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Graphs containing triangles are not 3-common

James Cummings
∗
and Michael Young

A finite graph G is k-common if the minimum (over all k-colourings
of the edges ofKn) of the number of monochromatic labelled copies
of G is asymptotically equal, as n tends to infinity, to the expected
number of such copies in a random k-colouring of the edges of Kn.
Jagger, S̆t̆ov́ıc̆ek and Thomason showed that graphs which contain
K4 are not 2-common. We prove that graphs which contain K3 are
not 3-common.
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1. Introduction

In this paper we prove a result about the Ramsey multiplicity constants of
certain graphs, in the context of edge colourings in three colours. Before
we state the result precisely we will give some background about Ramsey
multiplicities.

A labelled copy of a graph G in a graph G′ is an injective function from
V (G) to V (G′) such that every edge of G is mapped to an edge of G′. Given
a colouring of the edges of G′, a monochromatic labelled copy of G in G′ is
a labelled copy of G in G′ such that the images of the edges of G all have
the same colour.

If G′ is complete, every injective map from V (G) to V (G′) is a labelled
copy of G in G′. We note that when v(G) = t and n ≥ t there are t!

(
n
t

)
labelled copies of G in Kn, and that this quantity is asymptotic to nt as n
tends to infinity.

Let G be a finite graph with v(G) = t and let k > 1. By Ramsey’s
theorem there is a natural number C such that, for every k-colouring of the
edges of Kn, among every set of C vertices there is a monochromatic set of
size t. It follows by a straightforward double counting argument that there is
a constant ε > 0 such that, for every large enough n and every k-colouring of
the edges of Kn, there are at least εnt monochromatic labelled copies of G.

∗The first author was partially supported by NSF Grants DMS-0400982 and
DMS-0654046.

1

http://www.intlpress.com/JOC/


2 James Cummings and Michael Young

This suggest that we should study the density of monochromatic labelled
embeddings of G in Kn, that is to say the proportion of labelled embeddings
of G in Kn which are monochromatic.

Definition 1. Let G be a graph with v(G) = t and let n ≥ 1. Let H be
a colouring of the edges of Kn.

1. cmon(G,H) is the number of labelled copies of G in Kn which are mo-
nochromatic for the colouring H.

2. dmon(G,H) = cmon(G,H)

t!(nt)
.

Definition 2. Let G be a graph and let k, n ≥ 1.

Ck(G;n) = min{dmon(G,H) : H is a k-colouring of the edges of Kn}.

The probabilistic method gives an easy upper bound on Ck(G;n). Let
v(G) = t and e(G) = e, and consider a random k-colouring H of the edges
of Kn in which the colours of the edges are independently chosen with equal
probability. By linearity of expectation the expected value of cmon(G,H) is
t!
(
n
t

)
k1−e, and we conclude that Ck(G;n) ≤ k1−e.

In some cases this probabilistic bound is asymptotically tight. Good-
man [3] gave an exact formula for the minimal number of monochromatic
triangles in a 2-colouring of the edges of Kn. This quantity is asymptotic to
n3

24 as n tends to infinity, so that C2(K3;n) → 1
4 . In this case k = 2 and

e = 3, so that the probabilistic bound for C2(K3;n) is also
1
4 . Erdős [2] con-

jectured that C2(G;n) → 21−e for all complete G, and Burr and Rosta [1]
conjectured that in fact this holds for all finite graphs G.

Thomason [7], showed that the conjecture by Erdős is false whenG = K4.
Jagger, S̆t̆ov́ıc̆ek and Thomason [5] disproved the Burr-Rosta conjecture for
all graphs which contain K4. Thomason [8] gave a simpler counterexample
for K4. Jagger, S̆t̆ov́ıc̆ek and Thomason [5] also discussed the asymptotic
behaviour of Ck(G;n) for general values of k, and defined the notion of a k-
common graph.

Fact 1. [5, section 3] Let k ≥ 1 and let G be a graph. Ck(G;n) increases
with n.

Definition 3. Let k ≥ 1 and let G be a graph, with e(G) = e.

1. Ck(G) = limn→∞Ck(G;n). Ck(G) is the Ramsey multiplicity constant
(for k colours) of G.

2. G is k-common if Ck(G) = k1−e, and k-uncommon if Ck(G) < k1−e.



Graphs containing triangles are not 3-common 3

In this language the Burr-Rosta conjecture states that all graphs are 2-
common. Jagger, Šťov́ıček and Thomason [5] and Jagger [4] proved several
results about k-common and k-uncommon graphs.

1. If a graph G contains K4, then G is not 2-common [5, theorem 12].
2. A notable conjecture by Sidorenko [6] states that if G is a bipartite

graph with e(G) = e, and H is a graph with v(H) = n and average de-
gree pn, then the probability that a random map from V (G) to V (H)
is a graph homomorphism is at least pe. This conjecture has been
established for several classes of bipartite graphs including complete
bipartite graphs, trees and even cycles.
If a bipartite graph G satisfies Sidorenko’s conjecture, then G is k-
common for all k [5, section 5].

3. If a graph G is k-uncommon, then G is (k + 1)-uncommon [5, theo-
rem 13]

4. If G is a non-bipartite graph with v(G) = t, then G is k-uncommon
when 22k−2 ≥ kt [5, theorem 14]. Hence G is k-uncommon for all
sufficiently large values of k.

5. Odd cycles are 3-uncommon [4].

Our main result is Theorem 1, which states that any graph containing
K3 is 3-uncommon. The argument is algebraic and parallels that of [5, sec-
tion 4]. In Section 2 we give a formula estimating the quantity cmon(G,H).
In Section 3 we define a notion of tensor product for k-colourings, and give a
criterion for a graph to be k-uncommon. In Section 4 we prove Theorem 1.
Finally in Section 5 we record some questions and remarks.

2. Counting monochromatic copies

In this section we give an estimate for cmon(G,H), the number of monochro-
matic labelled copies of G in a colouring H of the edges of Kn. We are most
interested in the case of 3-colourings, but the analysis works for any number
k of colours. For the rest of this section we will fix some value k with k > 1,
and will consider k-colourings for which the set of colours is {0, . . . , k − 1}.
We will also fix a graph G with v(G) = t and e(G) = e.

Let ζk = exp(2πık ), so that ζk is a primitive kth root of 1. The k complex
kth roots of 1 are of the form ζik for 0 ≤ i < k. To lighten the notation we
let ζ = ζk for the rest of this section.

Let p(x) =
∑k−1

j=0 x
j . A trivial calculation shows that

p(ζi) =

{
k if i ≡ 0 mod k,
0 if i �≡ 0 mod k.
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Officially a k-colouring of the edges of a complete graph with vertex set

V is a function H from [V ]2 to {0, . . . , k− 1}. It will often be convenient to

consider H as a symmetric function from V 2 to {0, . . . , k− 1}, and to make

the convention that H(v, v) = 0 for all v ∈ V .

Definition 4. LetH be a k-colouring of the edges ofKn. AH is the complex-

valued function with domain V (Kn)
2 given by the formula AH(u, v) = ζH(u,v).

We note that by our conventions AH(u, u) = 1 for all u.

Definition 5. Let n > 0 and let H be a k-colouring of the edges of Kn.

1. F ∗(G,H) is the set of f : V (G) → V (Kn) such that for some i with

0 ≤ i < k, AH(f(u), f(v)) = ζi for every edge uv ∈ E(G).

2. I(G,H) is the set of f ∈ F ∗(G,H) which are injective.

It follows immediately from the definitions that I(G,H) is the set of

labelled copies of G in Kn which are monochromatic for H. By definition,

cmon(G,H) = |I(G,H)| and I(G,H) ⊆ F ∗(G,H).

We now argue that |F ∗(G,H)| is a reasonably good approximation to

|I(G,H)| when n is large. The elements of F ∗(G,H) \ I(G,H) are non-

injective functions from V (G) to V (Kn), and the number of such functions

is nt − t!
(
n
t

)
, so |F ∗(G,H)| \ |I(G,H)| is O(nt−1). As we mentioned in the

introduction, it follows from Ramsey’s theorem that |I(G,H)| is Θ(nt).

For the rest of this section we fix the value of n, and we also fix a k-co-

louring H of the edges of Kn. We will find an exact formula for |F ∗(G,H)|,
and in the following section we will exploit this formula and the fact that

cmon(G,H) is close to |F ∗(G,H)|.

Definition 6. Let f : V (G) → V (Kn) and 0 ≤ i < k.

1. P (i, f) =
∏

uv∈E(G) p(ζ
−iAH(f(u), f(v))).

2. Q(f) =
∑k−1

i=0 P (i, f).

Lemma 1. |F ∗(G,H)| = k−e
∑

f :V (G)→V (Kn)
Q(f).

Proof. Fix f : V (G) → V (Kn). By the discussion of the properties of ζ and

p(x) at the start of this section, if AH(f(u), f(v)) = ζi for all uv ∈ E(G)

then P (i, f) = ke; otherwise P (i, f) = 0. It follows that if f ∈ F ∗(G,H) then

P (i, f) = ke for one value of i and P (i, f) = 0 for all other values, while if f /∈
F ∗(G,H) then P (i, f) = 0 for all i. Therefore Q(f) = ke if f ∈ F ∗(G,H),

and Q(f) = 0 if f /∈ F ∗(G,H). Summing over all f : V (G) → V (Kn), we

conclude that
∑

f :V (G)→V (Kn)
Q(f) = ke|F ∗(G,H)|.
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Expanding the product P (i, f), we find that

P (i, f) =
∑

h:E(G)→{0,1,...,k−1}

∏
uv∈E(G)

ζ−ih(uv)AH(f(u), f(v))h(uv)

=
∑

h:E(G)→{0,1,...,k−1}
ζ−i

∑
uv∈E(G) h(uv)

∏
uv∈E(G)

AH(f(u), f(v))h(uv).

Summing over i and recalling the definition of p(x),

Q(f) =
∑

h:E(G)→{0,1,...,k−1}
p(ζ−

∑
uv∈E(G) h(uv))

∏
uv∈E(G)

AH(f(u), f(v))h(uv).

The term p(ζ−
∑

uv∈E(G) h(uv)) has the value k when
∑

uv∈E(G) h(uv) ≡ 0

mod k, and the value zero when
∑

uv∈E(G) h(uv) �≡ 0 mod k. This motivates
the following definition.

Definition 7. A k-colouring h of the edges of G is balanced if and only if∑
uv∈E(G) h(uv) ≡ 0 mod k. Bk(G) is the set of balanced k-colourings of

the edges of G.

It follows that

Q(f) = k
∑

h∈Bk(G)

∏
uv∈E(G)

AH(f(u), f(v))h(uv),

and so by Lemma 1 that

|F ∗(G,H)| = k1−e
∑

f :V (G)→V (Kn),h∈Bk(G)

∏
uv∈E(G)

AH(f(u), f(v))h(uv).

Now we write the results of this calculation of |F ∗(G,H)| in a more pala-
table form.

Definition 8. Let h be a k-colouring of the edges of G.

ρ(h,H) = n−t
∑

f :V (G)→V (Kn)

∏
uv∈E(G)

AH(f(u), f(v))h(uv).

We note that the quantity ρ(h,H) is the average value of the product∏
uv∈E(G)AH(f(u), f(v))h(uv) taken over all f : V (G) → V (Kn).

Definition 9. Ψ(G,H) =
∑

h∈Bk(G) ρ(h,H).

We now have a suggestive formula for |F ∗(G,H)|.
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Lemma 2. |F ∗(G,H)| = k1−entΨ(G,H).

We will see in the next section that G is k-uncommon if and only if there
exist n and a k-colouring H of the edges of Kn with Ψ(G,H) < 1.

Remark 1. The quantities ρ(h,H) are complex numbers which may have
nonzero imaginary parts or irrational real parts. They are algebraic numbers
lying in the number field Q(ζ). When we form the sum Ψ(G,H) the result
will always be a rational number.

Remark 2. When k = 2 these formulae reduce to those of [5, section 4]. In
particular the set of balanced 2-colourings corresponds to the set ESSUB(G)
of even spanning subgraphs appearing in the formulae of [5].

Remark 3. We could use similar ideas to count copies of coloured graphs
in H.

3. A criterion for a graph to be k-common

In this section we will define a product construction for k-colourings of the
edges of complete graphs, and use this construction to relate the quan-
tity Ψ(G,H) defined in the preceding section to the question whether G is
k-common. The calculations here are along the same lines as those of [8,
section 4].

Before defining the product construction, we recall our convention that
k-colouring of the edges of a complete graph with vertex set V can be regar-
ded as a symmetric functionH from V 2 to {0, . . . , k−1} withH(v, v) = 0 for
all v ∈ V .

Definition 10. Let G1 and G2 be complete graphs. Let Vi = V (Gi) and Hi

be a k-colouring of the edges of Vi for i = 1, 2. H1⊗H2 is a k-colouring of the
edges of the complete graph with vertex set V1 × V2, whose values are given
by

H1 ⊗H2((u1, u2), (v1, v2)) ≡ H1(u1, v1) +H2(u2, v2) mod k

for all u1, v1 ∈ V1 and u2, v2 ∈ V2.

We observe that

AH1⊗H2
((u1, u2), (v1, v2)) = AH1

(u1, v1)AH2
(u2, v2).

Lemma 3. Let G be a graph and h be a mapping from E(G) to {0, 1, . . . ,
k − 1}. Let Km be the colouring of the edges of Km such that all of the
edges have colour 0. Let H1 be a k-colouring of the edges of Kn and H2 be
a k-colouring of the edges of Km.
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1. ρ(h,H1 ⊗H2) = ρ(h,H1)ρ(h,H2).
2. If h(uv) = 0 for all uv ∈ E(G), then ρ(h,H1) = 1.
3. ρ(h,Km) = 1.
4. Ψ(G,H1 ⊗Km) = Ψ(G,H1).

The proof of Lemma 3 is a routine calculation. We note that if H is
a k-colouring of the edges of Kn, then H ⊗Km can be described in a very
simple way; each vertex v of Kn is replaced by a block of vertices Sv with
size m, a complete graph is formed whose vertex set is the union of these
blocks, and every edge which joins a member of Sv to a member of Sw is
given colour H(v, w).

Lemma 4. Let G be a graph with e(G) = e and let H be a k-colouring of the
edges of Kn. Then Ck(G) ≤ k1−eΨ(G,H).

Proof. Consider the sequence of k-colourings Hm = H⊗Km, where by defi-
nition Hm is a k-colouring of the edges of Knm. Since

cmon(G,Hm) = |I(G,Hm)| ≤ |F ∗(G,Hm)| = k1−e(nm)tΨ(G,Hm)

by Lemma 2, and Ψ(G,H) = Ψ(G,Hm) by Lemma 3, we see that

cmon(G,Hm)

t!
(
nm
t

) ≤ k1−e(nm)tΨ(G,H)

t!
(
nm
t

) .

As m tends to ∞, (nm)t

t!(nm

t )
tends to 1. So by taking the limit in the above

inequality, Ck(G) ≤ k1−eΨ(G,H).

Lemma 4 implies that if Ψ(G,H) < 1 for some H then G is not k-com-
mon, which is all we will need for the proof of Theorem 1. It is an interesting
fact that the converse implication also holds.

Lemma 5. Let G be a graph and let k > 1. The following are equivalent.

1. G is k-uncommon.
2. There exist n and a k-colouring H of the edges of Kn such that Ψ(G,

H) < 1.

Proof. Let G be a graph with v(G) = t and e(G) = e. If there is H such that
Ψ(G,H) < 1, then by Lemma 4 Ck(G) < k1−e and G is k-uncommon.

Conversely suppose that G is k-uncommon. By definition we have
Ck(G) < k1−e, and we let ε = k1−e−Ck(G). Then ε > 0, and since Ck(G;n)
increases with n and has limit Ck(G) we have Ck(G;n) ≤ k1−e − ε for all n.
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We recall from Section 2 that for any n and any k-colouring H of the ed-
ges of Kn, I(G,H) ⊆ F ∗(G,H) and |F ∗(G,H) \ I(G,H)| ≤ nt − t!

(
n
t

)
. The

polynomial nt − t!
(
n
t

)
has degree t − 1, so we may choose n so large that

nt − t!
(
n
t

)
< εnt.

By definition Ck(G;n) is the minimum of |I(G,H)|
t!(nt)

over all k-colourings H

of the edges of Kn, so we may choose such an H with Ck(G;n) = |I(G,H)|
t!(nt)

.

Then

|I(G,H)| ≤ (k1−e − ε)t!

(
n

t

)
≤ (k1−e − ε)nt,

and

|F ∗(G,H)| − |I(G,H)| ≤ nt − t!

(
n

t

)
< εnt,

so that

|F ∗(G,H)| < k1−ent.

It follows from Lemma 2 that Ψ(G,H) < 1.

Remark 4. Lemma 5 implies that the property of being k-common is com-
putably enumerable. That is to say there is an algorithm which takes G as its
input, and eventually halts if and only if G is not k-common. The algorithm
is easy to describe: enumerate all possible colourings, compute Ψ(G,H) for
each such colouring H, and halt if we find an H such that Ψ(G,H) < 1. It is
not clear that the property of being k-common is computable, that is that
there is an algorithm which halts on every G and tells us whether G is
k-common or not.

4. Graphs containing K3

In this section we prove our main result, that every graph which contains
a triangle is 3-uncommon. Our approach is similar to that used in [5], and
involves quadratic forms over finite fields. We use the field GF (3) where
GF (2) is used in [5]. Compared with GF (2), the field GF (3) has the advan-
tage that every quadratic form is diagonalizable, but the disadvantage that
a diagonal matrix can have both +1 and −1 as entries on the diagonal.

We will consider the field GF (3) as the set {0, 1, 2} with the operations of
addition and multiplication modulo 3. As in Section 2 we will be doing com-
putations with a complex root of unity, in this case the primitive third root

ζ3 = exp(2πı3 ) = −1+ı
√
3

2 . We note that if a, b ∈ GF (3) then ζa3 ζ
b
3 = ζa+b

3 and
(ζa3 )

b = ζab3 , where the sum a+b and the product ab are computed in GF (3).
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Let s be a positive integer and let m = 4s+2. We will construct a 3-co-
louring of the edges of Kn where n = 3m, starting from a certain quadratic
form q with coefficients in GF (3).

q = x21 + x22 + · · ·+ x22s+2 − x22s+3 − x22s+4 − · · · − x24s+2.

Now let Js be the following 3-colouring of the edges of a complete graph
with n vertices: the vertex set is GF (3)m, the set of colours is GF (3), and
the colour of edge xy is q(x− y). It is clear that q(x− y) = q(y−x), so that
the colouring Js is well-defined.

Let G be a graph with V (G) = {1, 2 . . . t} and let h be a 3-colouring of
the edges of G, where we consider the colouring h as taking values in GF (3).
Define M(h) as the t× t matrix with entries from GF (3) given by

M(h)ab =

⎧⎨
⎩
h(ab) if ab ∈ E(G),
0 if ab �∈ E(G) and a �= b,

−
∑t

i=1,i 	=a h(ai) if a = b.

Clearly M(h) is symmetric, and each row and column has a sum equal to
zero. We denote the rank of M(h) by r(h). We note that since the sum of
its rows is zero the matrix M(h) is singular, and hence r(h) < t.

Lemma 6. Let G be a graph with V (G) = {1, . . . t}, let h be a 3-colouring of
the edges of G, and let r = r(h). Then

ρ(h, Js) = (−1)r3−r(2s+1).

Proof. LetM = M(h). ρ(h, Js) is the average over all functions f from V (G)
to GF (3)m of the quantity

∏
a<b

ab∈E(G)

[ζ
q(f(a)−f(b))
3 ]Mab = ζ

Q∗(f)
3 ,

where Q∗(f) =
∑

a<b,ab∈E(G)Mabq(f(a) − f(b)). For each a ∈ V (G) we
regard f(a) as an m-tuple of variables, (x1,a, x2,a, . . . , xm,a). Now we regard
Q∗(f) as a quadratic form in the mt variables xi,a where 1 ≤ i ≤ m and

a ∈ V (G). In this new formulation we need to average the expression ζ
Q∗(f)
3

over all assignments of values in GF (3) to the variables xi,a, and we will do
this by diagonalising Q∗(f).

Let A be the m×m matrix with entries

Aij =

⎧⎨
⎩
1 if i = j and 1 ≤ i ≤ 2s+ 2,
−1 if i = j and 2s+ 3 ≤ i ≤ m,
0 if i �= j.
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This is the matrix of the quadratic form q, and by a routine calculation

Q∗(f) =
∑
a<b

Mabq(f(a)− f(b)) =
∑
a<b,i

MabAii(x
2
i,a + x2i,b − 2xi,axi,b).

Let 1 ≤ p ≤ t and 1 ≤ i ≤ m. The coefficient of x2i,p in Q∗(f) is∑
a 	=pAiiMap. By the definition of M ,

∑
a 	=pMap = −Mpp, and so

Q∗(f) = −
∑

a,iMaaAiix
2
i,a − 2

∑
a<b,iMabAiixi,axi,b.

The matrix M⊗A is the mt×mt matrix constructed by assigning MabA
as the (a, b) entry of a t× t matrix with m×m matrices as entries. The (i, j)
entry of the (a, b) entry is MabAij .

Let P = M ⊗A and

x = (x1,1, x2,1, . . . , xn,1, . . . , x1,t, x2,t, . . . , xm,t).

An easy calculation shows that Q∗(f) = −xPx
.
Since the field GF (3) has characteristic 3, by a standard result about

quadratic forms there exists an invertible t× t matrix C such that CMC


is diagonal. Let D = CMC
, then rank(D) = rank(M) = r by a standard
argument from linear algebra. Since D is diagonal, r is equal to the number
of nonzero entries in D. Let r+ be the number of 1’s in D, from which it
follows that r − r+ is the number of −1’s. We may assume that

Daa =

⎧⎨
⎩
1 if 1 ≤ a ≤ r+,
−1 if r+ + 1 ≤ a ≤ r,
0 if r + 1 ≤ a ≤ m.

Let C = C⊗I, where I is the m×m identity matrix. By a routine calcu-

lation CPC


= CMC
⊗ IAI
 = D⊗A. The matrix D⊗A is diagonal, so

we have diagonalised the form Q∗(f); if we define a new vector of variables
y such that x = yC, then Q∗(f) = −xPx
 = −y(D ⊗A)y
.

We now return to the problem of averaging ζ
Q∗(f)
3 over all functions from

V (G) to GF (3)m, or equivalently averaging ζ
Q∗(f)
3 over all x ∈ GF (3)mt.

∑
f :V (G)→GF (3)m

ζ
Q∗(f)
3 =

∑
x∈GF (3)mt

ζ−xPx�

3 =
∑

y∈GF (3)mt

ζ
−y(D⊗A)y�

3 ,

and since D ⊗A is diagonal

∑
y∈GF (3)mt

ζ
−y(D⊗A)y�

3 =
∑

y∈GF (3)mt

ζ
−

∑
a,i DaaAiiy2

i,a

3 .
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Clearly

DaaAii =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 1 ≤ i ≤ 2s+ 2 and 1 ≤ a ≤ r+
or 2s+ 3 ≤ i ≤ m and r+ + 1 ≤ a ≤ r,

−1 if 1 ≤ i ≤ 2s+ 2 and r+ + 1 ≤ a ≤ r
or 2s+ 3 ≤ i ≤ m and 1 ≤ a ≤ r+,

0 otherwise.

It follows that if we let α = 2(rs + r − r+) and β = 2(rs + r+), then the
expression −

∑
a,iDaaAiiy

2
i,a contains α terms with coefficient 1, β terms

with coefficient −1 and mt− (α+ β) terms with coefficient zero.
We reorder and relabel the mt variables yi,a as z1, . . . , zmt so that

−
∑
a,i

DaaAiiy
2
i,a = z21 + z22 + · · ·+ z2α − z2α+1 − z2α+2 − · · · − z2α+β.

Noting that the right-hand side depends only on the variables z1, . . . zα+β ,
we get

∑
f :V (G)→GF (3)m

ζ
Q∗(f)
3

= 3mt−(α+β)
∑

z1,...,zα+β∈GF (3)

ζ
z2
1+z2

2+···+z2
α−z2

α+1−z2
α+2−···−z2

α+β

3 .

Since ζ−1
3 = ζ23 , we can rewrite the right-hand side as

3mt−(α+β)
∑

z1,...,zα+β∈GF (3)

ζ
z2
1

3 ζ
z2
2

3 · · · ζz
2
α

3 ζ
2z2

α+1

3 ζ
2z2

α+2

3 · · · ζ2z
2
α+β

3 .

This sum is the product of α terms of the form 1 + ζ3 + ζ43 and β terms of
the form 1 + ζ23 + ζ83 , so using ζ33 = 1 we get

∑
f :V (G)→GF (3)m

ζ
Q∗(f)
3 = 3mt−(α+β)(1 + 2ζ3)

α(1 + 2ζ23 )
β.

Since 1+2ζ3 = ı
√
3, 1+2ζ23 = −ı

√
3, and ρ(h, Js) is the average of ζ

Q∗(f)
3

over the 3mt possible values for f , we see that ρ(h, Js) =
(−1)β(ı

√
3)α+β

3α+β . Since
β is even, (−1)β = 1. Because α+ β = 2r(2s+ 1),

ρ(h, Js) = (ı)2r(2s+1)

(√
3

3

)2r(2s+1)

= (−1)r3−r(2s+1).
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We recall from Definition 7 that B3(G) is the set of balanced 3-colourings

of the edges of G. Since we are now considering 3-colourings as taking values

in GF (3), B3(G) is the set of colourings where the sum of the colours of the

edges is equal to zero.

Definition 11. Let G be a graph with V (G) = {1, . . . t}. For each i such

that 0 ≤ i ≤ t− 1, Ri(G) is the number of h ∈ B3(G) such that r(h) = i.

Lemma 7. Let G be a graph with V (G) = {1, . . . t}. If V (G) contains

a triangle, then R0(G) = 1, and R1(G) > 0.

Proof. Let h be the colouring in which every edge gets colour 0. Then M(h)

is the t× t zero matrix, which implies r(h) = 0. Since the zero matrix is the

only t× t matrix with rank 0, R0(G) = 1.

Relabelling the vertices if necessary, we may assume that vertices 1, 2

and 3 form a triangle in G. Let h be the colouring in which the edges 12, 13,

and 23 are assigned colour 1 and the remaining edges are assigned colour 0.

Then h is balanced, and M(h) is the t× t matrix

[
13×3 03×t−3

0t−3×3 0t−3×t−3

]

where 13×3 is a 3× 3 matrix with all entries equal to 1, and 0a×b is a a× b

matrix with all entries equal to 0. Therefore r(h) = 1, which implies that

R1(G) > 0.

It is not hard to see that R1(G) > 0 if and only if G contains a triangle.

Theorem 1. Let G be a graph which contains a triangle. Then G is 3-un-

common.

Proof. Let G have t vertices, so that without loss of generality V (G) =

{1, . . . , t}. Let Ri = Ri(G) for i < t, and let B = B3(G). By Lemma 6

Ψ(G, Js) =
∑
h∈B

ρ(h, Js) =
∑
h∈B

(−1)r(h)3−r(h)(2s+1) =

t−1∑
j=0

(−1)j3−j(2s+1)Rj .

For large s the leading terms 1 − R1

3(2s+1) will dominate this sum. Since

R1 > 0 there exists an s such that Ψ(G, Js) < 1. It follows from Lemma 5

that G is 3-uncommon.
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5. Conclusion

We have shown that there is a sequence of graph colourings Js which wit-
nesses that every G containing K3 is 3-uncommon. Note that the colouring

Js that we constructed is T
⊗(2s+2)
1 ⊗ T

⊗(2s)
2 , where Ti is the edge colouring

of K3 in which all the edges get colour i.
We finish with some open questions.

1. Can the arguments of this paper be pushed further to show that larger
classes of non-bipartite graphs are 3-uncommon? In particular, is every
non-bipartite graph 3-uncommon?

2. We have a very simple description of Js in terms of the colourings
Ti. It is not hard to see that ρ(h, Ti) can be computed recursively
by a contraction-deletion formula. Can these facts be used to give
a simpler proof of Theorem 1?
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