. So ν(13–2, π) ≤ ν(13–2, π′), so π′ is also optimal.

Similarly, if πi−1 ≥ πi ≥ πi+1, then πi can never be used in the subword

13 of an occurrence of 13–2, so it can be moved to the end of the word.

Thus we can assume that π has the form π = x1y1x2y2 · · ·xdydρ where

xi + 1 < yi > xi+1 and ρ is constant. Also we can assume that 1 = x1 ≤
x2 ≤ · · · ≤ xd and y1 ≥ y2 ≥ · · · ≥ yd.

Assume x1 = · · · = xl = 1 �= xl+1. Then we can replace xj by xj − 1

and replace yj by yj − 1 whenever l < j ≤ d. This allows us to add d − l

letters 2 in the end of the word, and this procedure does not decrease the

number of occurrences, so we can assume that xi = 1 for 1 ≤ i ≤ d. This

means that π = 1y11y2 · · · 1ydρ, where yi ≥ 3 and ρ is constant. Reducing

letters without destroying order type, we can write π = (1k)ak · · · (13)a32b,

with ai > 0 for 3 ≤ i ≤ k.

Let π̂ be the word where we have replaced (1i) by i+ 1. An occurrence

of 13–2 in π corresponds exactly to an occurrence of 2–1 in π̂, and π̂ is

2–1-optimal among compositions on the letters in N� {1, 3}.
The same arguments as above, changing increasing subsequences to de-

creasing ones, and with (i1) instead of (1i), show that a 31–2-optimal com-

position has the form π = (k1)ak · · · (31)a32b. Replacing (i1) by i+1, we see

that this is also equivalent to the same π̂.
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So we need to maximize the function

ν(2–1, π̂) =
∑

i �=j, i,j �∈{1,3}
bibj ,

subject to
∑

j jbj = n.

First, we consider 2b2+4b4+5b5+6b6 = p ≤ n fixed. Dividing by p and
relaxing the problem to the reals, we want to optimize αβ+αγ+αδ+βγ+
βδ + γδ subject to 2α+ 4β + 5γ + 6δ = 1. Differentiation yields no interior
extreme point, so in an optimal solution b6 = 0, and thus of course bj = 0
for all j ≥ 6, so p = n.

We want to optimize the function αβ + αγ + βγ subject to 2α + 4β +
5γ = 1. Differentiation gives the maximum (α, β, γ) = 1

31(7, 3, 1).

So a 31–2-optimal composition is (41)a(31)3a27a, and a 13–2-optimal
composition is (14)a(13)3a27a, for any a. These have packing densities

δ(13–2) = δ(31–2) =
a2(1 · 3 + 1 · 7 + 3 · 7)(

31a
2

) → 2

31
,

as required.

Proposition 6.3. We have δ(21–3) = 1
18 .

Proof. First, let πk = (21)k3k. Note that ν(21–3, πk) = k2 and |πk| = 6k, so

d(21–3, πk) → 1
18 . This shows that δ(21–3) ≥ 1

18 . Since
(|π|
2

)
≈ |π|2

2 , we are
done if we can show that

(3)
2ν(21–3, σ)

|σ|2 ≤ 1

18

holds for every composition σ.

We proceed by restricting the problem to a finite alphabet. Assume that
k ≥ 6 is the largest letter in τ , and that (3) holds for any composition σ
using only letters 1, . . . , k− 1. We will conclude that (3) holds for τ as well.

Since k is the largest letter in τ , it can only be used as the last letter in
an occurrence of 21–3. We may therefore assume that all the letters k come
in the end of τ , so τ = σkp, where σ only uses the letters 1, . . . , k− 1, so (3)
holds for σ.

Assume for a contradiction that

(4)
2ν(21–3, τ)

|τ |2 >
1

18
.
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Observe that |τ | = |σ|+ kp ≥ |σ|+ 6p and

ν(21–3, τ) = ν(21–3, σ) + pν(21, σ),

so (4) implies that

36 (ν(21–3, σ) + pν(21, σ)) > |τ |2 ≥ |σ|2 + 36p2 + 12p|σ|.

But (3) holds for σ, so 36ν(21–3, σ) ≤ |σ|2, which gives the inequality

36pν(21, σ) > 36p2 + 12p|σ|.

But the subword pattern 21 has packing density 1/3, so 36ν(21, σ) ≤ 12|σ|,
which gives a contradiction.

We have now shown that if there is a a composition π that violates (3),
then π can be chosen to use only the letters 1, . . . , 5.

Decompose π = α1 · · ·αs into maximal non-increasing subwords. By
letter reduction, we can assume α1 = 21. Moving the largest letters to the
right does not decrease the occurrence number. Hence we may assume that
αs is constant, and all the other blocks are strictly decreasing.

Suppose that p is the greatest letter in the word α1 · · ·αj . If αj+1 has
some letter ≥ p + 2, then we can replace this letter by (p + 1, 1) without
deleting any occurrences of 21–3. So we may assume that the maximal letter
is increased by at most one for every subword α.

Any letter 2 must be followed by a letter 1, otherwise we could reduce
it, since it can only be used as 1 or 2 in an occurrence of 21–3. Finally,
for every block, move its first letter k to the right-most block that has the
first letter ≤ k − 1. Move any letter that is not the largest in its block to
the left-most block in which it is still not largest. These operations do not
destroy occurrences.

This leaves us with three different possible forms of an optimal compo-
sition:

• π3 = (21)a3b, with |π3| = 3a+ 3b and ν = ab.
• π4 = (21)a(321)b(31)c4d, with |π4| = 3a+ 6b+ 4c+ 4d and
ν = ab+ ac+ ad+

(
b
2

)
+ bc+ 2bd+ cd.

• π5 = (21)a(321)b(31)c(4321)d(41)e5f with |π5| = 3a+ 6b+ 4c+ 10d+
5e+ 5f and
ν = a(b+c+2d+e+f)+b(c+3d+2e+2f)+c(d+e+f)+d(2e+3f)+ef .

Relaxing the variables to the reals, dividing by |π|2
2 to get the asymptotic

density, and differentiating, we obtain the optimal parameters in each of the



Packing a binary pattern in compositions 135

cases. The overall maximum is obtained by π3 when a = b = n/6, in which
case d(21–3, π3) = 1/18. Hence δ(21–3) = 1/18.

Proposition 6.4. We have δ(12–3) = 1
18 .

Proof. By copying the arguments from the case 32–1, but looking at increas-
ing subwords rather than decreasing ones, we see that an optimal packing
has the form

π = (12)a2(123)a3 · · · (1 · · · k − 1)ak−1kak ,

for some k, and ai ≥ 0. Our next step is to bound the size of the alphabet. If
2ν(12–3,σ)

|σ|2 ≤ 1
18 holds whenever σ uses only the letters 1, . . . , k − 1, we want

to show that the same inequality holds for τ , which is allowed to use the
letter k as well. If k ≥ 6, this is proven by the exact same argument as for
the case 21–3.

Thus an optimal composition has either of the forms

• π3 = (12)a3b, with |π3| = 3a+ 3b and ν = ab.
• π4 = (12)a(123)b4c, with |π4| = 3a+ 6b+ 4c and

ν = ab+ ac+
(
b+1
2

)
+ 2bc.

• π5 = (12)a(123)b(1234)c5d with |π5| = 3a+ 6b+ 10c+ 5d and
ν = a(b+ 2c+ d) +

(
b+1
2

)
+ b(3c+ 2d) + 3

(
c+1
2

)
+ 3cd.

Relaxing the variables to the reals, dividing by |π|2
2 to get the asymptotic

density, and differentiating, we obtain the optimal parameters in each of the
cases. The overall maximum is obtained by π3 when a = b = n/6, in which
case d(12–3, π3) = 1/18. Hence δ(12–3) = 1/18.

Thus we have found the packing densities of all three letter patterns
with one dash.

7. Open problems

Quite disturbingly, the monotone (classical) pattern 1a12a2 · · · kak remain
unsolved when k ≥ 3, even if we would let all the ai equal 1. The same
is true for the generalized pattern 1a1–2a2– · · · –kak . In both these cases, it
is clear that an optimal composition has the form 1x1 · · · 	x� but to find an
optimum we must optimize both 	 and {xi} simultaneously.

One could consider the following generalized problem: for each letter i,
assign a cost ci (subject to some technical constraints). Define ‖π‖ to be the
sum of the costs for the letters in π, and let the packing density of τ in π

be ν(τ,π)

(‖π‖
i+1)

, where τ has i dashes.
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Then pattern packing in words is the special case where all ci = 1, and
pattern packing in compositions is the case ci = i. Some of our methods rely
on that the ci are ordered in the same way as the letters i. Maybe looking
at the generalized version might give some better insight in the structural
essence of pattern packing problems.
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[4] M. Bóna, Combinatorics of Permutations, CRC Press, Boca Raton,
2004. MR2078910
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[8] P.A. Hästö, The packing density of other layered permutations, Elec-
tron. J. Combin. 9(2) (2002–2003) #R1. MR2028271

[9] S. Heubach and T. Mansour, Combinatorics of Compositions and
Words, Discrete Mathematics and its Applications (Boca Raton), CRC
Press, Boca Raton, FL, 2010. MR2531482

[10] M. Hildebrandt, B. Sagan and V. Vatter, Bounding quantities related
to the packing density of 1(m+ 1)m · · · 2, Adv. Appl. Math. 33 (2004)
633–653. MR2081046

http://www.ams.org/mathscinet-getitem?mr=1887086
http://www.ams.org/mathscinet-getitem?mr=2114184
http://www.ams.org/mathscinet-getitem?mr=1758852
http://www.ams.org/mathscinet-getitem?mr=2078910
http://www.ams.org/mathscinet-getitem?mr=1900002
http://www.ams.org/mathscinet-getitem?mr=2028289
http://www.ams.org/mathscinet-getitem?mr=2552604
http://www.ams.org/mathscinet-getitem?mr=2028271
http://www.ams.org/mathscinet-getitem?mr=2531482
http://www.ams.org/mathscinet-getitem?mr=2081046


Packing a binary pattern in compositions 137

[11] A. Price, Packing densities of layered patterns, Ph.D. thesis, University
of Pennsylvania, 1997. MR2695616

[12] W. Stromquist, Packing layered posets into posets, manuscript, unpub-
lished, 1993.

[13] D. Warren, Optimal packing behavior of some two-block patterns, Ann.
Comb. 8 (3) (2004) 355–367. MR2161643

[14] D. Warren, A mild generalization of two results of Hästö, preprint, 2005.
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