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The universality for the eigenvalue spacing statistics of generalized
Wigner matrices was established in our previous work [19] under
certain conditions on the probability distributions of the matrix
elements. A major class of probability measures excluded in [19] are
the Bernoulli measures. In this paper, we extend the universality
result of [19] to include the Bernoulli measures so that the only
restrictions on the probability distributions of the matrix elements
are the subexponential decay and the normalization condition that
the variances in each row sum up to one. The new ingredient is a
strong local semicircle law which improves the error estimate on
the Stieltjes transform of the empirical measure of the eigenvalues
from the order (Nη)−1/2 to (Nη)−1. Here η is the imaginary part
of the spectral parameter in the definition of the Stieltjes transform
and N is the size of the matrix.
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sine kernel.

1. Introduction

The universality of local eigenvalue statistics in the bulk of the spectrum

of random matrices has been traditionally considered only for invariant en-

sembles [4, 7, 8, 25]. For non-invariant ensembles, a new approach to prove

the bulk universality was developed in [14, 16, 18, 19]. It consists of the

following three steps:

1. Local semicircle law.

2. Universality for Gaussian divisible ensembles.

3. Approximation by Gaussian divisible ensembles.
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In Step 2, the universality of the local eigenvalue statistics for a large class
of matrices, i.e., Gaussian divisible matrices, was established. Thus in order
to prove the universality of a given ensemble, it remains to approximate the
matrix elements in this ensemble by Gaussian divisible distribution in such a
way that the local eigenvalue statistics are unchanged. This approximation
is intrinsically a density theorem and it can be achieved by perturbative
expansions in several different ways. In the most recent approach [18, 19],
the universality for Gaussian divisible ensembles was proved via the Dyson
Brownian motion and the stability of eigenvalues in Step 3 was provided by
the Green function comparison theorem. In Step 2 a technical tool, the log-
arithmic Sobolev inequality (LSI), was needed to estimate the fluctuations
of eigenvalue distribution. This restriction could not be completely removed
in Step 3 and thus the Bernoulli measures were excluded in [19]. In this
paper, we will improve the local semicircle law so that the LSI is no longer
needed. This will enable us to prove the universality for generalized Wigner
matrices with Bernoulli distributions. As a byproduct of the new stronger
form of local semicircle law, we also obtain much stronger estimates on the
eigenvalue density and on the matrix elements of the resolvent.

Recall the Stieltjes transform of the empirical measure of the eigenvalues
{λj}Nj=1 is defined by

mN (z) =
1

N

N∑
j=1

1

λj − z
.

We have proved in [19] that the difference between mN (z) and msc(z), the
Stieltjes transform of the semicircle law (2.9), is bounded by (Nη)−1/2 where
η = Im z. The main result of this paper states that the error can be improved
to (Nη)−1. The improvement of a factor (Nη)−1/2 resembles the usualN−1/2

factor in the central limit theorem and it results from a new estimate on the
correlations of error terms. This estimate also implies that the error between
the normalized empirical counting function of the eigenvalues and the one
given by the semicircle law is less than N−1+ε in the bulk of the spectrum
for any ε > 0. This new input is sufficiently strong to replace the usage of
the (LSI) in [19], see the discussion after Theorem 2.2 for more details.

Notice that this improvement of a factor (Nη)−1/2 and the removal of
the LSI need a substantial amount of work. Our motivations to take on
this endeavor are for the following two reasons: (1) The distributions of the
Bernoulli random matrices are very singular while the Gaussian measures in
GOE are very smooth. It is not a priori clear that the universality holds for
such singular distributions. (2) The adjacency matrices for random graphs
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are natural examples of symmetric random matrices. The matrix elements
of these matrices take the values 0 or 1 and thus they form Bernoulli random
matrices. Our current results do not cover this case since we require the mean
zero condition, but they represent the first step toward the universality of
the adjacency matrices of random graphs.

2. Main results

We now state the main results of this paper. Since all our results hold for
both hermitian and symmetric ensembles, we will state the results for the
hermitian case only. The modifications to the symmetric case are straight-
forward and they will be omitted. Let H = (hij)

N
i,j=1 be an N×N hermitian

matrix where the matrix elements hij = hji, i ≤ j, are independent random
variables given by a probability measure νij with mean zero and variance
σ2
ij . The variance of hij for i > j is σ2

ij = E |hij |2 = σ2
ji. For simplicity of

the presentation, we assume that for any fixed 1 ≤ i < j ≤ N , Rehij and
Imhij are i.i.d. with distribution ωij , i.e., νij = ωij ⊗ ωij in the sense that
νij(dh) = ωij(dReh)ωij(dImh), but this assumption is not essential for the
result. The distribution νij and its variance σ2

ij may depend on N , but we
omit this fact in the notation. We assume that for any j fixed

(2.1)
∑
i

σ2
ij = 1 .

Matrices with independent, zero mean entries and with the normalization
condition (2.1) will be called universal Wigner matrices. The basic param-
eter of such matrices is the quantity

(2.2) M :=
1

maxij σ2
ij

.

Define Cinf and Csup by

(2.3) Cinf := inf
N,i,j

{Nσ2
ij} ≤ sup

N,i,j
{Nσ2

ij} =: Csup.

Note that Cinf = Csup(= 1) corresponds to the standard Wigner matrices
and the conditions 0 < Cinf ≤ Csup < ∞ define more general Wigner
matrices with comparable variances.

We will also consider an even more general case when σij for different
(i, j) indices are not comparable. A special case is the band matrix, where
σij = 0 for |i− j| > W with some parameter W .
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Denote by Σ := {σ2
ij}Ni,j=1 the matrix of variances which is symmetric,

doubly stochastic by (2.1), and in particular satisfies −1 ≤ Σ ≤ 1. Let the
spectrum of Σ be supported in

(2.4) Spec(Σ) ⊂ [−1 + δ−, 1− δ+] ∪ {1}

with some nonnegative constants δ±. We will always have the following spec-
tral assumption

1 is a simple eigenvalue of Σ and

δ− is a positive constant, independent of N .(2.5)

The local semicircle law will be proven under this general condition, but
the precision of the estimate near the spectral edge will also depend on δ+
in an explicit way. For the orientation of the reader, we mention two special
cases that provided the main motivation for our work.

One important class of universal Wigner matrices is the generalized
Wigner ensemble which is defined by the extra condition that

(2.6) 0 < Cinf ≤ Csup < ∞,

It is easy to check that (2.4) holds with

(2.7) δ± ≥ Cinf .

Another example is the band matrix ensemble whose variances are given by

(2.8) σ2
ij = W−1f

(
[i− j]N

W

)
,

where W ≥ 1, f : R → R+ is a nonnegative symmetric function with∫
f = 1, f ∈ L∞(R), and we defined [i− j]N ∈ {1, 2, . . . N} by the property

that [i − j]N ≡ i − j mod N . The bandwidth M defined in (2.2) satisfies
M ≤ W/‖f‖∞. In Appendix A of [19], we have proved that (2.5) is satisfied
for the choice of (2.8) if W is large enough.

Define the Stieltjes transform of the empirical eigenvalue distribution of
H by

m(z) = mN (z) :=
1

N
Tr

1

H − z
, z = E + iη.

Define msc(z) as the unique solution of

msc(z) +
1

z +msc(z)
= 0,
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with positive imaginary part for all z with Im z > 0, i.e.,

(2.9) msc(z) =
−z +

√
z2 − 4

2
.

Here the square root function is chosen with a branch cut in the segment
[−2, 2] so that asymptotically

√
z2 − 4 ∼ z at infinity. This guarantees that

the imaginary part of msc is non negative for Im z > 0 and it is the Wigner
semicircle distribution

(2.10) 	sc(E) := lim
η→0+0

1

π
Im msc(E + iη) =

1

2π

√
(4− E2)+.

The Wigner semicircle law [32] states that mN (z) → msc(z) for any fixed z,
i.e., provided that η is independent of N . We have proved [19] a local version
of this result for universal Wigner matrices and the main result can be stated
as the following probability estimate:

P

(
|mN (z)−msc(z)| ≥ (logN)C2

1√
Mη κ

)
≤ CN−c(log logN)

with some constant C2. The accuracy of this estimate can be improved from
(Mη)−1/2 κ−1 to (Mη)−1 κ−1, which is the content of the next theorem. It
summarizes the results of Theorems 4.1 and 5.1. Prior to our result in [19],
a central limit theorem for the semicircle law on macroscopic scale for band
matrices was established by Guionnet [21] and Anderson and Zeitouni [2];
a semicircle law for Gaussian band matrices was proved by Disertori, Pinson
and Spencer [9]. For a review on band matrices, see the recent article [27]
by Spencer.

Theorem 2.1 (Local semicircle law). Let H be a hermitian N ×N random
matrix with Ehij = 0, 1 ≤ i, j ≤ N , and assume that the variances σ2

ij satisfy
(2.1) and (2.5). Suppose that the distributions of the matrix elements have
a uniformly subexponential decay in the sense that there exist constants α,
β > 0, independent of N , such that for any x > 0 we have

(2.11) P(|hij | ≥ xα|σij |) ≤ βe−x.

We consider universal Wigner matrices and its special class, the generalized
Wigner matrices in parallel. The parameter A will distinguish between the
two cases; we set A = 2 for universal Wigner matrices, and A = 1 for
generalized Wigner matrices, where the results will be stronger.
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Define the following domain in C

D :=
{
z = E + iη∈ C : |E| ≤ 5, 0 < η ≤ 10,

√
Mη ≥ (logN)C1(κ+ η)

1

4
−A
}(2.12)

where κ := | |E| − 2|. Then there exist constants C1, C2, C and c > 0, de-

pending only on α, β and δ− in (2.5), such that for any ε > 0 and K > 0

the Stieltjes transform of the empirical eigenvalue distribution of H satis-

fies

(2.13) P

(⋃
z∈D

{
|mN (z)−msc(z)| ≥

N ε

Mη (κ+ η)A

})
≤ C(ε,K)

NK

for sufficiently large N . Furthermore, the diagonal matrix elements of the

Green function Gii(z) = (H − z)−1(i, i) satisfy that

P

(⋃
z∈D

{
max

i
|Gii(z)−msc(z)| ≥

(logN)C2

√
Mη

(κ+ η)
1

4
−A

2

})
≤CN−c(log logN)

(2.14)

and for the off-diagonal elements we have

(2.15) P

(⋃
z∈D

{
max
i �=j

|Gij(z)| ≥
(logN)C2

√
Mη

(κ+ η)
1

4

})
≤ CN−c(log logN)

for any sufficiently large N .

The subexponential decay condition (2.11) can also be easily weakened

if we are not aiming at error estimates faster than any power law of N . This

can be easily carried out and we will not pursue it in this paper.

Denote the eigenvalues of H by λ1, . . . , λN and let pN (λ1, . . . , λN ) be

their (symmetric) probability density. For any k = 1, 2, . . . , N the k-point

correlation function of the eigenvalues is defined by

(2.16) p
(k)
N (x1, x2, . . . xk) :=

∫
RN−k

pN (x1, x2, . . . , xN )dxk+1 . . . dxN .

We now state our main result concerning these correlation functions. The

same result was proved in [19] under the additional assumption (2.26).
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Theorem 2.2 (Universality for generalized Wigner matrices). Consider a
generalized hermitian Wigner ensemble such that (2.1), (2.5) and (2.6) hold.
Suppose that the distributions νij of the matrix elements have a uniformly
subexponential decay in the sense of (2.11). Suppose that the real and imag-
inary parts of hij are i.i.d., distributed according to ωij, i.e., νij(dh) =
ωij(dImh)ωij(dReh). Then for any k ≥ 1 and for any compactly supported
continuous test function O : Rk → R we have

lim
b→0

lim
N→∞

1

2b

∫ E+b

E−b
dE′

∫
Rk

dα1 . . . dαk O(α1, . . . , αk)

(2.17)

× 1

	sc(E)k

(
p
(k)
N − p

(k)
GUE,N

)(
E′ +

α1

N	sc(E)
, . . . , E′ +

αk

N	sc(E)

)
= 0,

where p
(k)
GUE,N is the k-point correlation function for the GUE ensemble. The

same statement holds for symmetric matrices, with GOE replacing the GUE
ensemble.

Remark. We can take b = N−c for some small constant c > 0 so that there
is no double limit taken. This is because all our bounds have an effective error
estimate N−c. In case of hermitian matrices there is no need for averaging
in the energy parameter E′. The limit (2.17) holds even for any fixed energy
E′, with |E′| < 2, since, instead of relying on the local relaxation flow of
[14, 18], we can use the result of [16] for Gaussian divisible ensembles at a
fixed energy.

It is well-known that the limiting correlation functions of the GUE en-
semble are given by the sine kernel

1

	sc(E)k
p
(k)
GUE,N

(
E+

α1

N	sc(E)
, . . . , E+

αk

N	sc(E)

)
→ det{K(αi−αj)}ki,j=1,

K(x) =
sinπx

πx
,

and a similar universal formula is available for the limiting gap distribution.
The formulas for the GOE cases are more complicated and we refer the
reader to standard references such as [1, 6, 20, 24].

We will prove Theorem 2.2 using the approach of [18, 19]. The logarith-
mic Sobolev inequality was an important tool in these papers and it was the
main obstacle why the case of Bernoulli random matrices were not covered.
We note that the Bernoulli distribution satisfies the discrete version of the
LSI but it would not be sufficient for our purposes. To explain the necessity
of LSI, we now review the three basic ingredients of the approach of [18, 19].
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Step 1. Local semicircle law: It states that the density of eigenvalues is given
by the semicircle law down to short scales containing only N ε eigen-
values for all ε > 0, where N is the size of the matrix.

Step 2. Local ergodicity of the Dyson Brownian motion: The Dyson Brown-
ian motion is given by the flow

(2.18) Ht = e−t/2H0 + (1− e−t)1/2 V,

where H0 is the initial Wigner matrix, V is an independent standard
GUE (or GOE) matrix and t ≥ 0 is the time. Here we have used
the version that the dynamics of the matrix element is given by an
Ornstein-Uhlenbeck (OU) process on C. More precisely, let

μ = μN (dx) :=
e−H(x)

Zβ
dx,

H(x) = HN (x) := N

⎡⎣β N∑
i=1

x2i
4

− β

N

∑
i<j

log |xj − xi|

⎤⎦(2.19)

be the probability measure of the eigenvalues x = (x1, x2, . . . , xN ) of
the general β ensemble, β ≥ 1 (β = 2 for the hermitian case and β = 1
for the symmetric case). Denote the distribution of the eigenvalues of
Ht at time t by ft(x)μ(dx). Then ft = ft,N satisfies [10]

(2.20) ∂tft = L ft,

where

(2.21) L = LN :=

N∑
i=1

1

2N
∂2
i +

N∑
i=1

(
− β

4
xi +

β

2N

∑
j �=i

1

xi − xj

)
∂i.

We now recall the following theorem concerning the universality of the
Dyson Brownian motion. Following the convention in [18], we label the
assumptions as Assumptions II–IV since the Assumption I, a convexity
property of the Hamiltonian for the invariant measure of the Dyson
Brownian motions, is automatically satisfied for any β ensembles.

Assumption II. For any fixed a, b ∈ R, we have

lim
N→∞

sup
t≥0

∣∣∣∣∣
∫

1

N

N∑
j=1

1(xj ∈ [a, b])ft(x)dμ(x)−
∫ b

a
	sc(x)dx

∣∣∣∣∣ = 0,

(2.22)
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where 	sc is the density of the semicircle law (2.10).
Let γj = γj,N denote the location of the j-th point under the semicircle
law, i.e., γj is defined by

(2.23) N

∫ γj

−∞
	sc(x)dx = j, 1 ≤ j ≤ N.

We will call γj the classical location of the j-th point.

Assumption III. There exists an ε > 0 such that

(2.24) sup
t≥0

∫
1

N

N∑
j=1

(xj − γj)
2ft(dx)μ(dx) ≤ CN−1−2ε

with a constant C uniformly in N .
The final assumption is an upper bound on the local density. For any
I ∈ R, let

NI :=

N∑
i=1

1(xi ∈ I)

denote the number of eigenvalues in I.

Assumption IV. For any compact subinterval I0 ⊂ (−2, 2) = {E :
	sc(E) > 0}, and for any δ > 0, σ > 0 there are constant Cn, n ∈ N,
depending on I0, δ and σ such that for any interval I ⊂ I0 with
|I| ≥ N−1+σ and for any K ≥ 1, we have

sup
τ≥N−2ε+δ

∫
1
{
NI ≥ KN |I|

}
fτdμ ≤ CnK

−n, n = 1, 2, . . . ,(2.25)

where ε is the exponent from Assumption III and σ and δ are arbi-
trarily small numbers.
We have proved [19] that Assumption IV follows from the local semi-
circle law and Assumption III also follows from the local semicircle
law provided that a uniform LSI for the distributions of the matrix
elements is assumed.

Step 3. Green function comparison theorem: It asserts that the correlation
functions of the eigenvalues of two matrix ensembles are identical up
to the scale 1/N provided that the first four moments of the matrix
elements of these two ensembles are almost identical. Given this theo-
rem and the universality for the Dyson Brownian motion for t ∼ N−ε,
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the universality for a matrix ensemble H holds if we can find another
matrix ensemble H0 such that the first four moments of the matrix
elements of H and Ht (given by (2.18)) are almost the same. Further-
more, H0 is required to satisfy a uniform LSI so that the Assumption
III can be verified. This is possible if the first four moments of H0

satisfy

(2.26) inf
N

min
1≤i,j≤N

{
m4(i, j)

(m2(i, j))2
− (m3(i, j))

2

(m2(i, j))3

}
> 1,

where mk(i, j) is the k-th moment of the i, j matrix element in the
symmetric case. In the hermitian case, the moments of the real and
imaginary parts have to satisfy (2.26).

Combining these ingredients, the universality of local eigenvalue statis-
tics in the bulk was proved for all generalized Wigner ensembles (see (2.6)
for the definition) satisfying (2.26) and a subexponential decay technical
condition. The restriction (2.26) was needed to guarantee the existence of
a matching matrix ensemble whose matrix element distributions satisfy the
LSI so that the Assumption III can be verified. The local semicircle esti-
mates in Theorem 2.1 imply that the empirical counting function of the
eigenvalues is close to the semicircle counting function (Theorem 6.3) and
that the location of the eigenvalues are close to their classical location in
mean square deviation sense (Theorem 7.1). This provides a direct proof to
the Assumption III (2.24) and thus removes the usage of the LSI.

Finally we summarize the recent results related to the bulk universality
of local eigenvalue statistics. The local semicircle law for Step 1 was first
established for Wigner matrices in a series of papers [11–13]. The method
was based on a self-consistent equation for the Stieltjes transform of the
eigenvalues and the continuity of the imaginary part of the spectral parame-
ter in the Stieltjes transform. As a by-product, an eigenvector delocalization
estimate was proved.

The universality for Gaussian divisible ensembles was proved by Johans-
son [23] for hermitian Wigner ensembles. It was extended to complex sample
covariance matrices by Ben Arous and Péché [3]. There were two major re-
strictions of this method: 1. The Gaussian component was fairly large, it was
required to be of order one independent of N . 2. It relies on explicit formulas
for the correlation functions of eigenvalues which are valid only for Gaussian
divisible ensembles with unitary invariant Gaussian component. The size of
the Gaussian component was reduced to N−1+ε in [16] by using an improved
formula for correlation functions and the local semicircle law from [11–13].
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The Gaussian component was then removed by a perturbation argument
using the reverse heat flow. Thus the three step strategy to prove the uni-
versality was introduced and it led to the first proof of the bulk universality
for hermitian Wigner ensembles. Due to the reverse heat flow argument used
in Step 3, the universality class established in [16] was restricted to matrices
with smooth distributions for the matrix elements. Shortly after, Tao and
Vu [28] proved the four moment theorem which in particular removes the
smoothness restriction in Step 3. It thus proved the universality for hermi-
tian Wigner matrices whose matrix element distributions were supported
on at least three points. The last condition was removed in [17] by combin-
ing the arguments of [16, 28]. The result of [28] also implies that the local
statistics of symmetric Wigner matrices and GOE are the same, but under
the restriction that the first four moments of the matrix elements match
those of GOE. Thus the universality class for the local correlation functions
established via the approach of combining [28] and [23] was broader for the
hermitian ensembles than for the symmetric ones. This improvement was
due to Johansson’s result [23], which provided the universality for Gaussian
divisible ensembles in Step 2, was available only for hermitian ensembles.

A more general and conceptually very appealing approach for Step 2 is
via the local ergodicity of Dyson Brownian motion. This approach, initiated
in [14], was applied to prove the universality for symmetric Wigner matri-
ces with the three point support condition. In [18], we formulated a general
theorem for the bulk universality which applies to all classical ensembles,
i.e., real and complex Wigner matrices, real and complex sample covariance
matrices and quaternion Wigner matrices. Later on, Tao and Vu [29] also
extended their results to the sample covariance matrices with the three point
support condition for complex covariance matrices and four moment match-
ing conditions for real ones. Shortly after [29], Péché [26] also extended the
approach [16] to the complex sample covariance matrices and proved the
universality in the bulk.

Most recently, we introduced [19] the Green function comparison theo-
rem and extended the local semicircle law to include the matrix elements
of the Green functions. This allows us to remove the smoothness restriction
from the reverse heat flow argument in Step 3 of our approach. We remark
that the comparison theorems in [28] concern individual eigenvalues with
a fixed index, while the Green function comparison theorem is at a fixed
energy. On the other hand, in [19] the variances of the matrix elements were
allowed to vary, i.e., the matrices belonged to generalized Wigner ensem-
bles. The three step strategy can thus be applied and the universality was
proved for generalized Wigner ensembles with essentially only one class of
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measures, the Bernoulli measures, excluded due to the LSI used in verifying
Assumption III in Step 2. Finally, in the current paper, Assumption III will
be shown to be a consequence of a strong local semicircle law, which will be
proved for all ensembles with a subexponential decay property. In particular,
Bernoulli measures are now included in the universality class (in the sense
of (2.17)) for both hermitian and symmetric generalized Wigner ensembles.
We have thus removed all restrictions except the subexponential decay in
our approach. A clear picture of the three step strategy emerges: Step 2 and
3 hold under very general conditions and are model independent. The main
task of proving the universality is to establish a strong version of the local
semicircle law—which can be model dependent. We believe that our method
applies to generalized sample covariance matrices as well, but we will not
pursue this direction in this paper.

3. Proof of universality

We now prove the main universality theorem, Theorem 2.2.

Step 1. Universality for Dyson Brownian Motion: Under the Assumptions
II–IV in the introduction, the universality for the Dyson Brownian Motion
was proved in [18]. We recall the statement in the following Theorem.

Theorem 3.1. [Theorem 2.1 of [18]] Let ε > 0 be the exponent from As-
sumption III. Suppose that the Assumptions II, III and IV hold for the so-
lution ft of the forward equation (2.20) for all time t ≥ N−2ε. Let E ∈ R

be a point where 	(E) > 0. Then for any k ≥ 1 and for any compactly
supported continuous test function O : Rk → R, we have

lim
b→0

lim
N→∞

sup
t≥N−2ε+δ

1

2b

∫ E+b

E−b
dE′

∫
Rk

dα1 . . . dαk O(α1, . . . , αk)

× 1

	(E)k

(
p
(k)
t,N − p

(k)
μ,N

)(
E′ +

α1

N	(E)
, . . . , E′ +

αk

N	(E)

)
= 0.(3.1)

Notice that the assumption on the initial entropy is not needed as was
remarked in [19].

Step 2 Universality for Gaussian divisible ensembles: The Dyson Brownian
motion is generated by the matrix flow (2.18). Our task is to determine the
initial ensemble H0 so that the Assumptions II–IV of Theorem 3.1 can be
proved for the flow. The Assumption IV is a direct consequence of the lo-
cal semicircle law, i.e., Theorem 4.1. The Assumption III will be proved in
Proposition 7.1. For the generalized Wigner matrices, the only assumption
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of Theorem 4.1 and Proposition 7.1 is the subexponential decay property
of the distributions of the matrix elements. Since the evolution of the ma-

trix element is given by an Ornstein-Uhlenbeck process, the subexponential
property is preserved and we only have to check it for the initial data. We
have thus proved the following theorem.

Theorem 3.2. Suppose that the probability law for the initial matrix H0

satisfies the assumptions of Theorem 2.2. Then there exists ε0 > 0 such that
for any t ≥ N−ε0 , the probability law for the eigenvalues of Ht satisfies the
universality equation (2.17).

Step 3 Green function comparison theorem: We have proved the universal-
ity for all ensembles with the matrix element at (i, j) distributed by σijξ

ij
t

with

(3.2) ξijt = e−t/2ξij0 + (1− e−t)1/2 ξijG ,

where ξijG are independent Gaussian random variables with mean 0 and vari-
ance 1 and t ∼ N−ε. In order to prove Theorem 2.2, it remains to approxi-
mate all random variables with the subexponential property by ξt. The only

requirement of ξ0 is the subexponential decay property and the mean zero
and variance one normalization. Our tool is the following Green function
comparison theorem from [19]. It implies that the correlation functions of
the eigenvalues of two matrix ensembles at a fixed energy are identical up to

the scale 1/N provided that the first four moments of the matrix elements
of these two ensembles are almost identical. Prior to this theorem, it was
[28] proved that the joint distribution of individual eigenvalues for Wigner
ensembles is the same under the four moment assumption. Tao-Vu’s theo-

rem addresses the distribution of individual eigenvalues1 while Theorem 3.3
compares Green functions (and thus eigenvalues) at a fixed energy.

Theorem 3.3. Suppose that we have two generalized N ×N Wigner matri-
ces, H(v) and H(w), with matrix elements hij given by the random variables
N−1/2vij and N−1/2wij, respectively, with vij and wij satisfying the uniform

1In a recent preprint [31] (appeared after the current preprint was first posted),
it was pointed out that if the four moment condition is violated, then the differences
between individual eigenvalues of the two ensembles are bigger than the eigenvalue
spacing. Thus the four moment condition is also necessary for locating the indi-
vidual eigenvalues. This is in contrast with the main theme of this paper that gap
distribution and correlation functions are even independent of the second moments
as long as they are nonzero.
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subexponential decay condition (2.11). Fix a bijective ordering map on the
index set of the independent matrix elements,

φ : {(i, j) : 1 ≤ i ≤ j ≤ N} →
{
1, . . . , γ(N)

}
, γ(N) :=

N(N + 1)

2
,

and denote by Hγ the generalized Wigner matrix whose matrix elements
hij follow the v-distribution if φ(i, j) ≤ γ and they follow the w-distribution
otherwise; in particular H(v) = H0 and H(w) = Hγ(N). Let κ > 0 be arbitrary
and suppose that for any small parameter τ > 0 and for any y ≥ N−1+τ we
have the following estimate on the diagonal elements of the resolvent:

P

(
max

0≤γ≤γ(N)
max

1≤k≤N
max

|E|≤2−κ

∣∣∣∣( 1

Hγ − E − iy

)
kk

∣∣∣∣ ≤ N2τ

)
≥ 1− CN−c log logN

(3.3)

with some constants C, c depending only on τ , κ. Moreover, we assume that
the first three moments of vij and wij are the same, i.e.

Ev̄sijv
u
ij = Ew̄s

ijw
u
ij , 0 ≤ s+ u ≤ 3,

and the difference between the fourth moments of vij and wij is much less
than 1, say

(3.4)
∣∣∣Ev̄sijv4−s

ij − Ew̄s
ijw

4−s
ij

∣∣∣ ≤ N−δ, s = 0, 1, 2, 3, 4,

for some given δ > 0. Let ε > 0 be arbitrary and choose an η with N−1−ε ≤
η ≤ N−1. For any sequence of positive integers k1, . . . , kn, set complex pa-
rameters zmj = Em

j ± iη, j = 1, . . . ki, m = 1, . . . , n with |Em
j | ≤ 2− 2κ and

with an arbitrary choice of the ± signs. Let G(v)(z) = (H(v)−z)−1 be the re-
solvent and let F (x1, . . . , xn) be a function such that for any multi-index α =
(α1, . . . , αn) with 1 ≤ |α| ≤ 5 and for any ε′ > 0 sufficiently small, we have

(3.5) max

{
|∂αF (x1, . . . , xn)| : max

j
|xj | ≤ N ε′

}
≤ NC0ε′

and

(3.6) max

{
|∂αF (x1, . . . , xn)| : max

j
|xj | ≤ N2

}
≤ NC0

for some constant C0.
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Then, there is a constant C1, depending on α, β,
∑

i ki and C0 such that
for any η with N−1−ε ≤ η ≤ N−1 and for any choices of the signs in the
imaginary part of zmj

∣∣∣∣∣EF
(

1

Nk1
Tr

[
k1∏
j=1

G(v)(z1j )

]
, . . . ,

1

Nkn
Tr

[
kn∏
j=1

G(v)(znj )

])
−EF

(
G(v)→G(w)

)∣∣∣∣∣
(3.7)

≤ C1N
−1/2+C1ε + C1N

−δ+C1ε,

where in the second term the arguments of F are changed from the Green
functions of H(v) to H(w) and all other parameters remain unchanged.

Given this theorem, for any matrix ensemble H whose matrix element at
(i, j) are distributed according to σijζ

ij , we need to find ξij0 such that the first

four moments of ζij and ξijt are almost the same and ξij0 has a subexponential
decay. Since the real and imaginary parts are i.i.d., it is sufficient to match
them individually. This is the content of the following lemma which is stated
for real random variables normalized to variance one. With this lemma, we
have proved Theorem 2.2. This lemma is essentially the same as Lemma 28
in [28].

Lemma 3.4. Let m3 and m4 be two real numbers such that

m4 −m2
3 − 1 ≥ 0, m4 ≤ C2

for some positive constant C2. Let ξ
G be a real Gaussian random variable

with mean 0 and variance 1. Then for any sufficient small γ > 0 (depending
on C2), there exists a real random variable ξγ with subexponential decay and
independent of ξG, such that the first four moments of

ξ′ = (1− γ)1/2ξγ + γ1/2ξG

are m1(ξ
′) = 0, m2(ξ

′) = 1, m3(ξ
′) = m3 and m4(ξ

′), and

(3.8) |m4(ξ
′)−m4| ≤ Cγ

for some positive constant C depending on C2.

Proof. It is easy to see by an explicit construction that the following holds:

For any given numbers m3, m4, with m4 −m2
3 − 1 ≥ 0 there

is a random variable X with first four moments 0, 1, m3, m4

and with subexponential decay.(3.9)
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For any real random variable ζ, independent of ξG, and with the first 4
moments being 0, 1, m3(ζ) and m4(ζ) < ∞, the first 4 moments of

ζ ′ = (1− γ)1/2ζ + γ1/2ξG

are 0, 1,

(3.10) m3(ζ
′) = (1− γ)3/2m3(ζ)

and

(3.11) m4(ζ
′) = (1− γ)2m4(ζ) + 6γ − 3γ2.

Using (3.9), we obtain that for any γ > 0 there exists a real random
variable ξγ such that the first four moments are 0, 1,

m3(ξγ) = (1− γ)−3/2m3

and

m4(ξγ) = m3(ξγ)
2 + (m4 −m2

3).

With m4 ≤ C2, we have m2
3 ≤ C

3/2
2 , thus

|m4(ξγ)−m4| ≤ Cγ

for some positive constant C depending on C2. Hence with (3.10) and (3.11),
we obtain that ξ′ = (1 − γ)1/2ξγ + γ1/2ξG satisfies m3(ξ

′) = m3 and (3.8).
This completes the proof of Lemma 3.4.

4. Large deviation of local semicircle law

We first reprove the large deviation of local semicircle law given in [19]. The
result of this section is relevant only for η ≥ M−1.

Theorem 4.1. Assume the N ×N random matrix H satisfies (2.1), (2.4),
(2.5) and (2.11), Ehij = 0, for any 1 ≤ i, j ≤ N . Let z = E + iη (η > 0)
and let θ(z) be a non-negative function defined by

(4.1) θ = θ(z) :=
1

|1−msc(z)2|
+

1

max
{
δ+ , |Rem2

sc(z)− 1|
} .

Let κ ≡ ||E| − 2|. Then for all z = E + iη with

(4.2) |E| ≤ 5,
1

N
< η ≤ 10,

√
Mη ≥ (logN)12+3αθ2(z)(κ+ η)1/4
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we have

P

{
max

i
|Gii(z)−msc(z)| ≥ (logN)6+2α (κ+ η)1/4√

Mη
θ(z)

}
≤ CN−c(log logN)

(4.3)

and

(4.4) P

{
max
i �=j

|Gij(z)| ≥ (logN)6+2α (κ+ η)1/4√
Mη

}
≤ CN−c(log logN)

for sufficiently large N with positive some constants c and C > 0 that depend
only on α and β in (2.11) and δ− in (2.4) and (2.5).

The theorem will be proved at the end of the section after collecting
several lemmas. The first lemma describes the behavior of msc in the various
regimes, its proof is elementary calculus. We use the notation f ∼ g for two
positive functions in some domain D if there is a positive universal constant
C such that C−1 ≤ f(z)/g(z) ≤ C holds for all z ∈ D.

Lemma 4.2. We have for all z with Im z > 0 that

(4.5) |msc(z)| = |msc(z) + z|−1 ≤ 1.

From now on, let z = E+ iη with |E| ≤ 5 and η > 0. If η ≥ 10, then we
have

Immsc(z) ∼ η−1, |msc(z)| ∼ η−1,

|1−m2
sc(z)| ∼ 1, |1−Rem2

sc(z)| ∼ 1.(4.6)

If η ≤ 10, then we have

(4.7) |msc(z)| ∼ 1, |1−m2
sc(z)| ∼

√
κ+ η.

For the behavior of |1−Rem2
sc(z)| and Immsc(z) we distinguish two cases.

Case 1. For |E| ≥ 2 we have

Immsc(z) ∼

⎧⎨⎩
η√
κ+η

if κ ≥ η

√
κ+ η if κ ≤ η

|1−Rem2
sc(z)| ∼

√
κ+ η.(4.8)
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Case 2. For |E| ≤ 2 we have

Immsc(z) ∼
√
κ+ η,

|1−Rem2
sc(z)| ∼

⎧⎨⎩
κ+ η√

κ+η
if η ≤ κ

√
κ+ η if κ ≤ η

(4.9)

Thus the control function θ(z) has the following behavior

θ(z) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if η≥ 10,

min
{
δ−1
+ ,

√
κ/η, κ−1

}
if η ≤ 10, |E| ≤ 2 and κ ≥ η,

(κ+ η)−1/2 if η ≤ 10, and
{
2 ≤ |E| ≤ 10 or κ ≤ η

}
.

(4.10)

Note that the precise formula (4.1) for θ(z) is not important, only its

asymptotic behavior for small κ, η and δ+ is relevant. The theorem remains

valid if θ(z) is replaced by θ̃(z) with θ̃(z) ≤ Cθ(z). In particular, θ(z) can

be chosen to be order one when E is not near the edges of the spectrum.

If we are only concerned with the generalized Wigner ensemble (2.6), then

by (2.7) we can choose θ(z) = (κ + η)−1/2 for any z = E + iη (η > 0). For

universal Wigner matrices we have θ(z) ≤ C(κ+η)−1 for |z| ≤ 10, i.e., using

the parameter A introduced in Theorem 2.1, we have

(4.11) θ(z) ≤ C

(κ+ η)A/2
, A = 1, 2, |E|, η ≤ 10.

Based upon these formulas, we also have, for any z = E + iη with η > 0,

(4.12) Immsc(z) +
1

θ(z)
≤ Cmin{1,

√
κ+ η}.

First, we introduce some notations. Recall that Gij = Gij(z) denotes

the matrix element

Gij =

(
1

H − z

)
ij
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and

m(z) = mN (z) =
1

N

N∑
i=1

Gii(z).

Definition 4.1. Let T = {k1, k2, . . ., kt} ⊂ {1, 2, . . . , N} be an unordered
set of |T| = t elements and let H(T) be the N − t by N − t minor of H
after removing the ki-th (1 ≤ i ≤ t) rows and columns. For T = ∅, we have
H(∅) = H. Similarly, we define a(�; T) the �-th column with ki-th (1 ≤ i ≤ t)
elements removed. Sometimes, we just use the short notation a� = a(�; T).
For any T ⊂ {1, 2, . . . , N} we introduce the following notations:

G
(T)
ij := (H(T) − z)−1(i, j)

Z
(T)
ij := ai · (H(T) − z)−1aj =

∑
k,l/∈T

a i
kG

(T)
k l a

j
l

K
(T)
ij := hij − zδij − Z

(T)
ij .

These quantities depend on z, but we mostly neglect this dependence in the
notation.

The following two results were proved in our previous work (Lemma 4.2
and Corollary B.3 of [19]) and they will be our key inputs. We start with
the self-consistent perturbation formulas.

Lemma 4.3 (Self-consistent Perturbation Formulas). Let T ⊂ {1, 2, . . . , N}.
For simplicity, we use the notation (iT) for ({i}∪T) and (ij T) for ({i, j}∪
T). Then we have the following identities:

1. For any i /∈ T

(4.13) G
(T)
ii =

(
K

(iT)
ii

)−1
.

2. For i �= j and i, j /∈ T

(4.14) G
(T)
ij = −G

(T)
jj G

(j T)
ii K

(ij T)
ij = −G

(T)
ii G

(iT)
jj K

(ij T)
ij .

3. For i �= j and i, j /∈ T

(4.15) G
(T)
ii −G

(j T)
ii = G

(T)
ij G

(T)
ji

(
G

(T)
jj

)−1
.

4. For any indices i, j and k that are different and i, j, k /∈ T

(4.16) G
(T)
ij −G

(k T)
ij = G

(T)
ik G

(T)
kj

(
G

(T)
kk

)−1
.
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Lemma 4.4. Let ai (1 ≤ i ≤ N) be N independent random complex vari-
ables with mean zero, variance σ2 and having the uniform subexponential
decay (2.11). Let Ai, Bij ∈ C (1 ≤ i, j ≤ N). Then we have that

P

⎧⎨⎩
∣∣∣∣∣
N∑
i=1

aiAi

∣∣∣∣∣≥ (logN)
3

2
+ασ

(∑
i

|Ai|2
)1/2

⎫⎬⎭ ≤ CN− log logN,(4.17)

P

⎧⎨⎩
∣∣∣∣∣
N∑
i=1

aiBiiai −
N∑
i=1

σ2Bii

∣∣∣∣∣≥ (logN)
3

2
+2ασ2

(
N∑
i=1

|Bii|2
)1/2

⎫⎬⎭ ≤ CN− log logN,

(4.18)

P

⎧⎨⎩
∣∣∣∣∣∣
∑
i �=j

aiBijaj

∣∣∣∣∣∣≥ (logN)3+2ασ2

(∑
i �=j

|Bij |2
)1/2

⎫⎬⎭ ≤ CN− log logN,(4.19)

for some constants C depending on α and β in (2.11).

We start with determining a system of self-consistent equations for the
diagonal matrix elements of the resolvent. We can write Gii as follows,

Gii =
(
K

(i)
ii

)−1
=

1

EaiK
(i)
ii +K

(i)
ii − EaiK

(i)
ii

,

where Eai = Ei denotes the expectation with respect to the elements in the
i-th column of the matrix H, i.e., w.r.t. ai = (h1i, h2i, . . . , hNi)

t. Introduce
the notations

(4.20) Ai := σ2
iiGii +

∑
j �=i

σ2
ij

GijGji

Gii

and

Zi :=
∑
k,l �=i

[
aikG

(i)
k la

i
l − EaiaikG

(i)
k la

i
l

]
= Z

(i)
ii − EiZ

(i)
ii .

Using the fact thatG(i) = (H(i)−z)−1 is independent of ai and Eaiaika
i
l =

δk lσ
2
ik, we obtain

EaiK
(i)
ii = −z −

∑
j �=i

σ2
ijG

(i)
jj

and

K
(i)
ii − EaiK

(i)
ii = hii − Zi.
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Denote by

(4.21) Υi = Υi(z) := Ai +
(
K

(i)
ii − EaiK

(i)
ii

)
= Ai + hii − Zi

and we have the identity

(4.22) Gii =
1

−z −
∑

j σ
2
ijGjj +Υi

.

Let

vi := Gii−msc, m :=
1

N

∑
i

Gii, v̄ :=
1

N

∑
i

vi =
1

N

∑
i

(Gii−msc).

We will estimate the following key quantities

(4.23) Λd := max
k

|vk| = max
k

|Gkk −msc|, Λo := max
k �=�

|Gk�|,

where the subscripts refer to “diagonal” and “offdiagonal” matrix elements.

All the quantities defined so far depend on the spectral parameter z =

E + iη, but we will mostly omit this fact from the notation. The real part

E will always be kept fixed. For the imaginary part we will use a continuity

argument at the end of the proof and then the dependence of Λd,o on η will

be indicated.

Both quantities Λd and Λo will be typically small, eventually we will

prove that their size is less than (Mη)−1/2, modulo logarithmic corrections

and a factor involving the distance to the edge. We thus define the excep-

tional event

(4.24) ΩΛ = ΩΛ(z) :=

{
Λd(z) + Λo(z) ≥

(logN)−3/2

θ(z)

}
.

We will always work in Ωc
Λ, and, in particular, we will have

Λd(z) + Λo(z) ≤ C(logN)−3/2

since 1/θ(z) ≤ C by (4.12). Define the set

S := {z = E + iη : |E| ≤ 5, N−1 < η ≤ 10}.
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We thus have

(4.25) c ≤ |Gii(z)| ≤ C in Ωc
Λ

for any z ∈ S with some universal constant c > 0. Here we estimated∣∣|Gii| − |msc|
∣∣ ≤ Λd, and we used from (4.6)–(4.7) that msc(z) satisfies

|msc(z)| ∼ 1 for z ∈ S.

Thus, a special case of (4.16) or (4.15),

G
(i)
k l = Gk l −

GkiGil

Gii
, i �= l, k,

together with (4.25) implies that for any i and with a sufficiently large con-
stant C

(4.26) max
k �=l

∣∣G(i)
k l

∣∣ ≤ Λo + CΛ2
o ≤ CΛo in Ωc

Λ,

(4.27) C−1 ≤
∣∣G(i)

kk

∣∣ ≤ C, for all k �= i and in Ωc
Λ

(4.28)
∣∣G(i)

kk −msc

∣∣ ≤ Λd + CΛ2
o for all k �= i and in Ωc

Λ

and

(4.29) |Ai| ≤
C

M
+ CΛ2

o in Ωc
Λ.

Here we have used that ∣∣∣∣GkiGil

Gii

∣∣∣∣ ≤ c−1Λ2
o in Ωc

Λ

with c being the constant in (4.25) and we also used that
∑

j σ
2
ij = 1. Simi-

larly, with one more expansion step, we get

(4.30) max
ij

max
k �=l

∣∣G(ij)
k l

∣∣ ≤ CΛo, max
ij

max
k

∣∣G(ij)
kk

∣∣ ≤ C in Ωc
Λ

and

(4.31)
∣∣G(ij)

kk −msc

∣∣ ≤ Λd + CΛ2
o for all k �= i, j and in Ωc

Λ.
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Using these estimates, the following lemma shows that Zi and Z
(ij)
ij are

small assuming Λd +Λo is small and the hij ’s are not too large. The control
parameter for the Z’s is Φ = Φ(z), defined below (4.32). These bounds hold
uniformly in S.

Lemma 4.5. Denote by

(4.32) Φ := Φ(z) =

√
Λd + Λo + (κ+ η)1/4√

Mη
,

and define the exceptional events

Ω1 :=

{
max

1≤i,j≤N
|hij | ≥ (logN)2α|σij |

}
Ωd(z) :=

{
max

i
|Zi(z)| ≥ (logN)5+2αΦ(z)

}
Ωo(z) :=

{
max
i �=j

|Z(ij)
ij (z)| ≥ (logN)5+2αΦ(z)

}
and we let

(4.33) Ω := Ω1 ∪
⋃
z∈S

[(
Ωd(z) ∪ Ωo(z)

)
∩ Ωc

Λ(z)
]

to be the set of all exceptional events. Then we have

(4.34) P(Ω) ≤ CN−c(log logN).

Proof. Under the assumption of (2.11), we have

(4.35) P (Ω1) ≤ CN−c log logN ,

therefore we can work on the complement set Ωc
1. Define the event

Ω̃Λ(z) :=

{
Λd(z) + Λo(z) ≥ 2

(logN)−3/2

θ(z)

}
.

Notice that the estimates (4.26)–(4.31) also hold on Ω̃c
Λ, maybe with different

constants C. We now prove that for any fixed z ∈ S, we have

(4.36) P

(
Ω̃c
Λ(z) ∩

{
max

i
|Zi(z)| ≥ C(logN)2+2αΦ(z)

})
≤ CN−c log logN
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and

(4.37) P

(
Ω̃c
Λ(z) ∩

{
max
i �=j

|Z(ij)
ij (z)| ≥ (logN)4+2αΦ(z)

})
≤ CN−c log logN .

To see (4.36), we apply the estimate (4.18) from the large deviation Lem-
ma 4.4, and we obtain that

(4.38) |Zi| ≤ C(logN)
3

2
+2α

√∑
k,l �=i

∣∣∣σikG(i)
k lσli

∣∣∣2
holds with a probability larger than 1−CN−c(log logN) for sufficiently largeN.

Denote by u
(i)
α and λ

(i)
α (α = 1, 2, . . . , N − 1) the eigenvectors and eigen-

values of H(i). Let u
(i)
α (l) denote the l-th coordinate of u

(i)
α . Then, using

σ2
il ≤ 1/M and (4.28), we have

∑
k,l �=i

∣∣∣σikG(i)
k lσli

∣∣∣2 ≤ 1

M

∑
k �=i

σ2
ik

(
|G(i )|2

)
kk

=
1

M

∑
k �=i

σ2
ik

∑
α

|u(i )α (k)|2

|λ(i )
α − z|2

≤ 1

M

∑
k �=i

σ2
ik

ImG
(i )
kk (z)

η

≤ Λd + CΛ2
o + Immsc(z)

Mη

≤ CΦ2 in Ω̃c
Λ.(4.39)

Here we defined |A|2 := A∗A for any matrix A and we used (4.12) to estimate
Immsc(z). Together with (4.38) we have proved (4.36) for a fixed z.

For the offdiagonal estimate (4.37), for i �= j, we have from (4.19) that

(4.40) |Z(ij)
ij | ≤ C(logN)3+2α

√ ∑
k,l �=i,j

∣∣∣σikG(ij)
k l σlj

∣∣∣2
holds with a probability larger than 1−CN−c(log logN) for sufficiently largeN.
Similarly to (4.39), by using (4.31), we get∑

k,l �=i,j

∣∣∣σikG(ij)
k l σlj

∣∣∣2 ≤ CΦ2 in Ω̃c
Λ.

This proves (4.37).
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Now we start proving (4.34). First we choose an N−10-net N in the set S,

i.e., a collection of points, {zn}n∈I ⊂ S, such that for any z ∈ S there is

z̃ ∈ N such that |z−z̃| ≤ N−10. The net can be chosen such that |I| ≤ CN20.

Then (4.36) and (4.37) imply that

P

(
∃ z̃ ∈ N, s.t. Ω̃c

Λ(z̃) holds and

max
i

|Zi(z̃)|+max
i �=j

|Z(ij)
ij (z̃)| ≥ 2(logN)4+2αΦ(z̃)

)
≤ CN−c log logN.(4.41)

Now let z ∈ S be arbitrary and choose z̃ ∈ N such that |z − z̃| ≤ N−10. For

any fixed i �= j, we have

(4.42)
∣∣∣|Z(ij)

ij (z)| − |Z(ij)
ij (z̃)|

∣∣∣ ≤ |z − z̃|max
ξ∈S

∣∣∣∣∂Z(ij)
ij

∂z
(ξ)

∣∣∣∣.
By ∂Z

(ij)
ij /∂z = −

∑
s,k,l/∈(ij) a

i
kG

(ij)
ks G

(ij)
sl ajl and maxab |G(ij)

ab | ≤ η−1, we have

max
ξ∈S

∣∣∣∣∂Z(ij)
ij

∂z
(ξ)

∣∣∣∣ ≤ (logN)6α

Mη2
N3 ≤ N6, in Ωc

1.

In the last inequality, we used the assumption η ≥ N−1. Thus∣∣∣|Z(ij)
ij (z)| − |Z(ij)

ij (z̃)|
∣∣∣ ≤ N−4 in Ωc

1.

Since Φ ≥ M−1/2η−1/4 ≥ cN−1 for z ∈ S, we obtain∣∣∣|Z(ij)
ij (z)| − |Z(ij)

ij (z̃)|
∣∣∣ ≤ Φ(z) in Ωc

1,

and exactly in the same way, we have∣∣∣|Zi(z)| − |Zi(z̃)|
∣∣∣ ≤ Φ(z̃) in Ωc

1.

Moreover, by estimating |∂zG| ≤ N2 in S, we see that Λd(z), Λo(z), and Φ(z)

are Lipschitz continuous functions in S with a Lipschitz constant bounded

by CN3. Therefore Φ(z̃) can be replaced with Φ(z) in the lower bound on

|Z(ij)
ij (z̃)| and |Zi(z̃)| obtained from (4.41), and, furthermore, Ωc

Λ(z) ⊂ Ω̃c
Λ(z̃)
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using a trivial upper bound θ(z) ≤ N . Thus we get

P

(
∃z ∈ S s.t.Ωc

Λ(z) and Ωc
1 hold and

max
i

|Zi(z)|+max
i �=j

|Z(ij)
ij (z)| ≥ (logN)5+2αΦ(z̃)

)
≤ CN−c log logN .

Combining this with (4.35), we obtain (4.34) and thus Lemma 4.5.

Our goal is to show that Λo(z)+Λd(z) is smaller than (Mη)−1/2 (modulo
edge and logarithmic corrections) for any z ∈ S in the event Ωc(z). We will
use a continuity argument. In Lemma 4.6 we show for any z ∈ S that if
Λo(z) + Λd(z) is smaller than (logN)−3/2, then it is actually also smaller
than (Mη)−1/2. In Lemma 4.9 we show that this input condition holds at
least for Im z = η = 10. Then reducing η, we show by a continuity argument
that it holds for each z ∈ S.

Lemma 4.6 (Bootstrap). Let z = E + iη and satisfy (4.2), in particular
z ∈ S. Recall Λd, Λo and Ω defined in (4.23) and (4.33). Then we have that,
in the event Ωc, if

(4.43) Λo(z) + Λd(z) ≤
(logN)−3/2

θ(z)
,

then we have

(4.44) Λo(z) + Λd(z) ≤ (logN)6+2α (κ+ η)1/4√
Mη

θ(z)

and we also have a stronger bound for the off-diagonal terms:

(4.45) Λo(z) ≤ (logN)5+2α (κ+ η)1/4√
Mη

.

Proof of Lemma 4.6. First note that condition (4.43) is equivalent assuming
the event Ωc

Λ(z) and we have

(4.46) Ωc ∩ Ωc
Λ(z) ⊂ Ωc

d(z) ∪ Ωc
o(z),

so the event Ωc
d(z) ∪ Ωc

o(z) holds. We recall from (4.12) that

(4.47)
1

θ(z)
≤ C

√
κ+ η ≤ C, z ∈ S.



Universality for generalized Wigner matrices 41

With the assumption (4.43) we have (see (4.25), (4.27))

(4.48) c ≤ |Gii| ≤ C, c ≤
∣∣G(i)

jj

∣∣ ≤ C

and by (4.47)

(4.49) Λd(z) + Λo(z) ≤
C
√
κ+ η

(logN)3/2
≤ C

(logN)3/2

and thus, by (4.2) and (4.47),

(4.50)
(κ+ η)1/4√

Mη
≤ Φ(z) ≤ C

(κ+ η)1/4√
Mη

≤ C(logN)−12−3α.

We first estimate the offdiagonal term Gij . From (4.14) we have

(4.51) |Gij | = |Gii|
∣∣G(i)

jj

∣∣∣∣K(ij)
ij

∣∣ ≤ C
(
|hij |+

∣∣Z(ij)
ij

∣∣) , i �= j,

where we used (4.48).
By the remark after (4.46) we have

|Gij | ≤
C(logN)2α√

M
+ C(logN)5+2αΦ ≤ C(logN)5+2αΦ,

where we used (4.50) to show that the first term can be absorbed into the
second. From the second inequality in (4.50) we also have

(4.52) Λo = max
i �=j

|Gij | ≤ C(logN)5+2α (κ+ η)1/4√
Mη

.

This proves the estimate (4.45). Using (4.47), we also see that (4.44) holds
for the summand Λo.

Now we estimate the diagonal terms. Recalling Υi = Ai + hii − Zi from
(4.21), with (4.29), (4.50), (4.52) we have,

Υ = Υ(z) := max
i

|Υi(z)| ≤ C
(logN)2α√

M
+ C(logN)5+2αΦ in Ωc∩Ωc

Λ(z).

(4.53)

Again, the first term can be absorbed into the second, so we have proved

(4.54) Υ ≤ (logN)5+2αΦ ≤ C(logN)−6 in Ωc∩Ωc
Λ(z).
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In the last step we used (4.50).
From (4.22) we have the identity

(4.55) vi = Gii −msc =
1

−z −msc −
(∑

j σ
2
ijvj −Υi

) −msc.

Using (msc+ z) = −m−1
sc , and the fact that |msc+ z| ≥ 1, so with Λd+Υ ≤

1
10 |msc + z| (see in (4.49) and (4.54)), we can expand (4.55) as

vi = m2
sc ·

(∑
j

σ2
ijvj −Υi

)
+O

(∑
j

σ2
ijvj −Υi

)2

= m2
sc ·

(∑
j

σ2
ijvj −Υi

)
+O

(
(Λd +Υ)2

)
.(4.56)

Summing up this formula for all i and recalling the definition v̄ ≡ 1
N

∑
i vi =

m−msc yield

v̄ = m2
sc v̄ −

m2
sc

N

∑
i

Υi +O
(
(Λd +Υ)2

)
.

Introducing the notations ζ := m2
sc(z), Υ := 1

N

∑
iΥi for simplicity, we have

(using Λd ≤ 1)

(4.57) v̄ = − ζ

1− ζ
Υ+O

(
ζ

1− ζ
(Λd +Υ)2

)
= O

(∣∣∣∣ ζ

1− ζ

∣∣∣∣ (Λ2
d +Υ

))
.

Recall that Σ denotes the matrix of covariances, Σij = σ2
ij , and we know

that 1 is a simple eigenvalue with the constant vector e = N−1/2(1, 1, . . . , 1)
as the eigenvector. Let Q := I−|e〉〈e| be the projection onto the orthogonal
complement of e, note that Σ and Q commute. Let ‖ · ‖∞→∞ denote the
�∞ → �∞ matrix norm. With these notations, (4.56) can be written as

vi − v̄ = ζ
∑
j

Σij(vj − v̄)− ζ
(
Υi −Υ

)
+O

(
|ζ|

(
Λ2
d +Υ

))
+O

(
(Λd +Υ)2

)
,

and the error terms for each i sums up to zero. Therefore, with Υ ≤ 1,
we have

vi − v̄ = −
∑
j

(
ζ

1− ζΣ

)
ij

(
Υj −Υ

)
+O

(∥∥∥∥ ζQ

1− ζΣ

∥∥∥∥
∞→∞

(Λ2
d +Υ)

)

=

∥∥∥∥ ζQ

1− ζΣ

∥∥∥∥
∞→∞

O
(
Λ2
d +Υ

)
.(4.58)
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Combining (4.57) with (4.58), we have

(4.59) max
i

|vi| ≤ C

(∥∥∥∥ ζQ

1− ζΣ

∥∥∥∥
∞→∞

+

∣∣∣∣ ζ

1− ζ

∣∣∣∣) (Λ2
d +Υ).

To estimate the norm of the resolvent, we recall the following elementary

lemma (Lemma 5.3 in [19]).

Lemma 4.7. Let δ− > 0 be a given constant. Then there exist small real

numbers τ ≥ 0 and c1 > 0, depending only on δ−, such that for any positive

number δ+, we have

(4.60) max
x∈[−1+δ−,1−δ+]

{∣∣∣τ + xm2
sc(z)

∣∣∣2} ≤ (1− c1 q(z)) (1 + τ)2

with

(4.61) q(z) := max{δ+, |1−Re m2
sc(z)|}.

Lemma 4.8. Suppose that Σ satisfies (2.4), i.e., Spec(QΣ) ⊂ [−1+ δ−, 1−
δ+]. Then we have

(4.62)

∥∥∥∥ Q

1−m2
sc(z)Σ

∥∥∥∥
∞→∞

≤ C(δ−) logN

q(z)

with some constant C(δ−) depending on δ− and with q defined in (4.61).

Proof. Let ‖ · ‖ denote the usual �2 → �2 matrix norm and introduce ζ =

m2
sc(z). Rewrite ∥∥∥∥ Q

1− ζΣ

∥∥∥∥ =
1

1 + τ

∥∥∥∥ Q

1− ζΣ+τ
1+τ

∥∥∥∥
with τ given in (4.60). By (4.60), we have∥∥∥∥ζΣ+ τ

1 + τ
Q

∥∥∥∥ ≤ sup
x∈[−1+δ−,1−δ+]

∣∣∣∣ζx+ τ

1 + τ

∣∣∣∣ ≤ (1− c1q(z))
1/2.

To estimate the �∞ → �∞ norm of this matrix, recall that |ζ| = |msc|2 ≤ 1
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and
∑

j |Σij | =
∑

j Σij =
∑

j σ
2
ij = 1. Thus we have∥∥∥∥ζΣ+ τ

1 + τ
Q

∥∥∥∥
∞→∞

= max
i

∑
j

∣∣∣∣(ζΣ+ τ

1 + τ

)
ij

∣∣∣∣
≤ 1

1 + τ
max

i

∑
j

|ζΣij + τδij | ≤
|ζ|+ τ

1 + τ
≤ 1.

To see (4.62), we can expand∥∥∥∥ 1

1− ζΣ+τ
1+τ

Q

∥∥∥∥
∞→∞

≤
∑
n<n0

∥∥∥∥ζΣ+ τ

1 + τ
Q

∥∥∥∥n
∞→∞

+
∑
n≥n0

∥∥∥∥(ζΣ+ τ

1 + τ

)n

Q

∥∥∥∥
∞→∞

≤ n0 +
√
N

∑
n≥n0

∥∥∥∥(ζΣ+ τ

1 + τ

)n

Q

∥∥∥∥
= n0 +

√
N

∑
n≥n0

(1− c1q(z))
n/2

= n0 + C
√
N

(1− c1q(z))
n0/2

q(z)
≤ C logN

q(z)
.

Choosing n0 = C logN/q(z) with a large C, we have proved the Lemma.

We now return to the proof of Lemma 4.6, recall that we are in the set
Ωc ∩ Ωc

Λ(z). First, inserting (4.5) and (4.62) into (4.59), and using 1/q ≤ θ,
we obtain

Λd = max
i

|vi| ≤ Cθ(z)(Λ2
d +Υ) logN.

By the assumption (4.43), we have Cθ(z)Λd logN ≤ 1/2, for large enoughN ,
therefore we get

Λd ≤ Cθ(z)Υ logN.

Using the bound on Υ in (4.54) and (4.50), we obtain

Λd ≤ Cθ(z)(logN)6+2α (κ+ η)1/4√
Mη

,

which, together with (4.52), completes the proof of (4.44).

Lemma 4.9 (Initial step). Define

ΩH := {‖H‖ ≥ 3} ,
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recall the definitions of Ω1, Ωd and Ωo from (4.33) and define

(4.63) Ω̂ := ΩH ∪ Ω1 ∪
⋃{

Ωo(z) ∪ Ωd(z) : z = E + 10i, |E| ≤ 5
}
.

Then we have

(4.64) P(Ω̂) ≤ CN−c log logN .

Furthermore, in the set Ω̂c we have

(4.65) Λo(z) + Λd(z) ≤
(logN)−3/2

θ(z)

for z = E + 10i, |E| ≤ 5.

Proof. The exceptional event ΩH is controlled by Lemma 7.2 of [19]. For
convenience, we will recall this result in Lemma 6.2, Eq. (6.11), and we note
that the condition of this lemma, M ≥ (logN)9, is implied by (4.2) and
(4.12). Thus we have P(ΩH) ≤ CN−c(log logN).

Denote by uα and λα the eigenvectors and eigenvalues of H. On the set
Ωc
H all eigenvalues are bounded, |λα| ≤ 3. In this set we have, with |E| ≤ 5,

(4.66) ImGkk = η
∑
α

|uα(k)|2
(λα − E)2 + η2

≥ c

η

∑
α

|uα(k)|2 =
c

η

with some positive constant c > 0. We also have the upper bound |Gkk| ≤
η−1 and Λo + Λd ≤ C/η. In particular, for η = 10, we have

(4.67) c ≤ |Gkk| ≤ C, in Ωc
H ,

with some positive constants. Inspecting the proof of Lemma 4.5, notice that
the restriction to the set Ωc

Λ was used only to obtain the estimate (4.25).
Once this estimate is obtained independently, as in (4.67) in the set Ωc

H ,
all the estimates (4.26)–(4.31) hold and these are the necessary inputs for
Lemma 4.5. Thus, following the proof of (4.36)–(4.37), and replacing Ωc

Λ
with Ωc

H , we obtain that P
{
Ωc
H ∩ (Ωo(z)∪Ωd(z))

}
≤ CN−c log logN for each

fixed z = E + 10i, |E| ≤ 5. Finally, this estimate can be extended to hold
simultaneously for all z = E + 10i, |E| ≤ 5 using an N−10-net as for the
proof of (4.34). This proves (4.64).

Similarly, the argument (4.51)–(4.52) shows that in the set Ω̂c, we have

(4.68) Λo(z) ≤
C(logN)5+2α

√
M

, z = E + 10i,
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and the argument (4.53)–(4.54) guarantees that

(4.69) Υ(z) ≤ C(logN)5+2α

√
M

, z = E + 10i,

in Ω̂c. Finally, to control Λd, we use that from the self consistent equation
(4.55) and the definition of msc, we have

(4.70) vn =

∑
i σ

2
nivi +O(Υ)

(z +msc +
∑

i σ
2
nivi +O(Υ))(z +msc)

, 1 ≤ n ≤ N.

For η = 10, with (2.9), we have |z + msc(z)| > 2. Using |Gii| ≤ η−1 = 1
10

and |msc| ≤ η−1 = 1
10 , we obtain

(4.71) |vi| ≤ 2/η ≤ 1/5, 1 ≤ i ≤ N.

Using (4.69), together with |z +msc(z)| > 2 and (4.71), we obtain that the
absolute value of the r.h.s of (4.70) is less than

(4.72)
supi |vi|

|z +msc(z)| − supi |vi|
+O(Υ).

Taking the absolute value of (4.70) and maximizing over n, we have

(4.73) Λd = sup
n

|vn| ≤
Λd

|z +msc| − Λd
+O(Υ).

Since the denominator satisfies |z +msc(z)| − supi |vi| ≥ 2− 1/5,

(4.74) Λd ≤ CΥ

follows from the last equation. Combining it with (4.68) and (4.69), we
obtain (4.65), and this completes the proof of Lemma 4.9.

Proof of Theorem 4.1. Lemma 4.6 states that, in the event Ωc, if Λd(z) +
Λo(z) ≤ R(z) then Λd(z) + Λo(z) ≤ S(z) with

R(z) := (logN)−3/2(θ(z))−1, S(z) := (logN)6+2α (κ+ η)1/4√
Mη

θ(z).

By assumption (4.2) of Theorem 4.1, we have S(z) < R(z) for any z ∈ S
and these functions are continuous. Lemma 4.9 states that in the set Ω̂c the
bound Λd(z) + Λo(z) ≤ R(z) holds for η = 10.
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Thus by a continuity argument, Λd(z)+Λo(z) ≤ S(z) in the set Ωc∩Ω̂c as
long as the condition (4.2) is satisfied. Finally, once Λo(z) ≤ S(z) is proven,
we can use S(z) ≤ R(z) (in the domain D) and Lemma 4.6 once more to
conclude the stronger bound on Λo(z). This proves Theorem 4.1.

We record that combining the bound on Λd,Λo with (4.54), we also pro-
ved that under the assumption (4.2) we have

(4.75) Λd(z)+Λo(z)+Υ(z) ≤ C(logN)16+4α (κ+ η)1/4√
Mη

θ(z) in Ωc ∩ Ω̂c.

5. Local semicircle law

In this section we strengthen the estimate of Theorem 4.1 for the Stieltjes
transform m(z) = 1

N

∑
iGii. The key improvement is that |m−msc| will be

estimated with a precision (Mη)−1 while the |Gii −msc| was controlled by
a precision (Mη)−1/2 only (modulo logarithmic terms and terms expressing
the deterioration of the estimate near the edge).

Theorem 5.1. Assume the conditions of Theorem 4.1 and recall the nota-
tions κ = κE := ||E| − 2| and θ(z) from (4.1). Define the domain

D∗ :=

{
z = E + iη ∈ C : |E| ≤ 5,

1

N
≤ η ≤ 10,

Mη ≥ (logN)24+6αθ4(z)(κ+ η)1/2
}
.(5.1)

Then for any ε > 0 and K > 0 there exists a constant C = C(ε,K) such
that

(5.2) P

( ⋃
z∈D∗

{
|m(z)−msc(z)| ≥

N εθ2(z)

Mη

})
≤ C(ε,K)

NK
.

Proof of Theorem 5.1. We will work in the set Ωc ∩ Ω̂c, which has almost
full probability by (4.34) and (4.64). Note that the set D∗ is included in the
domain defined by (4.2), therefore we can use the estimates from Section 4.

As in (4.57), where v̄ = m(z)−msc(z), we have that

m−msc = − ζ

1− ζ

1

N

∑
i

Υi +O

(
ζ

1− ζ
(Λd +Υ)2

)
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holds with a very high probability. Recall that ζ = m2
sc(z) and we mostly

omit the argument z from the notations. The quantities Λd, Υi and Υ were
defined in (4.23), (4.21) and (4.53). Then with (4.75) we have

m(z)−msc(z) = O

(
ζ

1− ζ

1

N

∑
j

Υj

)
+O

(
N ε

|1− ζ|
θ2(z)

√
κ+ η

Mη

)

holds with a very high probability for any small ε > 0. Recall that Υi =
Ai + hii − Zi. We have, from (4.20), (4.25) and σ2

ij ≤ M−1,

Aj ≤
C

M
+ CΛ2

o ≤ CN ε θ
2√κ+ η

Mη
,

where we used (4.75) to bound Λo and (4.47) to control the C/M term.
We thus obtain that

m−msc = O

(
ζ

1− ζ

(
1

N

∑
i

Zi −
1

N

∑
i

hii

))
+O

(
N ε

|1− ζ|
θ2
√
κ+ η

Mη

)(5.3)

holds with a very high probability. Since hii’s are independent, applying the
first estimate in the large deviation Lemma 4.4, we have

(5.4) P

(∣∣∣∣ 1N ∑
i

hii

∣∣∣∣ ≥ (logN)3/2+α 1√
MN

)
≤ CN−c log logN .

On the complement event, the estimate (logN)3/2+α(MN)−1/2 can be in-
cluded in the last error term in (5.3). It only remains to bound

1

N

N∑
i=1

Zi,

whose moment is bounded in the next lemma which will be proved in Sec-
tions 8 and 9.

Lemma 5.2. For fixed z in domain D∗ (5.1) and any even number p, we
have

(5.5) E

∣∣∣∣∣ 1N
N∑
i=1

Zi

∣∣∣∣∣
p

≤ Cp

(
(logN)3+2αX2

)p
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for sufficiently large N , where

(5.6) X = X(z) := (logN)10+2α (κ+ η)1/4√
Mη

, z = E+iη, κ =
∣∣|E|−2

∣∣.
Using Lemma 5.2, we have that for any ε > 0 and K > 0,

P

(
1

N

∣∣∣∣∣
N∑
i=1

Zi

∣∣∣∣∣ ≥ N ε

√
κ+ η

Mη

)
≤ N−K

for sufficiently large N . Combining this with (5.4) and (5.3) and noting

that |1− ζ| ∼ √
κ+ η, see (4.7), we obtain (5.2) and complete the proof of

Theorem 5.1.

6. Empirical counting function

In this section we translate the information on the Stieltjes transform ob-

tained in Theorem 5.1 to an asymptotic on the empirical counting function.

The main ingredient for the first step is the following lemma based upon the

Helffer-Sjöstrand formula. We will formulate this lemma for general signed

measures, but we will apply it to the Stieltjes transform mΔ = m − msc

of the difference between the empirical density and the semicircle law. A

similar statement was already proven in Lemma B.1 in [15] and Lemma 7.7

in [19].

Lemma 6.1. Let 	Δ be a signed measure on the real line with supp 	Δ ⊂
[−K,K] for some fixed constant K ≥ 4. For any E1, E2 ∈ [−3, 3] and

η ∈ (0, 1/2] we define f(λ) = fE1,E2,η(λ) to be a characteristic function

of [E1, E2] smoothed on scale η, i.e., f ≡ 1 on [E1, E2], f ≡ 0 on R \ [E1 −
η,E2 + η] and |f ′| ≤ Cη−1, |f ′′| ≤ Cη−2. For any x ∈ R, set κx :=

∣∣|x| − 2
∣∣.

Let mΔ be the Stieltjes transform of 	Δ. Suppose for some positive U , and

non-negative constant A we have

(6.1) |mΔ(x+ iy)| ≤ CU for 1 ≥ y > 1/2, |x| ≤ K + 1,

and

(6.2) |Im mΔ(x+ iy)| ≤ CU

y(κx + y)A
for 1 ≥ y > 0, |x| ≤ K + 1,
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and in case of A > 0 we additionally assume η ≤ 1
2 min{κE1

, κE2
}. Then

(6.3)

∣∣∣∣∫ fE1,E2,η(λ)	
Δ(λ)dλ

∣∣∣∣ ≤ CU | log η|[
min{κE1

, κE2
}
]A

with some constant C depending on K and A.

Proof of Lemma 6.1. For simplicity, we drop the Δ superscript in the proof.

Analogously to (B.13), (B.14) and (B.15) in [15] we obtain that (with f =

fE1,E2,η)∣∣∣∣∫ f(λ)	(λ)dλ

∣∣∣∣ ≤ C

∫
R2

(|f(x)|+ |y||f ′(x)|)|χ′(y)||m(x+ iy)|dxdy

+ C

∣∣∣∣∣
∫
|y|≤η

∫
yf ′′(x)χ(y)Imm(x+ iy)dxdy

∣∣∣∣∣
+ C

∣∣∣∣∣
∫
|y|≥η

∫
R

yf ′′(x)χ(y)Imm(x+ iy)dxdy

∣∣∣∣∣ ,(6.4)

where χ(y) is a smooth cutoff function with support in [−1, 1], with χ(y) = 1

for |y| ≤ 1/2 and with bounded derivatives. The first term is estimated by∫
R2

(|f(x)|+ |y||f ′(x)|)|χ′(y)||m(x+ iy)|dxdy ≤ CU,

using (6.1) and that on the support of χ′ the condition of (6.1) is satisfied

since 1 ≥ |y| ≥ 1/2.

For the second term in r.h.s of (6.4) we use that from (6.1) and (6.2) it

follows for any 1 ≥ y > 0 that

(6.5) y|Imm(x+ iy)| ≤ CU

(κx + y)A
.

With |f ′′| ≤ Cη−2 and

(6.6) suppf ′(x) ⊂ {|x− E1| ≤ η} ∪ {|x− E2| ≤ η},

we get

second term in r.h.s of (6.4) ≤ CU[
min{κE1

, κE2
}
]A .
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As in (B.17) and (B.19) in [15], we integrate the third term in (6.4) by
parts first in x, then in y. Then we bound it with an absolute value by

C

∫
|x|≤K+1

η|f ′(x)||Imm(x+ iη)|dx

+ Cη−1

∫
η≤y≤1

∫
|x−E|≤η

|Imm(x+ iy)|dxdy.(6.7)

By using (6.5) and (6.6) in the first term and (6.2) in the second, we have

(6.7)≤ CU[
min{κE1

, κE2
}
]A + CUη−1

∑
k=1,2

∫
|x−Ek|≤η

dx

∫
η≤y≤1

1

y(κx + y)A
dy

≤ CU | log η|[
min{κE1

, κE2
}
]A .

Let λ1 ≤ λ2 ≤ · · · ≤ λN be the ordered eigenvalues of a universal Wigner
matrix. We define the normalized empirical counting function by

(6.8) n(E) :=
1

N
#{λj ≤ E}

and the averaged counting function by

(6.9) n(E) =
1

N
E#[λj ≤ E].

Finally, let

(6.10) nsc(E) :=

∫ E

−∞
	sc(x)dx

be the distribution function of the semicircle law which is very close to the
counting function of γ’s, nγ(E) := 1

N#[γj ≤ E].
We will need some control on the spectral edge, we recall the Lemma 7.2

from [19].

Lemma 6.2. (1) Let the universal Wigner matrix H satisfy (2.1), (2.2) and
(2.11) with M ≥ (logN)9. Then we have

(6.11) n(−3) ≤ CN−c log logN and n(3) ≥ 1− CN−c log logN .
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(2) Let H be a generalized Wigner matrix with subexponential decay, i.e.,

(2.1), (2.2), (2.6) and (2.11) hold. Then

(6.12) n(−2−N−1/6+ε) ≤ Ce−Nε′

and n(2 +N−1/6+ε) ≥ 1− Ce−Nε′

,

for any small ε > 0 with an ε′ > 0 depending on ε. Furthermore, for K ≥ 3,

(6.13) n(−K) ≤ e−Nε logK and n(K) ≥ 1− e−Nε logK ,

for some ε > 0.

With these preliminary lemmas, we have the following theorem that we

state for universal Wigner matrices and for their subclass, the generalized

Wigner matrices in parallel.

Theorem 6.3. Let A = 2 for universal Wigner matrices and A = 1 for

generalized Wigner matrices. Suppose that the universal Wigner matrix en-

semble satisfies (2.1), (2.2) and (2.11) with M ≥ (logN)24+6α and the gen-

eralized Wigner matrix ensemble satisfies (2.1), (2.2), (2.6) and (2.11). We

recall M = N in the latter case. Then for any ε > 0 and K ≥ 1 there exists

a constant C(ε,K) such that

P

{
sup
|E|≤3

∣∣n(E)− nsc(E)
∣∣ [κE ]A ≤ CN ε

M

}
≥ 1− C(ε,K)

NK
,

where the n(E) and nsc(E) were defined in (6.8) and (6.10) and κE =

||E| − 2|.

Proof. For definiteness, we will consider the case of generalized Wigner ma-

trices, i.e., A = 1. In this case M = N , δ+ ≥ Cinf > 0 (see (2.7)) and

thus θ(z) ≤ C(κ + η)−1/2 for |z| ≤ 10, see (4.10). For simplicity of the

presentation, we assume that θ(z) = (κ+ η)−1/2 as overall constant factors

do not matter (see the remark after (4.10)). We set η = 1/N , U = N ε−1

and apply Lemma 6.1 to the difference mΔ = m −msc. Let 	Δ = 	 − 	sc,

where 	(x) = 1
N

∑
j δ(x− λj) is the normalized empirical counting measure

of eigenvalues. First we check the conditions of Lemma 6.1. By (6.11), we

know that supp 	Δ ⊂ [−3, 3] apart from an event of negligible probability.

From Proposition 5.1 and N ≥ (logN)24+6α we obtain (6.1) with a very

high probability.

To check that (6.2) holds, set L = (logN)24+6α and for a fixed x, let yx
satisfy Nyx(κx + yx)

3/2 = L, so that x + iyx ∈ D∗. Clearly (6.2) holds for
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any y ≥ yx with a very high probability by (5.2). For y ≤ yx, we can use the
monotonicity of y → yIm m(x+ iy) and (5.2) for z = x+ iyx to get

(6.14) yIm m(x+ iy) ≤ yxIm m(x+ iyx) ≤
N ε

N(κx + yx)
≤ U

κx + y
,

and thus

Im m(x+ iy) ≤ U

y(κx + y)

with a very high probability. From (4.12) we have

Im msc(x+ iy) ≤ C(κx + y)1/2 ≤ U

y(κx + y)
,

where, in the second inequality, we used y ≤ yx and that CNy(κx + y)3/2 ≤
CNyx(κx + yx)

3/2 = CL � UN . Thus (6.2) holds for the difference mΔ =
m−msc as well. The application of Lemma 6.1 shows that for η = 1/N

∣∣∣∣∫ fE1,E2,η(λ)	(λ)dλ−
∫

fE1,E2,η(λ)	sc(λ)dλ

∣∣∣∣ ≤ CN2ε

N min{κE1
, κE2

}+ 1
.

(6.15)

Recall that fE1,E2,η the characteristic function of the interval [E1, E2], smoo-
thed on scale η at the edges. The additional 1 in the denominator in the r.h.s.
of (6.15) comes from the case when κE1

, κE2
are very small and the trivial

estimate f ≤ 1 with
∫
	 =

∫
	sc = 1 gives a better bound than Lemma 6.1.

We remark that (6.14) implies a crude upper bound on the empirical
density. Indeed, for any interval I := [x− η, x+ η], with η = 1/N , we have

(6.16) n(x+ η)− n(x− η) ≤ Cη Im m
(
x+ iη

)
≤ CN2ε

Nκx + 1
,

since η = 1/N ≤ yx for any x.

Choose arbitrary E1, E2 ∈ [−3, 3], then we have∣∣∣∣n(E1)− n(E2)−
∫

fE1,E2,η(λ)	(λ)dλ

∣∣∣∣ ≤ C
∑
j=1,2

[
n(Ej + η)− n(Ej − η)

]
≤

∑
j=1,2

CN2ε

NκEj
+ 1

(6.17)
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from (6.16). Since 	sc is bounded, we also have

(6.18)

∣∣∣∣nsc(E1)− nsc(E2)−
∫

fE1,E2,η(λ)	sc(λ)dλ

∣∣∣∣ ≤ Cη = C/N.

Subtracting (6.17) and (6.18) and using (6.15), we obtain that for any

E1, E2 ∈ [−3, 3]

∣∣∣[n(E1)− n(E2)
]
−
[
nsc(E1)− nsc(E2)

]∣∣∣ ≤ CN2ε

N min{κE1
, κE2

}+ 1

with a very high probability, i.e., apart from a set of probability smaller than

C(ε,K)N−K for anyK. The estimate (6.13) from Lemma 6.2 on the extreme

eigenvalues shows that 	 is supported in [−3, 3] with very high probability,

i.e., n(−3) = nsc(−3) = 0, n(3) = nsc(3) = 1. Thus we obtain that

(6.19)
∣∣∣n(E)− nsc(E)

∣∣∣ ≤ CN2ε

NκE + 1

holds for any fixed E ∈ [−3, 3] with an overwhelming probability.

We now choose a fine grid of equidistant points Ej ∈ [−3, 3] with |Ej −
Ej+1| ≤ N−1, then (6.19) holds simultaneously for every E = Ej with an

overwhelming probability. For any E ∈ [−3, 3] we can find an Ej with |E −
Ej | ≤ N−1 and by (6.16) we obtain

|n(E)− n(Ej)| ≤ n(Ej + 1/N)− n(Ej − 1/N) ≤ CN2ε

NκEj
+ 1

.

This guarantees that (6.19) holds simultaneously for all E. Since ε > 0 was

arbitrary, this proves Theorem 6.3 for generalized Wigner matrices.

The proof for universal Wigner matrices is very similar, just M replaces

N in the estimates, U = N εM−1 and instead of θ(z) ≤ C(κ+η)−1/2 one uses

θ(z) ≤ C(κ + η)−1 which follows from (4.10). The main technical estimate

(6.15) is modified to

∣∣∣∣∫ fE1,E2,η(λ)	(λ)dλ−
∫

fE1,E2,η(λ)	sc(λ)dλ

∣∣∣∣ ≤ CN2ε

M
[
min{κE1

, κE2
}
]2

+ 1

(6.20)

and the rest of the proof is identical.
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7. Location of eigenvalues

In this section we estimate the mean square deviation of the eigenvalues from

their classical location. The main input is Theorem 6.3, the estimate on the

counting function. For simplicity, we consider only the case of generalized

Wigner matrices. Similar, but weaker results can be obtained along the same

lines for universal Wigner matrices.

Theorem 7.1. Let H be a generalized Wigner matrix with subexponential

decay, i.e., assume that (2.1), (2.2), (2.6) and (2.11) hold. Let λj denote the

eigenvalues of H and γj be their classical location, defined by (2.23). Then

for any ε0 < 1/7 and for any K > 1 there exists a constant C, depending

on K and ε0, such that

(7.1) P

{
N∑
j=1

|λj − γj |2 ≤ N−ε0

}
≥ 1− C

NK
.

and

(7.2)

N∑
j=1

E|λj − γj |2 ≤ CN−ε0 .

Proof. The proof of (7.2) directly follows from (7.1) by using the estimates

on the extreme eigenvalue (6.13) from Lemma 6.2. For the proof of (7.1),

we can assume that maxj |λj | ≤ 2 +N−1/7 since the complement event has

a negligible probability by (6.12) and (6.13) of Lemma 6.2. From Theo-

rem 6.3 we can also assume that

(7.3) |n(E)− nsc(E)| ≤ CN ε

NκE
holds for every E ∈ R.

From the definition of γj it follows that for j ≤ N/2, i.e., γj ≤ 0,

(7.4) − 2 + C1

( j

N

)2/3
≤ γj ≤ −2 + C2

( j

N

)2/3

with some positive constants C1, C2.

Choose β = 2
5 − ε. Consider first those j-indices for which C0N

1−3β/2 ≤
j ≤ N −C0N

1−3β/2 with a sufficiently large constant. We choose C0 so that

(7.4) would imply −2 + 2N−β ≤ γj ≤ 2− 2N−β . We then claim that

(7.5) λj ∈ [−2+N−β , 2−N−β ] for C0N
1−3β/2 ≤ j ≤ N−C0N

1−3β/2.
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We will show that λj ≥ −2 +N−β, the upper bound is analogous. Suppose
that λj were smaller than −2 +N−β , then n(−2 +N−β) ≥ j. On the other
hand, nsc(−2 + 2N−β) ≤ j and thus

nsc(−2 +N−β) = nsc(−2 + 2N−β)−
∫ −2+2N−β

−2+N−β

	sc(x)dx ≤ j − cN−3β/2

with some positive constant c. Therefore

cN−3β/2 ≤ n(−2 +N−β)− nsc(−2 +N−β) ≤ CNβ+ε−1,

where the second inequality follows from (7.3), but this contradicts to the
choice β = 2

5 − ε.

Let j satisfy C0N
1−3β/2 ≤ j ≤ N/2; the indices N/2 ≤ j ≤ N −

C0N
1−3β/2 can be treated analogously. Note that λN/2 ≤ CN−1+ε by (7.3).

Define c(j) to be index of the γ-point right below λj , i.e.,

γc(j) ≤ λj ≤ γc(j)+1.

By (7.5) we see that −2+ 1
2N

−β ≤ γc(j) ≤ CN−1+ε and from (7.3) and (7.4)
it follows that

(7.6) |c(j)− j| ≤ CN ε

2 + γc(j)
≤ CN ε+β .

By the choice of β we have ε+ β < 1− 3
2β, i.e., (7.6) implies |c(j)− j| � j.

Using now (7.4), we have

(7.7) |c(j)− j| ≤ CN ε

γc(j) + 2
≤ CN2/3+ε

c(j)2/3
≤ CN2/3+ε

j2/3
.

Finally, we can estimate

|c(j)− j| = N
∣∣∣ ∫ γj

γc(j)

	sc(x)dx
∣∣∣ ≥ CN |γc(j) − γj |(2 + γj)

1/2

≥ CN |γc(j) − γj |
( j

N

)1/3
,

using |c(j) − j| � j and hence (2 + γj) and (2 + γc(j)) are comparable. In
the last step we also used (7.4). Combining this with (7.7), we have

|γc(j) − γj | ≤ C
|c(j)− j|
N2/3j1/3

≤ CN ε

j
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and the same estimate holds for |γc(j)+1 − γj | and thus

|λj − γj | ≤
CN ε

j

as well. Therefore

(7.8)
∑

C0N1−3β/2≤j≤N/2

|λj − γj |2 ≤ CN2ε−1+3β/2 ≤ CN−2/5+ε/2

by the choice of β and similar estimate holds for the sum over the indices

N/2 ≤ j ≤ N − C0N
1−3β/2 as well.

Now we consider the indices j ≤ C0N
1−3β/2 and λj ≥ −2 − N−β. By

a similar argument that proved (7.5), we can see that there is a constant C3

such that λj ≤ −2 + C3N
−β, otherwise n(−2 + C3N

−β) ≤ j, but nsc(−2 +

C3N
−β) ≥ j + cN−3β/2, which would contradict (7.3). It is easy to see that

γj ≤ −2+CN−β for all j ≤ C0N
1−3β/2, therefore in this regime we estimate

|λj − γj | ≤ CN−β and thus

C0N1−3β/2∑
j=1

|λj − γj |21(λj ≥ −2−N−β)

≤ C0N
1−3β/2(CN−β)2 ≤ CN−2/5+7ε/2.(7.9)

The indices j ≥ N −C0N
1−3β/2 and λj ≤ 2+N−β can be treated similarly.

Finally we deal with the extreme eigenvalues λj ≤ −2−N−β with index

j ≤ C0N
1−3β/2 and we can assume that λj ≥ −2−N−1/7. For these indices

−2 ≤ γj ≤ −2 + CN−β and we can estimate

|λj − γj | ≤ C|λj + 2|.

For any a with N−β ≤ a ≤ N−1/7, we have nsc(−2− a) = 0, thus we obtain

from (7.3) that

n(−2− a) ≤ CN ε

Na
.
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Therefore ∑
j

|λj − γj |21(−2−N−1/7 ≤ λj ≤ −2−N−β)

≤ C
∑
j

|λj + 2|21(−N−1/7 ≤ λj + 2 ≤ −N−β)

≤ C

∫ N−1/7

0
a · CN ε

Na
da

≤ CN−1/7+ε.(7.10)

The other extreme eigenvalues, λj ≥ 2 +N−β, are treated analogously.
Combining (7.8), (7.9) and (7.10) and choosing ε sufficiently small in

the definition of β, we proved (7.1) with any ε0 < 1/7.

8. Moment estimates of error terms

In this section we prove the second and fourth moment estimates of Lem-
ma 5.2; the general cases will be proved in Section 9.

Definition 8.1. Define the operator IEi as

(8.1) IEi ≡ I− Eai ,

where I is identity operator.

Recall the definition of Zi, which we rewrite as

(8.2) Zi = IEiZ
(i)
ii , Z

(i)
ii =

∑
k,l �=i

aikG
(i)
k la

i
l = ai ·G(i)ai.

We first prove a bound on the Green function G
(i)
k l .

Lemma 8.1. Recall the definition of X in (5.6). Let t be any fixed positive
integer, T = {k1, k2 . . . kt} ∈ Nt, 1 ≤ ki ≤ N for any 1 ≤ i ≤ t. Then there
exists a constant Ct, depending only on t, such that for any z ∈ D∗ in (5.1)
in the set Ωc (4.33), we have

max
k,l:l �=k, l,k/∈T

∣∣G(T)
lk (z)

∣∣ ≤ CtX(z),(8.3)

max
k:k/∈T

∣∣G(T)
kk (z)−msc(z)

∣∣ ≤ CtX(z)θ(z)(8.4)
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and for some constant c, C independent of t,

(8.5) c ≤ min
k:k/∈T

∣∣G(T)
kk (z)

∣∣ ≤ max
k:k/∈T

∣∣G(T)
kk (z)

∣∣ ≤ C,

for sufficiently large N .

Proof. Consider first the case t = 0. Let Y denote the event inside the
probability in the equation (4.3). The proof of Theorem 4.1 yields that
Ωc ⊂ Y c. It is clear that (8.4) holds in the event Y c and this proves (8.4) in
Ωc in the case t = 0. Similarly, in the case of t = 0, we can prove (8.3) using
the event in the equation (4.4). By definition of the domain D∗, the right
side of (8.4) is o(1) and this proves (8.5) in the case t = 0.

For the case t = 1 and i1 = i, using (4.15) and (4.16), we obtain that∣∣G(i)
lk

∣∣≤ |Glk|+ |GliGik||Gii|−1,∣∣G(i)
kk −msc

∣∣≤ |Gkk −msc|+ |GkiGik||Gii|−1.(8.6)

Since X2 � X in D∗, (8.4) and (8.3) in the case t = 1 follows from (8.6)
and the case t = 0. Repeating this process, we prove (8.4) and (8.3) for any
t > 1 by induction on t.

Now we return to the second and fourth moment estimates of Lemma 5.2.

8.1. Proof of Lemma 5.2 for p = 2

Now we prove the special case of Lemma 5.2 for p = 2. The second moment
of

∑N
i=1 Zi is given by

(8.7)
1

N2
E

∣∣∣∣∣
N∑
i=1

Zi

∣∣∣∣∣
2

=
1

N2
E

∑
α �=β

ZαZβ +
1

N2
E

∑
α

|Zα|2 .

We start with estimating the first term of (8.7) for α = 1 and β = 2. The

basic idea is to rewrite G
(1)
k l as

(8.8) G
(1)
k l = P

(1),∅
k l + P

(1),(2)
k l , k, l �= 1,

with P
(1),(2)
k l independent of a1, a2 and P

(1),∅
k l independent of a1. The P ’s

have two upper indices. The first one refers to the fact that it comes from
the H(1) minor (i.e. follows the upper index of G(1)) and the second one
indicates the additional independence.
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To construct this decomposition for k, l /∈ {1, 2}, by (4.15) or (4.16) we

can rewrite G
(1)
k l as

(8.9) G
(1)
k l = G

(12)
k l +

G
(1)
k 2G

(1)
2 l

G
(1)
2 2

, k, l /∈ {1, 2}.

The first term on the r.h.s is independent of a2. With Lemma 8.1, we have
that the bound

(8.10)

∣∣∣∣G(1)
k 2G

(1)
2 l

G
(1)
2 2

∣∣∣∣ ≤ CX2

holds with a very high probability.
Next we define P (1) for (k, l �= 1).

1. If k, l �= 2,

(8.11) P
(1),(2)
k l = G

(12)
k l , P

(1),∅
k l =

G
(1)
k 2G

(1)
2 l

G
(1)
2 2

= G
(1)
k l −G

(12)
k l .

2. If k = 2 or l = 2,

(8.12) P
(1),(2)
k l = 0, P

(1),∅
k l = G

(1)
k l .

Hence (8.8) holds and P
(1),(2)
k l is independent of a2.

With this convention, we have the following expansion of Z1

(8.13) Z1 = IE1a
1 · P (1),(2)a1 + IE1a

1 · P (1),∅a1.

Lemma 8.2. For N−1 ≤ η ≤ 10 and fixed p ∈ N, we have the following
estimates

(8.14) E

∣∣∣a1 · P (1),∅a1
∣∣∣p ≤ Cp

(
(logN)3+2α

)p
X2p,

(8.15) E

∣∣∣a1 · P (1),(2)a1
∣∣∣p ≤ Cp

(
(logN)3+2α

)p
Xp.

Since X2 ≤ X in D∗, this lemma also implies that

(8.16) E |Zi|p ≤ Ck

(
(logN)3+2α

)p
Xp, 1 ≤ i ≤ N.
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Proof. First we rewrite a1 · P (1),∅a1 as follows

a1 · P (1),∅a1 =
∑
k,l �=2

a1k

(
G

(1)
k 2G

(1)
2 l

G
(1)
2 2

)
a1l +

∑
k �=2

a1kG
(1)
k 2a

1
2

+
∑
l �=2

a12G
(1)
2 l a

1
l + a12G

(1)
2 2a

1
2.(8.17)

By the large deviation estimate (4.19), we have

(8.18) P

(∣∣∣∣∣ ∑
k,l �=2

a1k

(
G

(1)
k 2G

(1)
2 l

G
(1)
2 2

)
a1l

∣∣∣∣∣ ≥ C(logN)3+2αX2

)
≤ N−c log logN .

Similarly, from (4.17), using ai as a13, a
1
4, . . . ,a

1
N and keeping a12 fixed, we

have

(8.19) P

(∣∣∣∣∣∑
k �=2

a1kG
(1)
k 2a

1
2

∣∣∣∣∣ ≥ C(logN)3/2+αX|a12|
)

≤ N−c log logN .

By (4.35), ‖a1‖∞ ≤ (logN)2αM−1/2 holds with a very high probability. We

can thus replace |a12| by (logN)2αM−1/2 in (8.19). The third term in (8.17)

can be estimated in the same way, and the last term can be bounded by

(logN)4α 1
M with very high probability.

Since η ≤ 10, by the definition of X in (5.6) we have

(8.20) X2 ≥ C(logN)2/M.

Thus

(logN)3/2+3α X√
M

+ (logN)4α
1

M
≤ C(logN)3+2αX2,

and we have proved that

(8.21) P

(∣∣∣a1 · P (1),∅a1
∣∣∣ ≤ C(logN)3+2αX2

)
≥ 1−N−c log logN .

This inequality implies the desired inequality (8.14) except for the contribu-

tion from the exceptional set where (8.21) fails. Since all Green functions are

bounded by η−1 ≤ N , the contribution from the exceptional set is negligible

and this proves (8.14). Finally, a similar proof yields (8.15).
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Exchange the index 1 and 2, we can define P (2),(1) and P (2),∅ and expand
Z2 as

(8.22) Z2 = IE2a
2 · P (2),(1)a2 + IE2a

2 · P (2),∅a2.

Here P
(2),(1)
k l is independent of a2 and a1; P

(2),∅
k l is independent of a2. Com-

bining (8.22) with (8.13), we have

EZ1Z2 = E

[(
IE1

{
a1 · P (1),(2)a1 + a1 · P (1),∅a1

})
×
(
IE2

{
a2 · P (2),(1)a2 + a2 · P (2),∅a2

})]
.(8.23)

The only non-vanishing term on the right-hand side is

(8.24) E

(
IE1a1 · P (1),∅a1

)(
IE2a

2 · P (2),∅a2
)
.

By the Cauchy-Schwarz inequality and Lemma 8.2, we obtain

(8.25) |EZ1Z2| ≤ C
(
(logN)3+2α

)2
X4.

Similarly, Lemma 8.2 and (8.20) imply that

E |Z1|2 ≤ C
(
(logN)3+2α

)2
X2 ≤ CM

(
(logN)3+2α

)2
X4.

Since the indices 1 and 2 can be replaced by α �= β, together with (8.7) we
have thus proved Lemma 5.2 for p = 2.

8.2. Proof of Lemma 5.2 for p = 4

Now we prove the special case of Lemma 5.2 for p = 4:

N−4
E

∣∣∣∣∣
N∑
i=1

Zi

∣∣∣∣∣
4

≤ CN−4
∑

1≤α<β<χ<γ≤N

∣∣E ZαZβZχZγ

∣∣
+ CN−4

∑
1≤α<β<χ≤N

∣∣E|Zα|2ZβZχ

∣∣+ · · ·

+ CN−4
∑

1≤α<β≤N

(
E|Zα|2|Zβ |2 +

∣∣E|Zα|2ZαZβ

∣∣)+ · · ·

+ CN−4
∑

1≤α≤N

E|Zα|4.(8.26)
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Here · · · means the permutation of the ordered indices and the complex

conjugate operators. We are going to compute the first two terms in the

r.h.s of (8.26). The other two terms can be treated analogously. By the

permutation symmetry of the indices, we can assume that α = 1, β = 2,

χ = 3 and γ = 4. As in the estimate for the second moment, the key idea is

to decompose Z
(1)
11 in a suitable way:

Lemma 8.3. There exist two decompositions of Z
(1)
11

(8.27) Z
(1)
11 =

∑
T⊂{2,3}

a1 ·Q(1),(T)a1, Z
(1)
11 =

∑
T⊂{2,3,4}

a1 ·R(1),(T)a1,

such that Q(1),(T) and R(1),(T) are independent of the rows in T ∪ {1}, i.e.,

∂
(
a1 ·Q(1),(T)a1

)
∂aij

=
∂
(
a1 ·Q(1),(T)a1

)
∂aij

= 0, i ∈ T ⊂ {2, 3}, 1 ≤ j ≤ N.

(8.28)

and

∂
(
a1 ·R(1),(T)a1

)
∂aij

=
∂
(
a1 ·R(1),(T)a1

)
∂aij

= 0, i ∈ T ⊂ {2, 3, 4}, 1 ≤ j ≤ N.

(8.29)

Furthermore, the decompositions can be chosen in such a way that for all

N−1 ≤ η ≤ 10 the following estimates hold:

(8.30) E

∣∣∣a1 ·Q(1),(T)a1
∣∣∣p ≤ Cp

(
(logN)3+2α

)p
(X3−|T|)p, p ∈ N

and

(8.31) E

∣∣∣a1 ·R(1),(T)a1
∣∣∣p ≤ Cp

(
(logN)3+2α

)p
(X4−|T|)p, p ∈ N.

We postpone the proof of this lemma and first finish the proof of Lemma

5.2 in the case of p = 4. It is clear that Lemma 8.3 holds for different index

combinations. E.g. Z
(2)
22 can be decomposed as

(8.32) Z
(2)
22 =

∑
T⊂{1,3,4}

a2 ·R(2),(T)a2
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and R(2)’s have the same properties (except for the exchange of 1 and 2) as
R(1) in (8.29) and (8.31). By this property, we can estimate the first term
on the r.h.s. of (8.26) by

E

(
IE1Z

(1)
11

) (
IE2Z

(2)
22

) (
IE3Z

(3)
33

) (
IE4Z

(4)
44

)

≤ E

⎡⎣IE1

∑
T1⊂{2,3,4}

a1 ·R(1),(T1)a1

⎤⎦×
⎡⎣IE2

∑
T2⊂{1,3,4}

a2 ·R(2),(T2)a2

⎤⎦
×
[
· · ·R(3),(T3) · · ·

][
· · ·R(4),(T4) · · ·

]
.(8.33)

Consider a term consisting of products of factors with ∩j=1,2,3,4(Tj∪{j}) �= ∅.
Then there is an element � ∈ {1, 2, 3, 4} in the common intersection so that
integration w.r.t. the row a� vanishes. Hence the nonvanishing terms consist
of products of term with ∩j=1,2,3,4(Tj ∪{j}) = ∅, i.e., ∪j=1,2,3,4(Tj ∪{j})c =
{1, 2, 3, 4}. Here the notation c means the complement in {1, 2, 3, 4}. Thus
we have

4∑
j=1

(4− |Tj | − 1) ≥ 4 =⇒
4∑

j=1

4− |Tj | ≥ 8.

Using (8.31) and Schwarz inequality, we have thus proved that∣∣∣∣E (
IE1Z

(1)
11

) (
IE2Z

(2)
22

) (
IE3Z

(3)
33

) (
IE4Z

(4)
44

)∣∣∣∣ ≤ C
(
(logN)3+2α

)4
X8.

We now estimate the second term in r.h.s of (8.26).

E

∣∣∣IE1Z
(1)
11

∣∣∣2 (IE2Z
(2)
22

) (
IE3Z

(3)
33

)
= E

⎛⎝IE1

∑
T0⊂{2,3}

a1 ·Q(1),(T0)a1

⎞⎠⎛⎝IE1

∑
T1⊂{2,3}

a1 ·Q(1),(T1)a1

⎞⎠
×

⎡⎣IE2

∑
T2⊂{1,3}

a2 ·Q(2),(T2)a2

⎤⎦×

⎡⎣IE3

∑
T3⊂{1,2}

a3 ·Q(3),(T3)a3

⎤⎦ .(8.34)

Consider a term consisting of products of factors with [∩j=2,3(Tj ∪ {j}] ∩
T0∩T1 �= ∅. Then there is an element � ∈ {2, 3} in the common intersection
and the integration w.r.t. the row a� vanishes. Thus the nonvanishing terms
consist of products of term with [∩j=2,3(Tj∪{j}]∩T0∩T1 = ∅. In particular,



Universality for generalized Wigner matrices 65

{2, 3} ⊂ ∪j=2,3(Tj ∪ {j})c ∪ [{2, 3} \ T0] ∪ [{2, 3} \ T1]. Here the notation c

means the complement in {1, 2, 3}. Thus we have

3∑
j=0

(2− |Tj |) ≥ 2 =⇒
3∑

j=0

3− |Tj | ≥ 6.

Using (8.30), (8.20) and a Schwarz inequality, we have

N−1

∣∣∣∣E ∣∣∣IE1Z
(1)
11

∣∣∣2 (
IE2Z

(2)
22

) (
IE3Z

(3)
33

)∣∣∣∣
≤ C

N

(
(logN)3+2α

)4
X6 � C

(
(logN)3+2α

)4
X8.

For the other terms in (8.26), we can just use Schwarz inequality and (8.16).

We have thus proved the Lemma 5.2 for p = 4.

We now prove Lemma 8.3. First we prove the properties of Q’s. Notice

that the decomposition with Q’s in (8.27) removes the dependence on rows

2, 3. The starting point is an expansion of G
(1)
k l

(8.35) G
(1)
k l =

∑
T⊂{2,3}

Q
(1),(T)
k l = Q

(1),∅
k l +Q

(1),(2)
k l +Q

(1),(3)
k l +Q

(1),(2,3)
k l ,

where Q
(1),T
k l is independent of the rows and columns in T ∪ {1}. Using the

notation (1U) for ({1} ∪U), one can check that a solution for Q is given by

(8.36) Q
(1),(T)
k l =

∑
U:T⊂U⊂{2,3}\{k,l}

(−1)|U|−|T|G(1U)
k l .

Thus Q
(1),(T)
k l = 0 if k or l ∈ T. By definition of Z

(1)
11 (8.2) and (8.35), we

have that the Q’s satisfy (8.27). For any fixed T, Q
(1),T
k l is independent of

the rows (column) in T ∪ {1}. Thus we proved (8.28).

In order to prove (8.30), we give another representation of the Q’s. We

begin by removing the dependence of the (kl) matrix element of the Green

function on the index 3 for k, l > 3. By (4.15) or (4.16), we can rewrite the

first term of r.h.s of (8.9) as

(8.37) G
(12)
k l = G

(123)
k l +

G
(12)
k 3 G

(12)
3 l

G
(12)
3 3

, k, l /∈ {1, 2, 3}.
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This removes the dependence of G
(12)
k l on the index 3 with the last term as

the error term. For the last term on r.h.s of (8.9), using (4.15) and (4.16)
again, we have

G
(1)
k 2 = G

(13)
k 2 +

G
(1)
k 3G

(1)
3 2

G
(1)
3 3

, G
(1)
2 l = G

(13)
2 l +

G
(1)
2 3G

(1)
3 l

G
(1)
3 3

,

G
(1)
2 2 = G

(13)
2 2 +

G
(1)
2 3G

(1)
3 2

G
(1)
3 3

.(8.38)

The last equality implies

(8.39)
1

G
(1)
2 2

=
1

G
(13)
2 2

− G
(1)
2 3G

(1)
3 2

G
(1)
3 3G

(1)
2 2G

(13)
2 2

.

This removes the dependence on the index 3 of both the Green functions
and their inverse in the last term in (8.9). Inserting (8.37)–(8.39) into (8.9),
we obtain that if k, l /∈ {1, 2, 3}

G
(1)
k l = G

(123)
k l +

G
(12)
k 3 G

(12)
3 l

G
(12)
3 3

+

(
G

(13)
k 2 +

G
(1)
k 3G

(1)
3 2

G
(1)
3 3

)

×
(
G

(13)
2 l +

G
(1)
2 3G

(1)
3 l

G
(1)
3 3

)(
1

G
(13)
2 2

− G
(1)
2 3G

(1)
3 2

G
(1)
3 3G

(1)
2 2G

(13)
2 2

)
.(8.40)

So for k, l /∈ {1, 2, 3}, we define Q
(1),T
kl as follows

Q
(1),(2,3)
kl = G

(123)
k l , Q

(1),(2)
kl =

G
(12)
k 3 G

(12)
3 l

G
(12)
3 3

, Q
(1),(3)
kl =

G
(13)
k 2 G

(13)
2 l

G
(13)
2 2

,

Q
(1),∅
kl =

G
(1)
k 3G

(1)
3 2G

(13)
2 l

G
(1)
3 3G

(13)
2 2

+
G

(13)
k 2 G

(1)
2 3G

(1)
3 l

G
(1)
3 3G

(13)
2 2

+
G

(1)
k 3G

(1)
3 2G

(1)
2 3G

(1)
3 l

G
(1)
3 3G

(1)
3 3G

(13)
2 2

− G
(13)
k 2 G

(1)
2 3G

(1)
3 2G

(13)
2 l

G
(1)
3 3G

(1)
2 2G

(13)
2 2

− G
(1)
k 3G

(1)
3 2G

(1)
2 3G

(1)
3 2G

(13)
2 l

G
(1)
3 3G

(1)
2 2G

(13)
2 2 G

(1)
3 3

− G
(13)
k 2 G

(1)
2 3G

(1)
3 2G

(1)
2 3G

(1)
3 l

G
(1)
3 3G

(1)
2 2G

(13)
2 2 G

(1)
3 3

− G
(1)
k 3G

(1)
3 2G

(1)
2 3G

(1)
3 2G

(1)
2 3G

(1)
3 l

G
(1)
3 3G

(1)
2 2G

(13)
2 2 G

(1)
3 3G

(1)
3 3

.(8.41)
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One can see that in this case, k, l /∈ {1, 2, 3}, (8.35) holds and Q
(1),(T)
k l ’s

are independent of the rows (column) in T ∪ {1}. For k = 2, 3 or l = 2, 3
the previous formulas for Q do not make sense. But in this case, we do
not need to decompose G(1) in such fine details and we will use the simple
decomposition

G
(1)
2 l = G

(13)
2 l +

G
(1)
2 3G

(1)
3 l

G
(1)
3 3

, l �= 3 and G
(1)
2 l = G

(1)
2 3 , l = 3,

G
(1)
3 l = G

(12)
3 l +

G
(1)
3 2G

(1)
2 l

G
(1)
2 2

, l �= 2 and G
(1)
3 l = G

(1)
3 2 , l = 2.

More precisely, we define Q(1),(T) by

1. For k = 2 and l �= 3, Q
(1),(2,3)
k l = Q

(1),(2)
k l = 0, Q

(1),(3)
k l = G

(13)
k l and

Q
(1),∅
k l =

G(1)
k 3G

(1)
3 l

G
(1)
3 3

.

2. For k = 2 and l = 3, Q
(1),(2,3)
k l = Q

(1),(2)
k l = Q

(1),(3)
k l = 0 and Q

(1),∅
k l =

G
(1)
k l .

3. For k = 3 and l �= 2, Q
(1),(3,2)
k l = Q

(1),(3)
k l = 0, Q

(1),(2)
k l = G

(12)
k l and

Q
(1),∅
k l =

G(1)
k 2G

(1)
2 l

G
(1)
2 2

.

4. For k = 3 and l = 2, Q
(1),(3,2)
k l = Q

(1),(3)
k l = Q

(1),(2)
k l = 0 and Q

(1),∅
k l =

G
(1)
k l .

Similarly, we can define Q(1),(T) for the cases l = 2 or l = 3. We now list the

properties of Q
(1),(T)
kl for k, l > 1 and T ⊂ {2, 3}:

1. Q
(1),(T)
k l ’s are independent of rows (column) in T∪{1} and (8.35) holds.

2.

(8.42) Q
(1),(T)
k l = 0 if k or l ∈ T.

3. If k = l and T ∪ {k} = {2, 3}, then

(8.43) Q
(1),(T)
k l = G

(123)
k l .

For all other cases, Q
(1),(T)
k l is a finite sum of terms of the form:

(8.44)
GoGo · · ·Go

GdGd · · ·Gd
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where each Go (Gd resp.) represents some off-diagonal (diagonal resp.)

matrix element of G(U) with U some finite set. Furthermore, for k �= l

or T ∪ {k} �= {2, 3}, the number of the off-diagonal elements in the

numerator of (8.44) is strictly bigger than |{2, 3}\(T ∪ {k, l})|. Using

Lemma 8.1, in the set Ωc we have

|Q(1),(T)
k l | ≤ C

(
X |{2,3}\(T∪{k,l})|+1 + 1(T ∪ {k} = {2, 3}, k = l)

)
.

(8.45)

Since the probability of the exceptional set Ω is extremely small, a simple

argument which we repeated many times shows that it can be neglected in

the estimate of the expectation in (8.30). Hence (8.30) follows from (8.45).

The proof of (8.30) shows clearly the approach to remove an element one

by one from the Green function. Define R
(1),(T)
k l as follows (like Q’s in (8.36))

(8.46) R
(1),(T)
k l ≡

∑
U:T⊂U⊂{2,3,4}\{k,l}

(−1)|U|−|T|G(1U)
k l .

Using the same method we used for Q’s, one can prove the properties of R’s

in Lemma 8.3. The details will be omitted since we will prove the general

cases in the next section.

9. General case

The first step to prove the general cases of Lemma 5.2 is to extend the

decomposition (8.27). For any fixed i, 1 ≤ i ≤ N , and a fixed set S =

{i1, i2, . . . , is} such that i /∈ S, 1 ≤ ij ≤ N , our goal is to decompose Z
(i)
ii so

that the following lemma holds:

Lemma 9.1. For i /∈ S, T ⊂ S and η ≥ 1/N , there is a decomposition of

(9.1) Z
(i)
ii =

∑
T⊂S

Z(i),S,(T), Z(i),S,(T) ≡
∑
k,l

aikG
(i),S,(T)
k l ail.

such that

(1) G
(i),S,(T)
k l is independent of the rows or columns of H in {i} ∪ T, i.e.,

(9.2)
∂G

(i),S,(T)
k l

∂aab
= 0,

∂G
(i),S,(T)
k l

∂aab
= 0, a ∈ {i} ∪ T, 1 ≤ b ≤ N.
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(2) For any positive integer k,

(9.3) E

∣∣∣Z(i),S,(T)
∣∣∣k ≤ Ck,s

(
(logN)3+2α

)k
(Xs−t+1)k, s = |S|, t = |T|.

In the applications, S will be the set of indices, the dependencies of which

we wish to isolate in Z
(i)
ii . For example, for the case i = 1 and S = {2} or

S = {2, 3}, respectively, if we define

(9.4) Z(1),{2},(T) = a1 · P (1),(T)a1, Z(1),{2,3},(T) ≡ a1 ·Q(1),(T)a1,

then (9.3) follows from (8.14), (8.15) and (8.30).

To achieve the decomposition (9.1), as in (8.36) in Section 8.2, we start

with a decomposition on G
(i)
k l .

Definition 9.1. As in Lemma 4.3, we use the notation (iT) for ({i} ∪ T).
For 1 ≤ i ≤ N , i /∈ S = {i1, i2, . . . , is} and T ⊂ S, we define

(9.5) G
(i),S,(T)
k l ≡

∑
U:T⊂U⊂S\{k, l}

(−1)|U|−|T|G(iT)
k l .

For example, by (8.36), for the case S = {2, 3} and i = 1, we have

G
(1),{2,3},(T)
k l = Q

(1),(T)
k l ; for the case S = {2} and i = 1, from (8.11) and

(8.12) we have G
(1),{2},(T)
k l = P

(1),(T)
k l .

From this definition one can easily check that

1.

(9.6) G
(i),S,(T)
k l = 0, if k or l ∈ T ∪ {i}.

2. For k, l /∈ T ∪ {i},

(9.7) G
(i),S,(T)
k l = G

(i),S\{k, l},(T)
k l .

3. G
(i),S,(T)
k l is independent of the rows or columns of H in {i} ∪ T, i.e.,

(9.8)
∂G

(i),S,(T)
k l

∂aab
= 0,

∂G
(i),S,(T)
k l

∂aab
= 0, a ∈ {i} ∪ T, 1 ≤ b ≤ N.

4. All quantities defined so far depend on the initial matrix H, omitted in
our notations. If we wish to specify which matrix is being considered,
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we will insert the matrix. For example, G
(i),S\T,∅
k l (H(T)) means it is

defined w.r.t. H(T) which is the N − |T| by N − |T| minor of H after
removing the rows and columns in T. Clearly, we have the relation

(9.9) G
(i),S,(T)
k l (H) = G

(i),S\T,∅
k l (H(T)).

With these definitions, we can decompose G
(i)
k l as follows.

Lemma 9.2. For fixed i, S = {i1, i2, . . . , is} such that i /∈ S, we have the
decomposition

(9.10) G
(i)
k l =

∑
T⊂S

G
(i),S,(T)
k l .

Proof. Using the definition (9.5), we have

∑
T⊂S

G
(i),S,(T)
k l =

∑
T⊂S

⎛⎝ ∑
U:T⊂U⊂S\{k, l}

(−1)|U|−|T|G(1U)
k l

⎞⎠
=

∑
U⊂S\{k, l}

(∑
T⊂U

(−1)|U|−|T|
)
G

(1U)
k l .(9.11)

Since
∑

T⊂U
(−1)|U|−|T| = 0 unless U = ∅, we obtain (9.10) and this concludes

Lemma 9.2.

For the special case i = 1 and S = {2, 3}, G(i),S,(T)
k l = Q

(i),(T)
kl satisfies the

estimate (8.45). We now prove a general form of this estimate on G
(i),S,(T)
k l .

Lemma 9.3. Let 1 ≤ i ≤ N and T ⊂ S = {i1, i2, . . . , is} such that i /∈ S.
Then there exists a constant C, depending only on s, such that
(9.12)∣∣∣G(i),S,(T)

k l

∣∣∣ ≤ C
(
1(T ∪ {k} = S, k = l) +X |S\(T∪{k, l})|+1

)
, in Ωc,

for sufficiently large N depending only on s.

This lemma is the basic estimate for a power counting argument. It shows

that the off-diagonal elements of G
(i),S,(T)
k l are small by a certain power of X,

which is our small parameter, depending on the size of the sets S and T.
The diagonal elements, when not zero by definition, are estimated by 1 (first
term in (9.12)), but their contribution to the moments of Z(i),S,(T) will be
small since k = l reduces the double sum in (9.1) to a single sum.
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Proof of Lemma 9.3. For k = l, the estimate (9.12) follows directly from
(9.5) and (8.5). We can thus assume that k �= l throughout the proof of this
lemma. The argument consists of two parts. First we prove a representation

formula (Lemma 9.4) that asserts that G
(i),S,(T)
k l is a certain rational func-

tion involving resolvent matrix elements of H and some of its minors. The
denominators in this rational function are products of diagonal elements of
resolvents and the numerators are products of off-diagonal matrix elements.
In the second step we will estimate these rational functions, using that the
diagonal elements of the resolvent are typically separated away from zero
and the off-diagonal elements are small by a factor X.

For the precise argument, we start with the cases:

(9.13) T = ∅, k, l /∈ S and S �= ∅.

The special case S = {2} can be proved by the representation (8.11) and
Lemma 8.1. The case S = {2, 3} was proved in (8.45). These examples show

that G
(i),S,(T)
k l can be written as the finite sum of the terms of the form:

(9.14)
GoGo · · ·Go

GdGd · · ·Gd
,

where Go are off-diagonal elements of some G(U) and Gd are diagonal ele-
ments. Furthermore, in each term, the number of the off-diagonal elements
in the numerator is strictly greater than s = |S| but less than 4s. The number
of the diagonal elements in the denominator is also less than 4|S|.

The Green function G
(i,T)
k l can be viewed as a function from the vector

space of matrices. This motivates the following definition.

Definition 9.2. Denote by XK the space of K × K matrices and X =
∪∞
K=1XK . Define Y as the set of functions from X to the complex numbers.

For any S = {i1, i2, . . . , is} and for any i, k, l /∈ S, define the set of off-
diagonal matrix elements considered as functions of matrices:

A
(i),S
k l ≡

{
f ∈ Y : f(W ) = G

(iU)
jj′ (W ), for some j �= j′,

j, j ′ ∈ S ∪ {k, l}, U ⊂ S

}
,(9.15)

where W ∈ XK for some K. Similarly, we define the set of diagonal matrix
elements:

(9.16) B
(i),S
k l ≡

{
f ∈ Y : f(W ) = G

(iU)
jj (W ) : j ∈ S ∪ {k, l}, U ⊂ S

}
.
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Furthermore we define C
(i),S
k l for all k, l as

C
(i),S
k l ≡

{
F ∈ Y is a finite sum of functions of the form ± f1f2 · · · fm

g1g2 · · · gm′
:

fα ∈ A
(i),S
k l , 1 ≤ α ≤ m; gβ ∈ B

(i),S
k l , 1 ≤ β ≤ m′;

s+ 1 ≤ m ≤ 4s, 0 ≤ m′ ≤ 4s
}
,(9.17)

where s = |S|.

Notice the important condition m ≥ |S| + 1 in the definition of C
(i),S
k l .

Since off-diagonal matrix elements are typically small, this requirement will

guarantee the smallness of C
(i),S
k l as a certain power of X.

With these notations, the equation (8.41) asserts that for k, l /∈ {2, 3},
there is a function F

(1),{2,3}
k,l ∈ C

(1),{2,3}
k l such that

(9.18) G
(1),{2,3},∅
k l = F

(1),{2,3}
k,l .

The general case is the following lemma.

Lemma 9.4. For any S = {i1, i2, . . . , is} with s > 0 and i, k, l /∈ S, there

exists a function F
(i),S
k,l ∈ C

(i),S
k l such that

(9.19) G
(i),S,∅
k l = F

(i),S
k,l .

Proof of Lemma 9.4. By symmetry, we only need to prove the cases that

i = 1, S = {2, 3, . . . , s+ 1}.

To prove this case, we argue by induction on s. For s = 1 or 2, Lemma 9.4

was proved in (8.11) and (8.41) (cf. (9.18)). Suppose that Lemma 9.4 is

correct for s = n − 1 ≥ 1 and F
(1),{2,...,n}
k,l ∈ C

(1),{2,...,n}
k,l is the function

satisfying (9.19) for i = 1 and S = {2, 3, . . . , n}.
Now let i = 1, S = {2, . . . , n + 1} and k, l /∈ {1, . . . , n + 1}. By the

induction assumption,

(9.20) G
(1),{2,...,n},∅
k l = F

(1),{2,...,n}
k,l
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with F
(1),{2,...,n}
k,l a finite sum of elements of the form

(9.21) ±
(

m∏
α=1

G
(1Uα)
jαj′α

)⎛⎝ m′∏
β=1

G
(1Um+β)
jm+βjm+β

⎞⎠−1

,

where Uα ⊂ S, n ≤ m ≤ 4n−1, 0 ≤ m′ ≤ 4n−1 and

jα, j
′
α, jm+β ∈ {2, 3, . . . , n} ∪ {k} ∪ {l}.

By definition of G
(1),S,(T)
k l in (9.5), we have

(9.22) G
(1),{2,....,n+1},∅
kl = G

(1),{2,..n},∅
kl − G

(1),{2,...,n,n+1},(n+1)
kl

Combining (9.9) with (9.20), we have

(9.23) G
(1),{2,3...,n,n+1},(n+1)
k l (W ) = F

(1),{2,...,n}
k,l (W (n+1)),

where W (n+1) is the minor of W with the (n + 1)-th row and (n + 1)-th
column removed.

We can remove the dependence on the (n+ 1)-th row by the procedure
in (8.37)–(8.39). Using (4.15), (4.16) and the notation:

(9.24) (1Un+ 1) = ({1, n+ 1} ∪ U) ,

we have the expansion

(9.25) G
(1Uα)
jα j′α

= G
(1Uαn+1)
jα j′α

+
G

(1Uα)
jα n+1G

(1Uα)
n+1 j′α

G
(1Uα)
n+1n+1

, 1 ≤ α ≤ m

and

1

G
(1Uβ)
jβ jβ

=
1

G
(1Uβ n+1)
jβ jβ

−
G

(iUβ)
jβ n+1G

(iUβ)
n+1 jβ

G
(iUβ)
jβ jβ

G
(iUβ n+1)
jβ jβ

G
(iUβ)
n+1n+1

, m+ 1 ≤ β ≤ m+ k′.

(9.26)

We note that the first term on the r.h.s of (9.25) is exactly the Green function
on the l.h.s of (9.25) except that there is an additional superscript n + 1;
the similar comment applies to (9.26).
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Inserting (9.25) and (9.26) into (9.21) and expanding it, we obtain that

(9.21) is equal to

(9.27) ±
(

m∏
α=1

G
(1Uα n+1)
jαj′α

)⎛⎝ m′∏
β=1

G
(1Um+β n+1)
jm+β jm+β

⎞⎠−1

+ other terms.

Here the first term in (9.27) is the product of the first terms on the right

side of (9.25) and (9.26) and it is the same as (9.21) except that there is an

additional superscript n+ 1. One can see that the other terms in (9.27) are

elements in C
(1),{2,...,n+1}
k l , i.e., the number of the off diagonal terms in the

numerator is now at least n+1. Since this procedure can be applied to each

term in F
(1),{2,...,n}
k,l , we have proved that there exists an F ∈ C

(1),{2,...,n+1}
k l

such that

G
(1),{2,...,n},∅
k l (W ) = F

(1),{2,...,n}
k,l (W ) = F

(1),{2,...,n}
k,l

(
W (n+1)

)
+ F (W )

= G
(1),{2,...,n+1},(n+1)
k l (W ) + F (W ).(9.28)

By (9.22) and (9.23), we can set F
(i),{2,3...,n,n+1}
k,l (W ) = F (W ) which is in

C
(1),{2,3,...,n,n+1}
k l and we have thus proved Lemma 9.4 by induction.

Now we start proving the estimates in Lemma 9.3. Using (9.6) and (9.7), we

only have to prove (9.12) for the case k, l /∈ S ∪ {i}.

Case 1, T = S: By definition,

(9.29) G
(i), S, (T)
k l = G

(i S)
k l .

Then (9.12) in this special case follows from Lemma 8.1.

Case 2, T = ∅, k, l /∈ S and S �= ∅: By Lemma 9.4 and 8.1, for any S �= ∅
such that i, k, l /∈ S, we have

(9.30) |G(i),S,∅
k l | ≤ C

(
maxU⊂S,j �=j′ |G(iU)

jj′ |
)s+1

(
minU⊂S,j |G(iU)

jj |
)4s ≤ CXs+1,

where C depends on s = |S|.
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Case 3, T �= ∅, T ⊂ S, T �= S, k, l /∈ S and S �= ∅: By (9.9) and Lemma

9.4, there exists a function F
(i),S\T
k,l ∈ C

(i),S\T
k l (see (9.17)) such that

(9.31) G
(i),S,(T)
k l (H) = G

(i),S\T
k l (H(T)) = F

(i),S\T
k,l (H(T)),

where H(T) is the N − |T| by N − |T| minor of H after removing the rows

and columns in T. Thus G
(i),S,(T)
k l is given by the function F

(i),S\T
k,l with all

Green functions G
(U)
jj′ in the definition of F

(i),S\T
k,l replaced by G

(U∪T)
jj′ . From

(9.30) we have

(9.32) |G(i),S,(T)
k l | ≤ C

(
maxU⊂S\T,j �=j′ |G

(iU∪T)
jj′ |

)|S\T|+1

(
minU⊂S\T,j |G

(iU∪T)
jj |

)(4|S\T|)
.

Using Lemma 8.1, we have that

(9.33) |G(i),S,(T)
k l | ≤ CX |S\T|+1, in Ωc,

where C depends on s. We have thus proved (9.12) for the Case 3 and this

completes the proof of Lemma 9.3.

Proof of Lemma 9.1. The decomposition (9.1) follows from (9.10) and (9.2)

is a direct consequence of (9.8). The estimate (9.3) can be proved in the

same way as in the proof of Lemma 8.2 using the following three ingredients:

(1) The bounds on |G(i),S,(T)
k l | in (9.12). (2) The large deviation estimate in

Lemma 4.4. (3) The trivial bound |G(i),S,(T)
k l | ≤ C/η ≤ CN where C depends

on |S|. This concludes the proof of Lemma 9.1.

Proof of Lemma 5.2. We first introduce the following notations which will

be useful for the expansion of the p-th moment of |
∑N

i=1 Zi| in (5.5).

Definition 9.3. 1. Let V = 〈v1, v2, . . . , vp〉 be a p dimensional vector

such that vi = 0 or 1 for 1 ≤ i ≤ p.

2. Let S = 〈α1, α2, . . . , αp〉 be a p dimensional vector such that 1 ≤ αi ≤
N for 1 ≤ i ≤ p.

3. Denote by S the set consisting of elements αj which is a component

of S.
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We define

A(S,V) = E

p∏
j=1

(
BvjZαj

)
, B1(a+ ib) = a− ib, B0(a+ ib) = a+ ib,

(9.34)

where B is the complex conjugate operator.

Through the rest of this section, S is always the set generated by S.
Notice that |S| = s ≤ p where p is the number of components in S. With
these notations, we can estimate E |

∑
i Zi|p by

(9.35) E

∣∣∣∣∣
N∑
i=1

Zi

∣∣∣∣∣
p

≤
∑
S

∑
V

|A(S,V)| ≤ Cp

∑
s≤p

N s max
S,V:|S|=s

|A(S,V)| ,

where we sum up S and V under the conditions in Definition 9.3. Lemma 5.2
is now a simple consequence of the following estimate on |A(S,V)|.
Lemma 9.5. Let S, S and V satisfy the conditions in Definition 9.3. With
A(S,V) defined in (9.34), there exists a constant C > 0 depending on p such
that

(9.36) |A(S,V)| ≤ C
(
(logN)3+2α

)p
Np−sX2p,

for sufficiently large N depending only on p.

Proof. Let Si, 1 ≤ i ≤ p, denote the set Si = S\{αi}. Using (9.1), we expand
A(S,V) as

A(S,V) = E

∑
T1⊂S1

. . .
∑

Tp⊂Sp

A(T1,T2, . . .Tp,V),

A(T1,T2, . . .Tp,V) ≡
(
Bv1IEα1

Z(α1),S1,(T1)
)(

Bv2IEα2
Z(α2),S2,(T2)

)
· · ·(9.37)

From the Schwarz inequality, (9.3) and |Si| = s− 1, we obtain that

(9.38) |EA(T1,T2, . . .Tp,V)| ≤ C
(
(logN)3+2α

)p
X(ps−

∑p
i=1 |Ti|),

where C depends on p. Suppose that

(9.39)

p∑
i=1

|Ti| ≤ sp− 2s.
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Using (8.20), i.e., X2 ≥ (logN)2/M ≥ 1/N , we have

|EA (T1,T2, . . .Tp,V)| ≤ C
(
(logN)3+2α

)p
X2s

≤ C
(
(logN)3+2α

)p
Np−sX2p.(9.40)

It remains to estimate EA(T1,T2, . . .Tp,V) for the cases that

(9.41)

p∑
i=1

|Ti| ≥ s p− 2s+ 1.

For γ ∈ S, denote nγ to be the number of times that γ appears in {α1}∪T1,
{α2} ∪ T2, . . . and {αp} ∪ Tp, i.e.,

nγ =

p∑
k=1

1(γ ∈ {αk} ∪ Tk).

By definition, nγ ≥ 1. Similarly, we define mγ to be the number of times
that γ appears in 〈α1, α2, . . . αp〉, i.e.,

mγ =

p∑
k=1

1(γ = αk).

Let x = |{γ ∈ S : nγ = p}| and y = |{γ ∈ S : mγ = 1}|. Since for each fixed
i, αi /∈ Ti, then with (9.41) and the definition of nγ ,

(p− 1)(s− x) + xp ≥
∑
γ∈S

nγ

=

p∑
i=1

|{αi} ∪ Ti| = p+

p∑
i=1

|Ti| ≥ sp− 2s+ p+ 1.(9.42)

By definition of mγ , we have

(9.43) y + 2(s− y) ≤
∑
γ∈S

mγ = p.

From the last two inequalities, we have x+ y ≥ s+ 1 and thus there exists
a γ ∈ S such that

(9.44) nγ = p and mγ = 1.
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Without loss of generality, we assume that γ = α1. Then using (9.44), we
know

(9.45) γ �= αk, γ ∈ Tk, if k �= 1.

Then with (9.45), the decomposition Z(i),S,(T) ≡
∑

k,l a
i
kG

(i),S,(T)
k l ail (9.1) and

the property that G
(i),S,(T)
k l is independent of the row or columns of H in

{i} ∪ T (9.2), we have that for k �= 1, the Zαk,Sk,(Tk) is independent of aγ .
By the definition of IE, for k = 1, we also have

(9.46) Eaγ IEaα1Z
(α1),S1,(T1) = Eaγ IEaγZ(γ),S1,(T1) = 0.

Therefore, under the assumption (9.41) we have

EA(T1,T2, . . .Ts,V)

= E

(
Bv1IEaα1Z

(α1),S1,(T1)
)(

Bv2IEaα2Z
(α2),S2,(T2)

)
· · ·

= E

(
EaγBv1IEaα1Z

(α1),S1,(T1)
)(

Bv2IEaα2Z
(α2),S2,(T2)

)
· · · = 0.

Combining this identity with (9.40), we obtain (9.36) and thus conclude
Lemma 9.5.
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[11] Erdős, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and de-

localization of eigenvectors for Wigner random matrices. Ann. Probab.

37 (2008), no. 3, 815–852. MR2537522
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