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A note on Lovász removable path conjecture

Jie Ma

Lovász [8] conjectured that for any natural number k, there exists
a smallest natural number f(k) such that, for any two vertices s
and t in any f(k)-connected graph G, there exists an s-t path P
such that G−V (P ) is k-connected. This conjecture is proved only
for k ≤ 2. Here, we strengthen the result for k = 2 as follows:
for any integers l > 0 and m ≥ 0, there exists a function f(l,m)
such that, for any distinct vertices s, t, v1, . . . , vm in any f(l,m)-
connected graph G, there exist l internally vertex disjoint s-t paths
P1, . . . , Pl such that for any subset I ⊂ {1, . . . , l}, G − ∪i∈IV (Pi)
is 2-connected and {v1, v2, . . . , vm} ⊂ V (G)− ∪1≤i≤lV (Pi).

1. Introduction

The following conjecture is due to Lovász [8] which is still open for k ≥ 3:

Conjecture 1.1. For any natural number k, there exists a least natural
number f(k) such that, for any two vertices s, t in any f(k)-connected graph
G, there exists an s-t path P such that G− V (P ) is k-connected.

This conjecture has been proved for k ≤ 2. A theorem of Tutte [11]
shows that f(1) = 3. When k = 2, we have f(2) = 5 by a result of Chen,
Gould and Yu [2] and, independently, of Kriesell [6]. Later, Kawarabayashi,
Lee and Yu [4] characterized the 4-connected graphs G in which there exist
two vertices s, t ∈ V (G) such that G− V (P ) is not 2-connected for any s-t
path P in G.

Conjecture 1.1 is equivalent to asking whether there exists a function
g(k) such that for any g(k)-connected graph and for any edge st ∈ E(G),
there exists a cycle C containing st such that G − V (C) is k-connected.
Lovász [8] also made a weaker conjecture: any (k+3)-connected graph con-
tains a cycle C such that G−V (C) is k-connected, which was confirmed by
Thomassen [10]. Another weaker version of Conjecture 1.1 was proposed by
Kriesell [7]: there exists a function h(k) such that for any h(k)-connected
graph G and for any two vertices s, t ∈ V (G), there exists an induced s-t
path P in G such that G − E(P ) is k-connected. This weaker version was
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established by Kawarabayashi, Lee, Reed and Wollan [3]. In [3], the au-
thors further conjectured that there exists a function F (k) such that for any
F (k)-connected graph G and for any three distinct vertices s, t, u ∈ V (G), G
contains an s-t path P and a k-connected subgraph H such that u ∈ V (H)
and V (H) ∩ V (P ) = ∅; they also show that this conjecture implies Conjec-
ture 1.1. In this sense, it is useful to find an s-t path that avoids a highly
connected subgraph containing a specific vertex, which partially motivates
our work.

Conjecture 1.1 asks for one removable path. In [2], Chen, Gould and Yu
showed that in any (22l+2)-connected graph, there exist l internally vertex
disjoint paths between any two given vertices such that the deletion of any
one of these paths results in a connected graph. Recently, Kawarabayashi
and Ozeki [5] strengthened this result as follows: for any (3l+ 2)-connected
graph G and for any two vertices s, t ∈ V (G), there exist l internally vertex
disjoint s-t paths P1, . . . , Pl such thatG−∪l

i=1V (Pi) is 2-connected; they also
pointed out that if G is (2l + 1)-connected, then one can find l internally
vertex disjoint paths P1, . . . , Pl between any two given vertices such that
G− ∪l

i=1V (Pi) is connected.

In this note, we use a short argument to prove the following:

Theorem 1.2. For any integers l > 0 and m ≥ 0, let f(l,m) = 30l+10m+2.
Then for any distinct vertices s, t, v1, . . . , vm in any f(l,m)-connected graph
G, there exist l internally vertex disjoint s-t paths P1, . . . , Pl such that for
any subset I ⊂ {1, . . . , l}, G−∪i∈IV (Pi) is 2-connected and {v1, v2, . . . , vm}⊂
V (G)− ∪1≤i≤lV (Pi).

2. Proof of Theorem 1.2

We begin with some definitions. A linkage is a graph in which every con-
nected component is a path. A linkage problem in a graph G is a set of
pairs of vertices of G, for example, L = {{s1, t1}, . . . , {sk, tk}}. A solution
to the linkage problem L is a set of pairwise internally vertex disjoint paths
P1, . . . , Pk such that the ends of Pi are si and ti, and if x ∈ V (Pi) ∩ V (Pj)
for i 	= j then x = si or x = ti. The graph G is k-linked if every linkage
problem with k pairwise disjoint pairs of vertices has a solution.

Bollobás and Thomason [1] proved that every 22k-connected graph is k-
linked. Here we use the following improved bound by Thomas and Wollan [9]:

Lemma 2.1. Every 10k-connected graph is k-linked.

We also need the following lemma.
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Lemma 2.2. For any distinct vertices s1, . . . , sl, t1, . . . , tl, v1, . . . , vm in

(30l+10m)-connected graph G, there exist l internally vertex disjoint paths

P1, . . . , Pl in G and a 2-connected subgraph H of G − ∪1≤i≤lV (Pi) such

that the ends of Pi are si and ti for 1 ≤ i ≤ l, {v1, . . . , vm} ⊂ V (H),

|V (H)| ≥ 2l +m, and every vertex in {s1, . . . , sl, t1, . . . , tl} has at least one

neighbor in H.

Proof. We may find a neighbor ai of si and a neighbor bi of ti, for 1 ≤ i ≤ l,

such that a1, . . . , al, b1, . . . , bl, s1, . . . , sl, t1, . . . , tl, v1, . . . , vm are pairwise dis-

tinct, since G is (30l+10m)-connected. Now we look at the following linkage

problem in G:

L = {{s1, t1}, . . . , {sl, tl}, {a1, a2}, {a2, a3}, . . . , {al, b1},
{b1, b2}, . . . , {bl, v1}, {v1, v2}, . . . , {vm, a1}},

which has 3l + m pairwise disjoint pairs of vertices. By Lemma 2.1, we

have a solution of L: a collection of 3l+m paths {P1, . . . , P3l, Q1, . . . , Qm},
where, for 1 ≤ i ≤ 3l + m, the ends of the ith path of this collection

(in the order listed) are the two vertices of the ith pair in L (in the or-

der listed). Let H = (∪l+1≤i≤3lPi) ∪ (∪1≤j≤mQj), which is a cycle through

a1, . . . , al, b1, . . . , bl, v1, . . . , vm. Note that |V (H)| ≥ 2l+m. Then P1, . . . , Pl

and H satisfy the conclusion of the lemma.

Now, we are ready to give the proof of Theorem 1.2.

Proof. We may assume that l ≥ 2 or m ≥ 1; otherwise, l = 1,m = 0 and

the theorem follows from known results. So we have that l + m ≥ 2. Let

G′ = G − {s, t}. Since G is (30l + 10m + 2)-connected, G′ is (30l + 10m)-

connected. We may fix l neighbors of s, say s1, s2, . . . , sl, and l neighbors of

t, say t1, t2, . . . , tl, such that s1, . . . , sl, t1, . . . , tl, v1, . . . vm are distinct.

By Lemma 2.2, there is a collection P = {P1, . . . , Pl} of paths in G′

such that {v1, . . . , vm} is contained in a 2-connected subgraph D(P) of

G′−∪l
i=1V (Pi), |V (D(P))| ≥ 2l+m and any vertex of {s1, . . . , sl, t1, . . . , tl}

has a neighbor in D(P). We call such collection P feasible. We may choose

D(P) to be a maximal 2-connected subgraph of G′ − ∪1≤i≤lV (Pi), and

if there is no ambiguity we simply call it D. Without loss of generality,

we assume that the ends of Pi are si and ti for any 1 ≤ i ≤ l. If D =

G′−∪1≤i≤lV (Pi), then {s, ss1}∪P1∪{t1t, t}, . . . , {s, ssl}∪Pl∪{tlt, t} satisfy

the conclusion of Theorem 1.2. Thus we may assume D 	= G′−∪1≤i≤lV (Pi),

and let C1, . . . , Cq be the components of G′ − ∪1≤i≤lV (Pi)− V (D). By the
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maximality of D, D contains at most one neighbor of V (Ci) for 1 ≤ i ≤ q.
Without loss of generality, we assume that

|V (C1)| ≥ |V (C2)| ≥ · · · ≥ |V (Cq)|.

We choose a feasible collection P = {P1, . . . , Pl} in G′ such that

(1) |V (D(P))| is maximum, and
(2) subject to (1), |V (C1)|, |V (C2)|, . . . , |V (Cq)| are as large as possible

with the larger order components having priority, and
(3) subject to (2), |V (∪1≤i≤lPi)| is as small as possible.

Note that by Lemma 2.2, |V (D(P))| ≥ 2l + m. Now we consider G0 :=
G′[(∪1≤i≤lPi)∪Cq]. We claim that there exist a subset J ⊂ {1, 2, . . . , l} and
{aj , bj} ⊂ V (Pj) for all j ∈ J such that G′[(∪j∈JajPjbj) ∪ Cq] is connected
and it is separated from the other vertices of G0 by {aj , bj : j ∈ J}. The
existence of J follows by taking G′[(∪j∈JajPjbj)∪Cq] to be the component
of G0 containing Cq. Without loss of generality, we assume that bj ∈ ajPjtj
for j ∈ J (possible aj = bj). We pick J, {aj , bj : j ∈ J} such that

(4) if J ′ ⊂ J and {a′j , b′j} ⊂ V (ajPjbj) for j ∈ J ′ are such that G′[Cq ∪
(∪j∈J ′a′jPjb

′
j)] is connected and separated from the other vertices of

G0 by {a′j , b′j : j ∈ J ′}, then J ′ = J and for j ∈ J , a′j = aj and b′j = bj .

In this sense, we call J, {aj , bj : j ∈ J} minimal. We may assume that J =
{1, . . . , r}, r ≤ l. Let G1 := G′[(∪j∈JajPjbj)∪Cq], and Nq := V (D)∩N(Cq)
(hence |Nq| ≤ 1). We will prove the following claim, for any k ∈ J and any
x, y ∈ V (akPkbk − {ak, bk}), where y ∈ xPkbk − {bk} (possible x = y).

Claim. There exist r vertex disjoint paths in G1−V (xPky) from A := {aj :
1 ≤ j ≤ r} to B := {bj : 1 ≤ j ≤ r}.
Proof of Claim. Without loss of generality, we say k = 1. If not, then by
Menger’s Theorem there exists a cut of size p ≤ r− 1 in G1 − V (xP1y), say
W := {w2, w3, . . . , wp+1}, separating A from B. We see that ajPjbj has at
least one vertex in W for 2 ≤ j ≤ r; otherwise ajPjbj connects A and B.
Thus p = r − 1 and we may assume that wj ∈ V (ajPjbj) for 2 ≤ j ≤ r.
Now, W ∪ V (xP1y) is a cut in G1 which separates A from B.

LetD1 = ((∪2≤j≤rajPjwj)∪a1P1x)−(W∪{x}), D2 = ((∪2≤j≤rwjPjbj)∪
yP2b1)− (W ∪ {y}). We point out that at most one of {D1, D2} contains a
neighbor of Cq; otherwise, we can find a path in G1 from A to B through
Cq, disjoint from W ∪V (xP1y), contradicting to the fact that W ∪V (xP1y)
is a cut in G1 separating A from B. Without loss of generality, we assume
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that D1 does not contain any neighbor of Cq. Thus W ∪ V (xP1y) separates
A from Cq ∪B.

We may assume that x 	= y. Otherwise we have x = y, then W ∪ {x}
separates A from Cq ∪B, but x ∈ V (a1P1b1−{a1, b1}), so it contradicts (4),
in particular the choice of A. Now, we consider G2 := G′[(∪2≤j≤rajPjwj) ∪
a1P1y], and contract xP1y−{x} into a new vertex x′, then call the resulting
graph G3. Note that xx′ is an edge in G3.

There exist r vertex disjoint paths from A to W ∪ {x′} in G3 − {x}.
Otherwise, by Menger’s Theorem, there is a cut of size t ≤ r−1 in G3−{x},
say W ′ = {w′

2, . . . , w
′
t+1}, separating A from W ∪ {x′}. Clearly, ajPjwj has

at least one vertex in W ′ for 2 ≤ j ≤ r; so t = r − 1 and we may assume
that w′

j ∈ V (ajPjwj) for 2 ≤ j ≤ r. Then, it means that W ′ ∪{x} separates

A from W ∪V (xP1y) in G2; since W ∪V (xP1y) separates A from Cq ∪B in
G1, W ′ ∪{x} separates A from Cq ∪B in G1. But x ∈ V (a1P1b1)−{a1, b1},
which contradicts (4), in particular W ′ ∪ {x} contradicts the choice of A.

Therefore, there exist r vertex disjoint paths in G2 − {x} from A to
W ∪ {u}, for some u ∈ V (xP1y)− {x}, say P ′

1 from aπ(1) to u and P ′
j from

aπ(j) to wj for 2 ≤ j ≤ r, where π is a permutation of {1, . . . , r}. Then,
we have a new collection P ′ = {P ′

1, . . . , P
′
l }, where P ′

1 = sπ(1)Pπ(1)aπ(1) ∪
aπ(1)P

′
1u ∪ uP1t1, P

′
i = sπ(i)Pπ(i)aπ(i) ∪ aπ(i)P

′
iwi ∪ wiPiti for 2 ≤ i ≤ r

and P ′
j = Pj for r + 1 ≤ j ≤ l. We see that P ′ is a feasible collection of

G′ and satisfies (1) and (2), but V (∪1≤i≤lP
′
i ) ⊂ V (∪1≤i≤lPi) − {x}, which

contradicts (3).

Let N := N(G1 − A ∪ B) − V (G1). By the choice of J , we see that
N ⊂ ∪q−1

i=1V (Ci) ∪ V (D).

We may assume that N ⊂ V (D). If not, there exists Ch such that 1 ≤
h ≤ q−1 and V (Ch)∩N 	= ∅, then x ∈ N(Ch)∩V (akPkbk−{ak, bk}) 	= ∅ for
some k ∈ J . By Claim, there exist r vertex disjoint paths in G1−{x} from A
to B, say aπ(j)P

′
jbj , 1 ≤ j ≤ r, where π is a permutation of {1, . . . , r}. Then

we have a new collection P ′ = {P ′
1, . . . , P

′
l }, where P ′

i = sπ(i)Pπ(i)aπ(i) ∪
aπ(i)P

′
i bi∪biPiti for 1 ≤ i ≤ r and P ′

j = Pj for r+1 ≤ j ≤ l. We see that P ′ is
a feasible collection in G′, such that V (∪1≤i≤lP

′
i ) ⊂ V (∪1≤i≤lPi∪Cq)−{x},

then P ′ either contradicts (1) or satisfies (1) but contradicts (2).
We may assume that there exists k ∈ J such that |V (D) ∩N(akPkbk −

{ak, bk})| ≥ 2. Otherwise, for any j ∈ J , we have |V (D) ∩ N(ajPjbj −
{aj , bj})| ≤ 1; since N = V (D) ∩ N = ∪j∈J(V (D) ∩ N(ajPjbj − {aj , bj})),
we have |N | ≤ r ≤ l. Note that |V (D)| ≥ 2l + m and l + m ≥ 2, so
|V (D−N ∪Nq)| ≥ 2l+m− l− 1 ≥ 1, which means D−N ∪Nq 	= ∅. Note
that N ∪ A ∪ B ∪ Nq is a cut of G′ separating Cq from D − N ∪ Nq, but
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|V (N ∪A∪B∪Nq)| ≤ 3l+1, contradicting to the (30l+10m)-connectedness

of G′.

Let {v1, v2} ⊂ V (D) ∩ N(akPkbk − {ak, bk}) and {x, y} ⊂ V (akPkbk −
{ak, bk}) such that v1 	= v2, v1x ∈ E(G), v2y ∈ E(G), y ∈ xPkbk − {bk}. By
claim, there exist r vertex disjoint paths in G1 − V (xPky) from A to B, say

aπ(j)P
′
jbj , 1 ≤ j ≤ r, where π is a permutation of {1, . . . , r}. Then we have

a new collection P ′ = {P ′
1, . . . , P

′
l }, where P ′

i = sπ(i)Pπ(i)aπ(i) ∪ aπ(i)P
′
i bi ∪

biPiti for 1 ≤ i ≤ r and P ′
j = Pj for r+1 ≤ j ≤ l. We see that P ′ is a feasible

collection in G′, such that V (∪1≤i≤lP
′
i ) ⊂ V (∪1≤i≤lPi ∪Cq)−V (xPky). But

P ′ contradicts (1), since D(P) ∪ V (xPky) ⊂ D(P ′). This completes the

proof of Theorem 1.2.

3. Concluding remarks

We note that in Theorem 1.2, those l internally vertex disjoint s-t paths

P1, . . . , Pl are not induced; but we can strengthen the result by asking Pi −
{s, t} be induced for all 1 ≤ i ≤ l. The function f(l,m) = 30l + 10m + 2

is likely not optimal since we use the result that 10k-connected graph is

k-linked, and 10k is not known to be optimal for the k-linkage problem.

It is easy to see that an improvement on the k-linkage problem will give

us a better function f(l,m). We point out that a similar argument (after

slight modification) gives a different and shorter proof of the theorem in [5]

mentioned in Section 1.

Our result motivates us to propose the following question:

Question. For any integers k, l > 0 and m ≥ 0, there exists a function

f(k, l,m) such that the following holds. For any distinct vertices s, t, v1, . . . ,

vm in any f(k, l,m)-connected graph G, there exist l internally vertex dis-

joint s-t paths P1, . . . , Pl such that for any subset I ⊂ {1, . . . , l}, G −
∪i∈IV (Pi) is k-connected and {v1, v2, . . . , vm} ⊂ V (G)− ∪1≤i≤lV (Pi).

We see that when l = 1,m = 0 this question is equivalent to Conjec-

ture 1.1, and Theorem 1.2 shows that this question is true when k = 2.
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