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A note on Lovasz removable path conjecture

JIE MA

Lovész [8] conjectured that for any natural number k, there exists
a smallest natural number f(k) such that, for any two vertices s
and t in any f(k)-connected graph G, there exists an s-t path P
such that G — V(P) is k-connected. This conjecture is proved only
for £ < 2. Here, we strengthen the result for £ = 2 as follows:
for any integers I > 0 and m > 0, there exists a function f(I,m)
such that, for any distinct vertices s,t,v1,...,v,, in any f(I,m)-
connected graph G, there exist [ internally vertex disjoint s-t paths
Py, ..., P such that for any subset I C {1,...,l}, G — UiV (F)
is 2-connected and {v1,va,...,vm} C V(G) — Ui<i</V(F;).

1. Introduction

The following conjecture is due to Lovdasz [8] which is still open for k > 3:

Conjecture 1.1. For any natural number k, there exists a least natural
number f(k) such that, for any two vertices s,t in any f(k)-connected graph
G, there exists an s-t path P such that G — V(P) is k-connected.

This conjecture has been proved for k& < 2. A theorem of Tutte [11]
shows that f(1) = 3. When k = 2, we have f(2) = 5 by a result of Chen,
Gould and Yu [2] and, independently, of Kriesell [6]. Later, Kawarabayashi,
Lee and Yu [4] characterized the 4-connected graphs G in which there exist
two vertices s,t € V(G) such that G — V(P) is not 2-connected for any s-t
path P in G.

Conjecture 1.1 is equivalent to asking whether there exists a function
g(k) such that for any g(k)-connected graph and for any edge st € E(G),
there exists a cycle C' containing st such that G — V(C) is k-connected.
Lovész [8] also made a weaker conjecture: any (k 4 3)-connected graph con-
tains a cycle C such that G — V(C) is k-connected, which was confirmed by
Thomassen [10]. Another weaker version of Conjecture 1.1 was proposed by
Kriesell [7]: there exists a function h(k) such that for any h(k)-connected
graph G and for any two vertices s,t € V(G), there exists an induced s-t
path P in G such that G — E(P) is k-connected. This weaker version was
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established by Kawarabayashi, Lee, Reed and Wollan [3]. In [3], the au-
thors further conjectured that there exists a function F'(k) such that for any
F(k)-connected graph G and for any three distinct vertices s,t,u € V(G), G
contains an s-t path P and a k-connected subgraph H such that u € V(H)
and V(H) N V(P) = (); they also show that this conjecture implies Conjec-
ture 1.1. In this sense, it is useful to find an s-t path that avoids a highly
connected subgraph containing a specific vertex, which partially motivates
our work.

Conjecture 1.1 asks for one removable path. In [2], Chen, Gould and Yu
showed that in any (22 + 2)-connected graph, there exist [ internally vertex
disjoint paths between any two given vertices such that the deletion of any
one of these paths results in a connected graph. Recently, Kawarabayashi
and Ozeki [5] strengthened this result as follows: for any (3! + 2)-connected
graph G and for any two vertices s,t € V(G), there exist [ internally vertex
disjoint s-t paths Py, ..., P such that G—Ul_, V(P;) is 2-connected; they also
pointed out that if G is (2] + 1)-connected, then one can find [ internally
vertex disjoint paths Pi,..., P, between any two given vertices such that
G —U._,V(P;) is connected.

In this note, we use a short argument to prove the following;:

Theorem 1.2. For any integersl > 0 andm > 0, let f(I,m) = 30[4+10m+2.
Then for any distinct vertices s,t,v1, ...,V in any f(l, m)-connected graph
G, there exist | internally vertex disjoint s-t paths Pi,..., P, such that for
any subset I C {1,...,l}, G=U;cfV (F;) is 2-connected and {vi,va, ..., vm}C
V(G) - UlgiglV(Pi)-

2. Proof of Theorem 1.2

We begin with some definitions. A linkage is a graph in which every con-
nected component is a path. A linkage problem in a graph G is a set of
pairs of vertices of G, for example, £ = {{s1,t1},...,{sk, tx}}. A solution
to the linkage problem L is a set of pairwise internally vertex disjoint paths
Py, ..., Py such that the ends of P; are s; and t;, and if x € V(P;) N V(P;)
for ¢ # j then x = s; or x = t;. The graph G is k-linked if every linkage
problem with k£ pairwise disjoint pairs of vertices has a solution.

Bollobés and Thomason [1] proved that every 22k-connected graph is k-
linked. Here we use the following improved bound by Thomas and Wollan [9]:

Lemma 2.1. Every 10k-connected graph is k-linked.

We also need the following lemma.
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Lemma 2.2. For any distinct vertices S1,...,81,t1,...,t1, V1.,V N
(301 + 10m)-connected graph G, there exist | internally vertex disjoint paths
Pi,....,P in G and a 2-connected subgraph H of G — Ui<;<V(F;) such
that the ends of P; are s; and t; for 1 < i < I, {v1,...,v} C V(H),
|[V(H)| > 2l +m, and every vertex in {si,...,s;,t1,...,t} has at least one
neighbor in H.

Proof. We may find a neighbor a; of s; and a neighbor b; of ¢;, for 1 <1 <1,
such that aq,...,a;,b1,...,b;,81,...,81,t1,...,t1,v1, ...,V are pairwise dis-
tinct, since G is (30l + 10m)-connected. Now we look at the following linkage
problem in G:

ﬁ = {{81,751}, ceey {Sl,tl}, {(Il, CLQ}, {CLQ, ag}, PN {al, bl},
{bl, bQ}, ey {bl,vl}, {Ul,vg}, ey {Um, al}},

which has 3] + m pairwise disjoint pairs of vertices. By Lemma 2.1, we
have a solution of L: a collection of 3l +m paths {P1,..., P3;,Q1,...,Qm},
where, for 1 < ¢ < 3l + m, the ends of the ith path of this collection
(in the order listed) are the two vertices of the ith pair in £ (in the or-
der listed). Let H = (Ujy1<i<aiPi) U (Ui<j<m@;), which is a cycle through
ai,...,a;, by, ..., b,v1,...,vy. Note that ’V(H)| > 2l+m. Then Py,..., P
and H satisfy the conclusion of the lemma. O

Now, we are ready to give the proof of Theorem 1.2.

Proof. We may assume that [ > 2 or m > 1; otherwise, [ = 1,m = 0 and
the theorem follows from known results. So we have that [ + m > 2. Let
G' = G — {s,t}. Since G is (30l + 10m + 2)-connected, G’ is (30l + 10m)-
connected. We may fix [ neighbors of s, say s1, s, ..., s, and [ neighbors of
t, say ti,to,...,t;, such that sq,...,s;,t1,...,t,v1,. ..Uy, are distinct.

By Lemma 2.2, there is a collection & = {P,..., P} of paths in G’
such that {v1,...,v,} is contained in a 2-connected subgraph D(Z?) of
G'—U_ V(P), |[V(D(2))| > 2l+m and any vertex of {s1,...,8,t1,...,1;}
has a neighbor in D(Z?). We call such collection &2 feasible. We may choose
D(Z) to be a maximal 2-connected subgraph of G’ — Ui<;<;V(P;), and
if there is no ambiguity we simply call it D. Without loss of generality,
we assume that the ends of P, are s; and ¢; for any 1 < ¢ < . If D =
G’ —Ui<i<iV(P;), then {s, ss; JUP U{t1t,t}, ..., {s,ss;}UP,U{tt, t} satisfy
the conclusion of Theorem 1.2. Thus we may assume D # G’ —Uj<;<V(F;),
and let C1,...,Cy be the components of G’ — Uy<;<;V(P;) — V(D). By the



106 Jie Ma

maximality of D, D contains at most one neighbor of V(C;) for 1 <i < q.
Without loss of generality, we assume that

V(COI = V(C)| = --- = [V(Cy)l.

We choose a feasible collection & = {P,..., P} in G’ such that

(1) |[V(D(2))] is maximum, and

(2) subject to (1), |V(C1)],|V(Ca)l,...,|V(Cy)| are as large as possible
with the larger order components having priority, and

(3) subject to (2), |V (Ui<i<iP;)] is as small as possible.

Note that by Lemma 2.2, |V (D(2))| > 2l + m. Now we consider G¥ :=
G'[(U1<i<iP;) UCy]. We claim that there exist a subset J C {1,2,...,1} and
{a;,b;} C V(F;) for all j € J such that G'[(Ujecsa;P;b;) U Cy] is connected
and it is separated from the other vertices of G* by {a;,b; : j € J}. The
existence of J follows by taking G'[(Ujecsa;Pjbj) U Cy] to be the component
of GV containing C,. Without loss of generality, we assume that b; € a;Pjt;
for j € J (possible a; = bj). We pick J, {a;,b; : j € J} such that

(4) if J' C J and {a, b} C V(a;P;b;) for j € J' are such that G'[Cy U
(Ujesa;P;b})] is connected and separated from the other vertices of

G by {a], 1 € J'}, then J' = J and for j € J, a); = a; and b; = b;.

In this sense, we call J, {a;j,b; : j € J} minimal. We may assume that J =
{1,...,r}, 7 <l. Let G' := G'[(Ujesa;Pjb;) UC], and Ny := V(D)NN(C,)
(hence |N,4| < 1). We will prove the following claim, for any k € J and any
x,y € V(axPiby — {ak,br}), where y € xPby, — {bx} (possible z = y).

Claim. There ezist r vertez disjoint paths in G =V (zPyy) from A := {a; :
1<j<r}toB:={bj:1<j5<r}

Proof of Claim. Without loss of generality, we say k = 1. If not, then by
Menger’s Theorem there exists a cut of size p < r —1in G' — V(2 Pyy), say
W = {ws,ws, ..., wpt1}, separating A from B. We see that a;P;b; has at
least one vertex in W for 2 < j < r; otherwise a;P;b; connects A and B.
Thus p = 7 — 1 and we may assume that w; € V(a;Pjb;) for 2 < j < r.
Now, W UV (zPyy) is a cut in G! which separates A from B.

Let Dy = ((Ua<j<rajPjws)Uar Pra)—(WU{z}), Dy = ((Ua<j<rw; Pjbs)U
yPob1) — (W U {y}). We point out that at most one of {D;, D2} contains a
neighbor of Cy; otherwise, we can find a path in G! from A to B through
Cy, disjoint from W UV (zP1y), contradicting to the fact that WUV (zP1y)
is a cut in G separating A from B. Without loss of generality, we assume
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that D; does not contain any neighbor of Cy. Thus W UV (zPyy) separates
A from C, U B.

We may assume that z # y. Otherwise we have z = y, then W U {z}
separates A from CyU B, but z € V(a1 P1by —{a1,b1}), so it contradicts (4),
in particular the choice of A. Now, we consider G? := G'[(Uz<j<ra;jPjw;) U
a1 P1y], and contract zPjy — {x} into a new vertex 2/, then call the resulting
graph G3. Note that za’ is an edge in G3.

There exist r vertex disjoint paths from A to W U {z'} in G® — {x}.
Otherwise, by Menger’s Theorem, there is a cut of size t < r—1in G3—{x},
say W' = {wh, ..., wi, }, separating A from W U {z'}. Clearly, a;Pjw; has
at least one vertex in W’ for 2 < j < r;sot =r — 1 and we may assume
that w} € V(a;Pjw;) for 2 < j < r. Then, it means that W’ U {z} separates
A from WUV (zP1y) in G?; since W UV (xPyy) separates A from C, U B in
G', W' U {x} separates A from C;UB in G*. But = € V(a1 P1b1) — {a1,b1},
which contradicts (4), in particular W’ U {z} contradicts the choice of A.

Therefore, there exist r vertex disjoint paths in G? — {x} from A to
W U {u}, for some u € V(zP1y) — {x}, say P| from a1y to u and P] from
ar(jy to w; for 2 < j < r, where 7 is a permutation of {1,...,r}. Then,
we have a new collection &' = {Pj,..., P/}, where P| = s;1)Pr1)ar(1) U
aw(l)P{u U uPltl,Pi’ = Sﬂ(i)Pﬂ(i)aﬂ(i) U aﬂ(i)Pi[’wi Uw;Bit; for 2 < ¢ < r
and Pj’ = Pj for r +1 < j < 1. We see that &’ is a feasible collection of
G’ and satisfies (1) and (2), but V(Ui<i<;P/) C V(Ui<i<iPi) — {z}, which
contradicts (3). O

Let N := N(G' — AU B) — V(G'). By the choice of J, we see that
N c UZ'V(C)u V(D).

We may assume that N C V(D). If not, there exists C}, such that 1 <
h<g—1and V(Ch)ﬂN #* (Z), then x € N(C’h)ﬂV(akPkbk—{ak, bk}) % @ for
some k € J. By Claim, there exist r vertex disjoint paths in G* — {z} from A
to B, say aw(j)P]’»bj, 1 < j <r, where 7 is a permutation of {1,...,r}. Then
we have a new collection &' = {P/,..., P/}, where P/ = s.(;yPr;)ar() U
ar(iy PjbiUb; Pit; for 1 <i < rand PJ’ = Pj for r+1 < j <. We see that &' is
a feasible collection in G', such that V(Ui<;</P/) C V(Ui<i<iP;UCy) — {x},
then &’ either contradicts (1) or satisfies (1) but contradicts (2).

We may assume that there exists k € J such that |V(D) N N(aPiby —
{ak,br})| > 2. Otherwise, for any j € J, we have |V(D) N N(a;jP;b; —
fag b)) < 13 since N = V(D) (N = Ujes(V(D) 1 N(a; Pyb; — {aj b;})),
we have |[N| < r < [. Note that |V(D)| > 20+ m and | + m > 2, so
V(D —-NUN,)| >2l+m—1—12>1, which means D — N U N, # (). Note
that NUAUBUN, is a cut of G’ separating C, from D — N U N, but
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|[V(NUAUBUN,)| < 3l+1, contradicting to the (30/+ 10m)-connectedness
of G'.

Let {vy,v2} C V(D) N N(axPrbr — {ak,br}) and {x,y} C V(axPrbr —
{ak,br}) such that v; # ve, 1z € E(G),v2y € E(G),y € xPyby, — {bx}. By
claim, there exist r vertex disjoint paths in G* — V(2 Py) from A to B, say
aﬁ(j)P]’-bj, 1 < j <r, where 7 is a permutation of {1,...,7}. Then we have
a new collection &' = {P[,..., P/}, where P} = s.(;yPr(s)0r(s) U ar ;) Pib; U
b;Pit; for1 < i <rand P]’ = Pj forr+1 < j < 1. We see that &’ is a feasible
collection in G’, such that V(U1<;<;P}) C V(U1<i<iPiUCy) — V(2 Pgy). But
' contradicts (1), since D(Z2) UV (zPy) C D(Z'). This completes the
proof of Theorem 1.2. O

3. Concluding remarks

We note that in Theorem 1.2, those [ internally vertex disjoint s-t paths
Py, ..., P, are not induced; but we can strengthen the result by asking P; —
{s,t} be induced for all 1 < i < [. The function f(l,m) = 30l + 10m + 2
is likely not optimal since we use the result that 10k-connected graph is
k-linked, and 10k is not known to be optimal for the k-linkage problem.
It is easy to see that an improvement on the k-linkage problem will give
us a better function f(I,m). We point out that a similar argument (after
slight modification) gives a different and shorter proof of the theorem in [5]
mentioned in Section 1.
Our result motivates us to propose the following question:

Question. For any integers k,I > 0 and m > 0, there exists a function
f(k,1,m) such that the following holds. For any distinct vertices s, ¢, v1,.. .,
Uy in any f(k,l, m)-connected graph G, there exist [ internally vertex dis-
joint s-t paths Pi,..., P, such that for any subset I C {1,...,l}, G —
UierV (P;) is k-connected and {v1,v2,...,vn} C V(G) — Ui<i<iV(B).

We see that when [ = 1,m = 0 this question is equivalent to Conjec-
ture 1.1, and Theorem 1.2 shows that this question is true when k = 2.
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