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Susceptibility of random graphs with
given vertex degrees

Svante Janson

We study the susceptibility, i.e., the mean cluster size, in random
graphs with given vertex degrees. We show, under weak assump-
tions, that the susceptibility converges to the expected cluster size
in the corresponding branching process. In the supercritical case, a
corresponding result holds for the modified susceptibility ignoring
the giant component and the expected size of a finite cluster in the
branching process; this is proved using a duality theorem.

The critical behaviour is studied. Examples are given where the
critical exponents differ on the subcritical and supercritical sides.

1. Introduction

The susceptibility χ(G) of a graph G is defined as the mean size of the
component containing a random vertex:

(1.1) χ(G) := |G|−1
∑

v∈V (G)

|C(v)|,

where C(v) denotes the component of G containing the vertex v. Thus, if
G has n = |G| vertices and components Ci = Ci(G), i = 1, . . . ,K, where
K = K(G) is the number of components, then

(1.2) χ(G) :=
K∑

i=1

|Ci|
n

|Ci| =
1
n

K∑
i=1

|Ci|2.

Although it does not matter here, we assume for later use that the compo-
nents as usual are ordered with |C1| ≥ |C2| ≥ · · · .

When the graph G is itself random, χ(G) is thus a random variable. (We
do not take the expectation over G unless we explicitly write E χ(G).)

The susceptibility (in particular its expectation) has been much studied
for certain models in mathematical physics. (That is the reason for using
the term susceptibility, and the notation χ, which both come from physics.)
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Similarly, in percolation theory, which deals with certain random infinite
graphs, the corresponding quantity is the (mean) size of the open cluster
containing a given vertex, and this has been extensively studied; see e.g.
Bollobás and Riordan [8]. For finite random graphs, there are some papers:
Spencer and Wormald [34] studied in a pioneering paper a class of random
graph processes (including the Erdős–Rényi graph process) and used the
susceptibility to study the phase transition in them. Some results for the
Erdős–Rényi random graphs G(N, p) and G(n,m) can be regarded as folk
theorems; detailed results are given by Durrett [13, Section 2.2] and Janson
and Luczak [22]. Borgs, Chayes, van der Hofstad, Slade and Spencer [9] give
precise results for random subgraphs of transitive graphs (including both
G(N, p) and, for example, random subgraphs of the hypercube); further re-
sults for random subgraphs of the hypercube are given by van der Hofstad
and Slade [16, 17]. A class of inhomogeneous random graphs is studied by
Janson and Riordan [26], see also Chayes and Smith [12]. Another applica-
tion is given in Janson and Spencer [24]. We refer to these papers for further
background. The purpose of the present paper is to study the susceptibility
for the random graph G(n,d) with given vertex degrees, where d = (di)n

1 is
a given degree sequence (see Section 2 for a detailed definition). This case
has earlier been studied in a heuristic way by Newman, Strogatz and Watts
[33], using the branching process in Section 3 below.

The definition (1.2) is mainly interesting in the subcritical case, when all
components are rather small. In the supercritical case, see Molloy and Reed
[31] or Theorem 2.4 below, there is one giant component that is so large that
it dominates the sum in (1.2); in fact, for some ρ > 0, |C1| = (ρ + op(1))n
while |C2| = op(n) and thus

K∑
i=1

|Ci|2 = |C1|2 + O

(
|C2|

K∑
i=2

|Ci|
)

= (ρ2 + op(1))n2 = (1 + op(1))|C1|2.

It then makes sense to exclude the largest component from the definition,
and we define as in [26] the modified susceptibility χ̂(G) of a finite graph G
by

(1.3) χ̂(G) :=
1
n

K∑
i=2

|Ci|2.

(This is in analogy with percolation theory, where one studies the mean size
of the open cluster containing a given vertex, given that this cluster is finite.)

Our main result is the following, giving the asymptotics of both χ and
χ̂ for G(n,d), using notation introduced in Section 2 below,
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Theorem 1.1. Suppose that Conditions 2.1 and 2.3 hold.

(i) In the subcritical case ν∞ < μ∞,

χ(G(n,d)) L1

−→ χ∞ := 1 +
μ2
∞

μ∞ − ν∞
,

χ̂(G(n,d)) L1

−→ χ∞.

(ii) In the critical case ν∞ = μ∞,

χ(G(n,d)), χ̂(G(n,d))
p−→ ∞.

(iii) In the supercritical case ν∞ > μ∞, with κ ∈ (0, 1) given by g′(κ) =
κg′(1),

χ(G(n,d))
p−→ ∞,

χ̂(G(n,d))
p−→ χ̂∞ := g(κ) +

κ(g′(κ))2

g′(κ) − κg′′(κ)
< ∞.

Note that the L1-convergence in the subcritical case (i) entails both
χ(G(n,d))

p−→ χ∞ and E χ(G(n,d)) → χ∞. Hence, in all three cases we
have

χ(G(n,d))
p−→ χ∞ := 1 +

μ2
∞

(μ∞ − ν∞)+
≤ ∞,

χ̂(G(n,d))
p−→ χ̂∞ := g(κ)

(
1 +

μ̂2
∞

(μ̂∞ − ν̂∞)+

)
≤ ∞.

Further, in (ii) and (iii) it follows trivially that E χ(G(n,d)) → ∞. Hence
also E χ(G(n,d)) → χ∞ holds in all three cases. However, our proof does
not (at least not immediately) show convergence of E χ̂(G(n,d)) in the su-
percritical case (iii), although we conjecture that it holds there too.

The results are based on approximation by a branching process X, see
Section 3, as is standard when studying the component structure in both
G(n,d) and in several other random graph models (see e.g. [23] and [7]).
Theorem 1.1 can be seen as saying that (under some weak conditions), the
susceptibility χ and the modified susceptibility χ̂ of G(n,d) converge to
the corresponding mean values for the branching process corresponding to
G(n,d); see Theorem 3.3 for details. Proofs are given in Sections 4–7.

The proof of our result for χ̂ is based on a duality result, Theorem 6.1,
saying that if we delete the largest component C1 from a supercritical G(n,d),
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then the remainder is essentially another random graph of the same type,
which furthermore is subcritical. (The size and vertex degrees are random,
but this is not important since they are concentrated.) This was proved al-
ready by Molloy and Reed [32], but we need a slightly sharper form here.
Such duality results for G(N, p) go back to Bollobás [5], see also �Luczak
[28], Janson, Knuth, �Luczak and Pittel [20] and the books Bollobás [6], Jan-
son, �Luczak and Ruciński [23]; a generalization to a class of inhomogeneous
random graphs is given by Bollobás, Janson and Riordan [7, Theorem 12.1]
and a further generalization by Janson and Riordan [25].

Theorem 1.1 is stated as a limit result. An alternative is to formulate
the result as an approximation for finite n; this version is given in Section 8.
We end with some further comments. The behaviour close to criticality is
studied in Section 9 for a specific situation. We show that there is symmetry
between the subcritical and supercritical sides when the asymptotic degree
distribution has a third moment, but not necessarily in general; the critical
exponent on the subcritical side is always 1 but on the supercritical side
it may be arbitrarily large. Finally, in Section 10 we give some examples
showing that the main theorems may fail without our conditions.

2. Preliminaries

Let n ∈ N and let d = (di)n
i=1 be a sequence of non-negative integers. We

let G(n,d) be a random graph with degree sequence (di)n
1 , uniformly chosen

among all possibilities (tacitly assuming that there is any such graph at all;
in particular,

∑
i di has to be even).

As in many papers on these random graphs, we find it convenient to con-
sider the corresponding random multigraphs generated by the configuration
model (see Bollobás [3] and [6, Section II.4]; see also Bender and Canfield [2]
and Wormald [35, 36] for related arguments): Let n ∈ N and let (di)n

1 be a
sequence of non-negative integers such that

∑n
i=1 di is even. Then take a set

of di half-edges for each vertex i, and combine the half-edges into pairs by
a uniformly random matching of the set of all half-edges (allowing multiple
edges and loops); this yields the random multigraph G∗(n,d) with given de-
gree sequence (di)n

1 . Conditioned on the multigraph being a (simple) graph,
we obtain G(n,d), the uniformly distributed random graph with the given
degree sequence.

We assume throughout the paper that we are given a sequence (di)n
1 =

(d(n)
i )n

1 for each n ∈ N (or at least for some sequence n → ∞); for notational
simplicity we will usually not show the dependence on n explicitly for these
and some other quantities. We consider asymptotics as n → ∞, and all
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unspecified limits below are as n → ∞. We say that an event holds w.h.p.
(with high probability), if it holds with probability tending to 1 as n → ∞.
We use standard probabilistic notations for convergence; in particular

p−→
and d−→ for convergence in probability and in distribution, and op in the
standard way (see e.g. [23] or [19]): for example, if (Xn) is a sequence of
random variables, then Xn = op(1) means that Xn

p−→ 0.
We write

nk = nk(n) := #{i : di = k}, k ≥ 0,

and

m = m(n) :=
1
2

n∑
i=1

di =
1
2

∞∑
k=0

knk;

thus nk is the number of vertices of degree k and m is the number of edges
in the random graph G(n,d) (or G∗(n,d)). We assume as in [21] that the
given (di)n

1 satisfy the following regularity conditions, cf. Molloy and Reed
[31, 32] (where similar but not identical conditions are assumed).

Condition 2.1. For each n, (di)n
1 = (d(n)

i )n
1 is a sequence of non-negative

integers such that
∑n

i=1 di is even. Furthermore, (pk)∞k=0 is a probability
distribution independent of n such that

(i) nk/n = #{i : di = k}/n → pk as n → ∞, for every k ≥ 0;
(ii)

∑
k kpk ∈ (0,∞);

(iii)
∑

i d
2
i = O(n);

(iv) p1 > 0.

Let Dn be a random variable defined as dI for a uniform random index
I ∈ {1, . . . , n}: thus Dn is the degree of a random (uniformly chosen) vertex
in G(n,d) or G∗(n,d), and

(2.1) P(Dn = k) = nk/n.

Define

μn := E Dn =
1
n

n∑
i=1

di =
2m

n
,(2.2)

νn := E Dn(Dn − 1) =
1
n

n∑
i=1

di(di − 1).(2.3)
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Further, let D∞ be a random variable with the distribution P(D∞ = k) = pk,
and extend (2.2) and (2.3) to μ∞ := E D∞ and ν∞ := E D∞(D∞−1). Then
Condition 2.1(i) can be written

(2.4) Dn
d−→ D∞.

In other words, D∞ describes the asymptotic distribution of the degree of a
random vertex in G(n,d). Furthermore, (ii) is μ∞ = E D∞ ∈ (0,∞), (iv) is
P(D∞ = 1) > 0, and (iii) can be written

(2.5) E D2
n = O(1)

or, equivalently, νn = O(1).

Remark 2.2. In particular, (2.5) implies that the random variables Dn are
uniformly integrable, and thus Condition 2.1(i), in the form (2.4), implies
E Dn → E D∞, i.e.

(2.6) μn =
2m

n
=

1
n

n∑
i=1

di → μ∞,

see e.g. [14, Theorems 5.4.2 and 5.5.9].

We will often need an assumption that is a little stronger than Condi-
tion 2.1(iii).

Condition 2.3. As n → ∞, νn → ν∞. (Equivalently, E D2
n → E D2

∞.)

This is clearly stronger than Condition 2.1(iii), see (2.5). Assuming Con-
dition 2.1, it is by (2.4) equivalent to uniform integrability of D2

n, cf. Re-
mark 2.2. In particular, Condition 2.3 holds if supn E D2+ε

n < ∞ for some
ε > 0.

Let

g(x) := E xD∞ =
∞∑

k=0

pkx
k,

the probability generating function of the probability distribution (pk)∞k=0.
Thus μ∞ = g′(1) and ν∞ = g′′(1).

We shall use the result by Molloy and Reed [31, 32] on existence and
size of a giant component in G(n,d); we state it in a version from [21]. For
a graph G, let vk(G) be the number of vertices of degree k, k ≥ 0.
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Theorem 2.4 (Molloy and Reed). Suppose that Condition 2.1 holds. Con-
sider the random graph G(n,d) and let C1 and C2 be its largest and second
largest components.

(i) If ν∞ − μ∞ = E D∞(D∞ − 2) > 0, then there is a unique κ ∈ (0, 1)
such that g′(κ) = μ∞κ. With this κ, as n → ∞,

|C1|/n
p−→ 1 − g(κ) > 0,

and

vk(C1)/n
p−→ pk(1 − κ

k), for every k ≥ 0,

while |C2|/n
p−→ 0.

(ii) If ν∞ − μ∞ = E D∞(D∞ − 2) ≤ 0, then |C1|/n
p−→ 0.

The same results hold for G∗(n,d).

In the usual, somewhat informal, language, the theorem shows that
G(n,d) has a giant component if and only if ν∞−μ∞ = E D∞(D∞−2) > 0.
We say that G(n,d) is subcritical if ν∞ < μ∞ (E D∞(D∞ − 2) < 0),
critical if ν∞ = μ∞ (E D∞(D∞ − 2) = 0), supercritical if ν∞ > μ∞
(E D∞(D∞ − 2) > 0).

Remark 2.5. Condition 2.1(ii), (iii) and (2.6) imply that

lim inf
n→∞

P(G∗(n,d) is a simple graph) > 0;

see for instance [2, 3], [6, Section II.4], [29] and [30] under some extra con-
ditions on max di, and [18] for the general case. Since we obtain G(n,d) by
conditioning G∗(n,d) on being a simple graph, the results in the present pa-
per for G(n,d) follow from the results for G∗(n,d) by this conditioning. (We
only sometimes state the results for both G(n,d) and G∗(n,d) explicitly.)

Remark 2.6. Condition 2.1(iv) excludes the case p1 = 0, when there are
some pathologies, in particular in the critical case (which for p1 = 0 occurs
when p0 + p2 = 1, i.e., D∞ ∈ {0, 2} a.s.). We give some counterexamples for
this case in Section 10, see also [21, Remark 2.7].

The supercritical case with p1 = 0 (which occurs as soon as P(D∞ ≥ 3)
> 0) is better behaved. In this case, Theorem 2.4 holds with κ = 0 and
thus |C1| = n − o(n), see [21, Remark 2.7]; hence χ(G(n,d)) = n − o(n).
We conjecture that χ̂(G(n,d))

p−→ 0 always in this case, but we have not
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verified it. One important example is the random d-regular graph G(n, d),
when all di = d for some fixed d ≥ 3. In fact [4, 37], for d ≥ 3, w.h.p. G(n, d)
is connected and thus trivially χ(G(n, d)) = n → ∞ and χ̂(G(n, d)) = 0, in
accordance with Theorem 1.1 (with κ = 0).

3. Branching processes

For standard material on branching processes, see e.g. [1]. We review some
basic facts that are important for us. The branching processes that we will
use are Galton–Watson processes where the initial individual has a special
offspring distribution. They are in general defined as follows.

Let ξ0 and ξ be two given nonnegative integer-valued random variables
(only their distributions matter). Start the branching process X with one
individual in generation 0, and give it a random number ξ0 of children. In
the sequel, give each individual a number of children that is distributed as
ξ, with all these numbers independent.

We let |X| denote the total population size of X, and define

ρk = ρk(X) := P(|X| = k), 1 ≤ k ≤ ∞.

In particular, ρ∞ is the survival probability of X, i.e., the probability that
X lives for ever.

Let G0(x) := E xξ0 and G(x) := E xξ be the probability generating
functions of ξ0 and ξ. We define κ as the smallest non-negative solution to

(3.1) G(κ) = κ.

For a standard Galton–Watson process (ξ0 = ξ), it is well-known that this
is the extinction probability. In general, by conditioning on ξ0,

(3.2) 1 − ρ∞ = P(|X| < ∞) = E κ
ξ0 = G0(κ).

The susceptibility and modified susceptibility are defined by

χ(X) := E
(
|X|

)
=

∑
1≤k≤∞

kρk,(3.3)

χ̂(X) := E
(
|X|; |X| < ∞

)
=

∑
1≤k<∞

kρk.(3.4)

(Note that these are expectations and not random variables.) Thus, χ(X) =
χ̂(X) when the survival probability ρ∞ = 0 (the subcritical or critical case),
and χ(X) = ∞ ≥ χ̂(X) when ρ∞ > 0 (the supercritical case).
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For our random graph G(n,d) with a given degree sequence satisfying
Condition 2.1, we define the corresponding branching process as the Galton–
Watson branching process with initial offspring distribution ξ0 := D∞, and
general offspring distribution ξ = D∗

∞, where D∗
∞ is the shifted size-biased

version (or transform) of D∞ defined by

(3.5) P(D∗
∞ = k) =

(k + 1) P(D∞ = k + 1)
E D∞

, k ≥ 0.

(We assume Condition 2.1, so 0 < E D∞ < ∞ and then (3.5) defines a proba-
bility distribution.) The reason for this definition is the well-known fact that
D∗

∞ appears as the natural limit distribution when exploring components
locally; the novice can see this in the proof of Lemma 4.1 below.

Note that

E D∗
∞ =

∞∑
k=0

k P(D∗
∞ = k) =

∞∑
k=0

k(k + 1) P(D∞ = k + 1)
E D∞

=
E D∞(D∞ − 1)

E D∞
=

ν∞
μ∞

.(3.6)

Hence, the standard classification of X as subcritical, critical or supercritical
depending on whether the expected number of children satisfies E ξ < 1,
E ξ = 1 or E ξ > 1, becomes the conditions ν∞ < μ∞, ν∞ = μ∞ and
ν∞ > μ∞ we already have seen for G(n,d), and there is a perfect agreement
between these types for X and for G(n,d). (This indicates that it really is
ν∞/μ∞ rather than ν∞ − μ∞ that is the natural parameter for criticality
testing for G(n,d); this is well-known, see e.g. [10] for generalizations.)

Furthermore, if g∗(x) := E xD∗
∞ is the probability generating function of

D∗
∞, then

(3.7) G(x) = g∗(x) =
∞∑

k=0

(k + 1) P(D∞ = k + 1)xk

E D∞
=

g′(x)
E D∞

.

(Note that E D∞ = g′(1), so g∗(1) = 1 as it should.) In particular, (3.7)
shows that (3.1) can be written

(3.8) g′(κ) = μ∞κ.

Thus, in the supercritical case κ here is the same as in Theorem 2.4. (In the
subcritical and critical cases, κ = 1, which always satisfies (3.8).) Further,
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by (3.2), the asymptotic relative size 1−g(κ) of C1 in Theorem 2.4(i) equals
ρ∞ for the corresponding branching process X. (Recall that G = g.)

We can easily compute the susceptibility of a Galton–Watson process
by standard calculations. We consider the general version with ξ0 and ξ,
before specializing to the branching process corresponding to G(n,d). This
calculation has been done by Newman, Strogatz and Watts [33], see also
Durrett [13, Section 2.3]. (Similar results for a more complicated branching
process with types, but without a special initial offspring distribution, are
given in [26].)

Theorem 3.1. For a branching process X defined as above by ξ0 and ξ,

(3.9) χ(X) := E(|X|) = 1 +
E ξ0

(1 − E ξ)+
.

Further, if ξ0 and ξ have the probability generating functions G0 and G, and
κ is the smallest nonnegative root of G(κ) = κ, then

(3.10) χ̂(X) := E(|X|; |X| < ∞) = G0(κ) +
κG′

0(κ)
1 − G′(κ)

.

Hence, assuming E ξ0 > 0, we have χ(X) = ∞ if and only if E ξ ≥ 1, while
χ̂(X) < ∞ whenever E ξ �= 1.

Proof. As said above, this is proved by Newman, Strogatz and Watts [33]
(in slightly different notation), but for completeness we give a proof. Let Xk

be the kth generation of X. Then E |Xk| = E ξ0(E ξ)k−1 for k ≥ 1, and thus
when E ξ ≤ 1 (so κ = 1 and ρ∞ = 0)

χ(X) = 1 +
∞∑

k=1

E ξ0(E ξ)k−1 = 1 +
E ξ0

1 − E ξ
,

while χ(X) = ∞ when E ξ > 1 and thus ρ∞ > 0. This shows (3.9).
For χ̂ we use the standard and easily verified fact that X̂ := (X | |X| < ∞),

i.e. X conditioned on extinction, is another branching process with initial
offspring distribution ξ̂0 and general offspring distribution ξ̂ given by

P(ξ̂ = k) =
κ

k
P(ξ = k)
G(κ)

= κ
k−1

P(ξ = k),

P(ξ̂0 = k) =
κ

k
P(ξ0 = k)
G0(κ)

;
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these have expectations

E ξ̂ = G′(κ),(3.11)

E ξ̂0 =
κG′

0(κ)
G0(κ)

.(3.12)

If E ξ ≤ 1, then κ = 1 and ξ̂
d= ξ, ξ̂0

d= ξ0; thus (3.10) reduces to (3.9).
(Except in the trivial case P(ξ = 1) = 1, when |X| = 1 or ∞ a.s.; then
κ = 0 and we interpret (3.10) as χ(X̂) = P(|X| < ∞) = G0(0), which is
immediate.)

Note that, by the convexity of G, if E ξ = G′(1) > 1, so κ < 1, then
E ξ̂ = G′(κ) < 1, and X̂ is subcritical. Thus (3.2), (3.9) and (3.11)–(3.12)
yield

χ̂(X) = P(|X| < ∞) E(|X| | |X| < ∞) = P(|X| < ∞) E |X̂|

= P(|X| < ∞)χ(X̂) = G0(κ)
(

1 +
E ξ̂0

1 − E ξ̂

)
= G0(κ) +

κG′
0(κ)

1 − G′(κ)
.

(The case G0(κ) = 0, which occurs when P(ξ0 = 0) = P(ξ = 0) = 0, and
entails κ = 0 and |X| = ∞ a.s., is trivial and easily verified separately.)

We now specialize to the branching process corresponding to G(n,d).

Corollary 3.2. Given d = (di)n
1 such that Condition 2.1 holds, let X be the

corresponding branching process. Then

χ(X) = 1 +
μ∞

(1 − ν∞/μ∞)+
= 1 +

μ2
∞

(μ∞ − ν∞)+
(3.13)

χ̂(X) = g(κ) +
κg′(κ)

1 − g′′(κ)/μ∞
= g(κ) +

κg′(κ)g′(1)
g′(1) − g′′(κ)

(3.14)

= g(κ) +
κg′(κ)2

g′(κ) − κg′′(κ)
,(3.15)

with χ̂(X) < ∞ unless ν∞ = μ∞.

Proof. First, E ξ0 = E D∞ = μ∞ and, by (3.6), E ξ = E D∗
∞ = ν∞/μ∞; thus

(3.9) yields (3.13).
Next, G0(x) = g(x) and, by (3.7), G(x) = g′(x)/μ∞. Hence, (3.10)

yields, using (3.8),

χ̂(X) = g(κ) +
κg′(κ)

1 − g′′(κ)/μ∞
= g(κ) +

κg′(κ)2

g′(κ) − κg′′(κ)
,
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and the result follows, recalling also μ∞ = g′(1).

The values χ(X) and χ̂(X) are thus the quantities called χ∞ and χ̂∞ in
Theorem 1.1, and Theorem 1.1 may thus be reformulated as follows.

Theorem 3.3. Suppose that Conditions 2.1 and 2.3 hold, and let X be the
corresponding branching process. Then χ(G(n,d))

p−→ χ(X) and χ̂(G(n,d))
p−→ χ̂(X). In the subcritical case ν∞ < μ∞, further χ(G(n,d)) L1

−→ χ(X)

and χ̂(G(n,d)) L1

−→ χ̂(X).

4. A lower bound

We continue to assume Condition 2.1, and let X be the branching process
corresponding to G(n,d) as in Section 3. Let Nk(G) denote the number of
vertices in components of order k in a graph G. Thus the number of such
components is Nk(G)/k. We can write the definition (1.2) as

(4.1) χ(G) =
1
|G|

∞∑
k=1

Nk(G)
k

k2 =
∞∑

k=1

k
Nk(G)
|G| .

Lemma 4.1. Suppose that Condition 2.1 holds. Then, for every fixed k ≥ 0,

(4.2) Nk(G(n,d))/n
p−→ ρk(X) := P(|X| = k).

The same holds for G∗(n,d).

Proof. This is well-known (and see e.g. [10] for a more general situation), but
for completeness we sketch the proof. By Remark 2.5, it suffices to consider
G∗(n,d).

The expectation E Nk(G∗(n,d))/n is the probability that a random ver-
tex v0 belongs to a component with exactly k vertices. We let N ′

k be the
number of vertices in tree components of order k, and note that it is easy
to see that the expected number of cycles of length ≤ k is O(1), and thus
E |Nk(G∗(n,d)) − N ′

k| = O(1); hence it suffices to consider N ′
k.

Let C be the component containing the random vertex v0. We explore C
by breadth-first search, using a predetermined order of the half-edges at each
vertex. In this way, C is exhibited as an ordered (or plane) tree, possibly with
some extra edges, and with root v0. Let T be a given tree with k vertices,
and let us compute the probability that C equals T (as an ordered, rooted,
unlabelled tree). If T has a root of degree d0 and k − 1 other vertices of
outdegrees d1, . . . , dk (in breadth-first order), then there are nd0 choices of



Susceptibility of random graphs with given vertex degrees 369

v0 and, for i = 1, . . . , k, ndi
− O(1) choices of the ith vertex. Moreover, for

i ≥ 1 we also have di +1 choices of half-edge to connect to, out of 2m−O(1)
remaining half-edges. The probability is thus, using (2.6) and (3.5),

nd0

n

k−1∏
i=1

(di + 1)ndi+1

2m
+ o(1) = P(D∞ = d0)

k−1∏
i=1

P(D∗
∞ = di) + o(1),

which equals, except for o(1), the probability that the family tree of X (con-
sidered as an ordered tree) equals T . Summing over all trees T of order k,
we find

E N ′
k/n = P(C is a tree of order k) = P(|X| = k) + o(1) = ρk(X) + o(1)

→ ρk(X).

(4.3)

The same argument, but starting with two independent random vertices,
shows that E N ′

k(N
′
k − k)/n2 → ρk(X)2. Hence, Var(N ′

k/n) → 0, and thus,
by (4.3), N ′

k/n
p−→ ρk(X), which as said above completes the proof.

Lemma 4.2. Suppose that Condition 2.1 holds, and let a be a real number.

(i) If a < χ(X), then χ(G∗(n,d)) > a w.h.p.
(ii) If further ν∞ ≤ μ∞, then also χ̂(G∗(n,d)) > a w.h.p.

Proof. In the supercritical case ν∞ > μ∞, χ(G∗(n,d)) ≥ 1
n |C1|2 = n(ρ2

∞ +
op(1)) > a w.h.p. by Theorem 2.4.

Assume thus ν∞ ≤ μ∞, and thus ρ∞ = 0. By the assumption, (3.3) and
ρ∞ = 0, then a < χ(X) =

∑
1≤k<∞ kρk. Hence there exists k0 such that∑k0

k=1 kρk > a. By (4.1) and Lemma 4.1,

χ(G∗(n,d)) :=
1
n

∞∑
k=1

kNk ≥
k0∑

k=1

kNk

n

p−→
k0∑

k=1

kρk > a,

and thus χ(G∗(n,d)) > a w.h.p.
Finally, considering the two cases |C1| > k0 and |C1| ≤ k0 separately, we

see that

χ̂(G∗(n,d)) ≥ 1
n

k0∑
k=1

kNk − k2
0

n

p−→
k0∑

k=1

kρk > a,

and thus also χ̂(G∗(n,d)) > a w.h.p.
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5. An upper bound

A path of length � ≥ 0 in a multigraph is a sequence i0e1i1 · · · e�i� of al-
ternating vertices and edges that are distinct and such that each ej has
endpoints ij−1 and ij .

Lemma 5.1. Let P� be the number of paths of length � in G∗(n,d). Then,
for every � ≥ 1,

(5.1) E P� ≤
(nνn)�−1

(nμn)�−2
= n

ν�−1
n

μ�−2
n

.

Proof. If � = 1, then (5.1) says that E P1 ≤ nμn =
∑

i di = 2m; this is
trivially true: P1 ≤ 2m because a path of length 1 is a single edge and each
edge that is not a loop yields two paths in the opposite direction.

Let � ≥ 2 and � ≤ m. A path i0 · · · i� contains one half-edge at i0 and at
i�, and two half-edges at each of i1, . . . , i�−1; these may be chosen arbitrarily,
and for each choice, the probability that they are connected to each other
in the right way is (2m − 1)−1 · · · (2m − 2� + 1)−1. Hence,

E P� =
∑∗

i0,...,i�
di0 ·

∏�−1
j=1 dij

(dij
− 1) · di�∏�

j=1(2m − 2j + 1)
,

where
∑∗ denotes the sum over distinct indices.

For each choice of distinct i0, . . . , i�−1 with di0 ≥ 1 and dij
≥ 2, 1 ≤ j ≤

� − 1, the sum
∑

di�
over i� /∈ {i0, . . . , i�−1} equals

n∑
i=1

di − di0 −
�−1∑
j=1

dij
≤ 2m − 1 − 2(� − 1) = 2m − 2� + 1.

Hence,

E P� ≤
∑∗

i0,...,i�−1
di0

∏�−1
j=1 dij

(dij
− 1)∏�−1

j=1(2m − 2j + 1)
.

Similarly, for each choice of distinct i1, . . . , i�−1 with dij
≥ 2, 1 ≤ j ≤

� − 1, the sum
∑

di0 over i0 /∈ {i1, . . . , i�−1} equals

n∑
i=1

di −
�−1∑
j=1

dij
≤ 2m − 2(� − 1) < 2m − 2� + 3.
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Hence,
(5.2)

E P� ≤
∑∗

i1,...,i�−1

∏�−1
j=1 dij

(dij
− 1)∏�−2

j=1(2m − 2j + 1)
≤ 2−(�−2)

∑∗
i1,...,i�−1

∏�−1
j=1 dij

(dij
− 1)∏�−2

j=1(m − j)

Let ai := di(di − 1) and let R be the set of indices i such that ai > 0,
i.e., di ≥ 2. Let r := |R|. By an inequality of Maclaurin [15, Theorem 52],
for 2 ≤ � ≤ r + 1,

(
(r − � + 1)!

r!

∑*

i1,...,i�−1∈R

�−1∏
j=1

aij

)1/(�−1)

≤ 1
r

∑
i∈R

ai ≤
1
r

n∑
i=1

ai =
nνn

r
.

Hence,

∑*

i1,...,i�−1

�−1∏
j=1

dij
(dij

− 1) =
∑*

i1,...,i�−1∈R

�−1∏
j=1

aij
≤

(
nνn

r

)�−1 r!
(r − � + 1)!

= (nνn)�−1
�−2∏
j=0

(
1 − j

r

)
.

Further, 2m =
∑n

i=1 di ≥ 2r, so r ≤ m. Consequently, (5.2) yields

E P� ≤ (2m)−(�−2)

∏�−2
j=1(1 − j/r)∏�−2
j=1(1 − j/m)

· (nνn)�−1 ≤ (nνn)�−1

(2m)�−2
=

(nνn)�−1

(nμn)�−2
,

which proves the result when 2 ≤ � ≤ m and � ≤ r+1. Since trivially P� = 0
if � > m or � − 1 > r, this completes the proof.

Lemma 5.2. For any d,

(5.3) E
(
χ(G∗(n,d))

)
≤ 1 +

μ2
n

(μn − νn)+
.

Proof. By [26, Lemma 4.6] (which trivially extends to multigraphs),

χ(G∗(n,d)) ≤ 1
n

∞∑
�=0

P�(G∗(n,d)) = 1 +
1
n

∞∑
�=1

P�(G∗(n,d)).

Hence, using Lemma 5.1 for � ≥ 1,

E
(
χ(G∗(n,d))

)
≤ 1 +

∞∑
�=1

E P�(G∗(n,d))
n

≤ 1 +
∞∑

�=1

ν�−1
n

μ�−2
n

.
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If μn > νn, the geometric series sums to μn/(1 − νn/μn) = μ2
n/(μn − νn),

and the result follows. The case νn ≥ μn > 0 is trivial, since the right hand
side of (5.3) is ∞, and the case μn = 0 is trivial too, since then there are no
edges at all and thus χ(G∗(n,d)) = 1.

6. Duality

Let, as before, C1 be the largest component of G(n,d); if there is a tie we
for definiteness choose the component with maximal size that contains the
vertex with the largest label. Consider the complement of C1; we denote this
random graph by Ĝ(n,d) := G(n,d) \ C1. This graph has thus the random
vertex set [n] \ C◦

1 , where [n] := {1, . . . , n} and we in this section denote the
vertex set of a graph C by C◦.

We have defined G(n,d) with the vertex set [n]. Of course, the definition
generalizes to an arbitrary finite vertex set A and a degree sequence d =
(di)i∈A; we denote this random graph by G(A,d). If A is a subset of [n], and
d = (di)n

1 , let d|A be the sequence (di)i∈A.
We construct, given n and d = (di)n

1 , a random graph G̃(n,d) by first
constructing G(n,d) and finding its largest component C1; we then, given
C1, let A := [n] \ C1 and construct a new random graph G(A,d|A) and take
that as our random graph G̃(n,d). Hence G̃(n,d) is a random graph where
both the vertex set and the edge set are random, but conditioned on the
vertex set, it is a uniform random graph with given vertex degrees. Our
version of the duality theorem is that Ĝ(n,d) and G̃(n,d) are equal w.h.p.,
with a suitable coupling. This is a precise version of saying that Ĝ(n,d)
conditioned on its vertex set almost is a uniform random graph with given
vertex degrees.

Theorem 6.1. Suppose that Condition 2.1 holds, and that ν∞ > μ∞. With
the notations above, it is possible to couple Ĝ(n,d) and G̃(n,d) such that
they coincide w.h.p. Furthermore, we may assume, by another coupling, that
G̃(n,d) conditioned on its order and degree sequence satisfies Condition 2.1,
with pk replaced by p̂k := pkκ

k/g(κ). Let D̂∞ be a random variable with this
distribution:

(6.1) P(D̂∞ = k) = p̂k :=
pkκ

k

g(κ)
, k ≥ 0.

Then D̂∞ has probability generating function

(6.2) ĝ(x) := E xD̂∞ =
g(κx)
g(κ)

,
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and

μ̂∞ := E D̂∞ = ĝ′(1) =
κg′(κ)
g(κ)

=
κ

2μ∞
g(κ)

,(6.3)

ν̂∞ := E D̂∞(D̂∞ − 1) = ĝ′′(1) =
κ

2g′′(κ)
g(κ)

.(6.4)

Moreover, ν̂∞ < μ̂∞, so G̃(n,d) is subcritical.

Before giving the proof, we give a simple and well-known result on con-
ditioning. Recall that the total variation distance between two random vari-
ables X and Y (taking values in any common space) is

dTV(X,Y ) := sup
A

(
P(X ∈ A) − P(Y ∈ A)

)
,

taking the supremum over all measurable sets A. Recall further that the
existence of a coupling with Ĝ(n,d) = G̃(n,d) w.h.p. is equivalent to
dTV(Ĝ(n,d), G̃(n,d)) → 0.

Lemma 6.2. If X is any random variable (with values in any space) and
E is any event with P(E) > 0, then dTV

(
(X | E), X

)
≤ 1 − P(E).

Proof. For any event A of the type {X ∈ A},

P(A | E) − P(A) =
P(A ∩ E)

P(E)
− P(A) ≤ P(A) ∧ P(E)

P(E)
− P(A).

The right-hand side is a function of P(A) that is maximal for P(A) = P(E),
when it equals 1 − P(E).

Proof of Theorem 6.1. Define a total order ≺ on the subsets of [n] by defin-
ing A ≺ B if |A| < |B| or |A| = |B| and max A < max B. Thus C1 is by
definition the component of G(n,d) whose vertex set is maximal in this
order.

Let A ⊆ [n]. Conditioned on C◦
1 = A, the complement G(n,d) \ C1 =

G(n,d)|[n]\A is a random graph on the vertex set [n]\A with a given degree
sequence (di)i∈[n]\A. Moreover, it may be any such graph except that it must
not contain a component C with C◦ � A; furthermore, all permitted graphs
have the same probability. Thus, conditioned on C◦

1 = A,

Ĝ(n,d) = G(n,d)|[n]\A
d=

(
G([n] \ A,d|[n]\A)

∣∣ Êc
A

)
,
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where Êc
A is the complement of the event ÊA that G([n]\A,d|[n]\A) contains

a component C with C◦ � A.
On the other hand, by definition, conditioned on C◦

1 = A we have
G̃(n,d) = G([n] \ A,d|[n]\A). Hence, by Lemma 6.2, the total variation
distance between Ĝ(n,d) and G̃(n,d), both conditioned on C◦

1 = A, is

dTV((Ĝ(n,d) | C◦
1 = A), (G̃(n,d) | C◦

1 = A))

= dTV((G([n] \ A,d|[n]\A)|Êc
A

)
, G([n] \ A,d|[n]\A))

≤ 1 − P(Êc
A) = P(ÊA).

Taking the expectation over C◦
1 we find

dTV(Ĝ(n,d), G̃(n,d)) ≤ E dTV((Ĝ(n,d) | C◦
1), (G̃(n,d) | C◦

1))

≤ E P(ÊC◦
1
) =

∑
A⊆[n]

P(ÊA) P(C◦
1 = A).(6.5)

We split this sum into two parts. Let r := ρ∞/2; thus r > 0 and P(|C1| ≥
rn) → 1. Further, let EA be the event that A = C◦ for some component C of
G(n,d), and note that C◦

1 = A implies EA. Thus

∑
A⊆[n]

P(ÊA) P(C◦
1 = A) ≤ P(|C1| < rn) +

∑
|A|≥rn

P(ÊA) P(EA).(6.6)

Conditioned on EA, the complement G(n,d)|[n]\A of A has the same distri-
bution as G([n] \ A,d[n]\A), and thus

P(ÊA) = P(G(n,d) contains a component C with C◦ � A|EA)

= P

( ⋃
B�A

EB

∣∣∣ EA

)
.

Hence,

∑
|A|≥rn

P(ÊA) P(EA) =
∑

|A|≥rn

P

( ⋃
B�A

EB ∩ EA

)
= E

∑
|A|≥rn

1
[
EA ∩

⋃
B�A

EB

]
.

(6.7)

Let N be the number of components of size ≥ rn in G(n,d). If we order these
components as A1 ≺ · · · ≺ AN , then the indicator in (6.7) is 1 exactly when
A is one of A1, . . . , AN−1, so the sum is (N −1)+. Further, since components



Susceptibility of random graphs with given vertex degrees 375

are disjoint, N ≤ n/(rn) = r−1, and thus (N−1)+ ≤ r−11[N ≥ 2]. However,
N ≥ 2 if and only if the second largest component C2 is larger than rn.
Consequently, by (6.5), (6.6), (6.7),

dTV

(
Ĝ(n,d), G̃(n,d)

)
≤ P(|C1| < rn) + r−1

P(N ≥ 2)

= P(|C1| < rn) + r−1
P(|C2| ≥ rn),

where, by Theorem 2.4, both terms on the right-hand side tend to 0. This
shows the existence of a coupling with Ĝ(n,d) = G̃(n,d) w.h.p.

By the Skorohod coupling theorem [27, Theorem 4.30], we may assume
that the random graphs for different n are coupled such that the limits in
Theorem 2.4(i) hold a.s. Let d̃ := d|[n]\C◦

1
be the degree sequence used to

define G̃∗(n,d), let ñ := |G̃∗(n,d)| be its length and let ñk be the number of
elements di = k in it. Then ñ = n− |C1| and ñk = nk − vk(C1), and thus, by
Theorem 2.4 with the assumed coupling, ñ/n

a.s.−→ g(κ) and ñk/n
a.s.−→ pkκ

k,
k ≥ 0, and thus ñk/ñ

a.s.−→ p̂k := pkκ
k/g(κ). Consequently, conditioned on

the order and degree sequence of G̃∗(n,d), Condition 2.1 then holds a.s.,
with pk replaced by p̂k.

The formulas (6.2)–(6.4) are straightforward.
Finally, since G(n,d) is supercritical, pk > 0 for some k ≥ 3, and thus

g′′(x) is strictly increasing. Hence, recalling g′(1) = μ∞ and g′(κ) = κμ∞,

(1 − κ)μ∞ = g′(1) − g′(κ) =
∫ 1

κ

g′′(x) dx > (1 − κ)g′′(κ).

Consequently, μ∞ > g′′(κ) and (6.3)–(6.4) show that μ̂∞ > ν̂∞.

7. Proof of main theorems

Proof of Theorems 1.1 and 3.3. By Remark 2.5, it suffices to prove Theo-
rems 1.1 and 3.3 for G∗(n,d).

Consider first the subcritical case ν∞ < μ∞. By Corollary 3.2, χ∞ =
χ(X) and χ̂∞ = χ̂(X). By Lemma 4.2(i), if a < χ∞ := χ(X), then χ(G∗(n,d)) >
a w.h.p., while Lemma 5.2, (2.6) and Condition 2.3 show that

E χ(G∗(n,d)) ≤ 1 +
μ2

n

(μn − νn)+
→ 1 +

μ2
∞

μ∞ − ν∞
= χ∞.

These upper and lower bounds imply, see Janson and Riordan [26, Lem-

ma 4.2], that χ(G∗(n,d)) L1

−→ χ∞. The same argument holds for χ̂(G∗(n,d)),
by Lemmas 4.2(ii) and 5.2 together with χ̂ ≤ χ.
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In the critical case ν∞ = μ∞, Lemma 4.2 yields χ(G∗(n,d)) ≥ χ̂(G∗(n,d)) >

a w.h.p. for any finite a, and thus χ(G∗(n,d)), χ̂(G∗(n,d))
p−→ ∞.

In the supercritical case, Lemma 4.2 shows χ(G∗(n,d))
p−→ ∞. For χ̂

we consider G(n,d) and note that

(7.1) χ̂(G(n,d)) :=
1
n

∑
Ci �=C1

|Ci|2 =
n − |C1|

n
χ

(
Ĝ(n,d)

)
.

Here (n − |C1|)/n
p−→ g(κ) by Theorem 2.4, and by Theorem 6.1, we may

couple Ĝ(n,d) and G̃(n,d) such that w.h.p. they coincide and thus

(7.2) χ
(
Ĝ(n,d)

)
= χ

(
G̃(n,d)

)
w.h.p.

We may by Theorem 6.1 assume that (n − |C1|)/n → g(κ) a.s. and
that Condition 2.1 holds for G̃(n,d), conditioned on its order and degree
sequence, with pk replaced by p̂k. Further, for any constant A,

1
|G̃(n,d)|

∑
i∈V (G̃(n,d))

d2
i 1[di ≥ A] ≤ 1

n(g(κ) + o(1))

∑
i

d2
i 1[di > A],

so the uniform integrability of Dn implies that also Condition 2.3 holds for
the random graph G̃(n,d) conditioned on its order and degree sequence.

We can thus apply the already proven result for χ to G̃(n,d), conditioned
on its order and degree sequence, and conclude that

(7.3) χ
(
G̃(n,d)

) p−→ 1 +
μ̂∞

1 − ν̂∞/μ̂∞
.

By (7.1), (7.2), (7.3), (6.3), (6.4) and (3.14), we thus obtain

χ̂(G(n,d))
p−→ g(κ)

(
1+

μ̂∞
1 − ν̂∞/μ̂∞

)
= g(κ)+

κg′(κ)
1 − g′′(κ)/μ∞

= χ̂(X).

8. Approximation

We have assumed Condition 2.1, including convergence of the degree dis-
tribution Dn. This is convenient, but it is also interesting to regard the
result as an approximation for finite n, without assuming convergence of
Dn. For simplicity we consider only χ, leaving the similar but notationally
more complicated result for χ̂ to the reader.

In order to treat convergence to ∞, we let δ be a metric on the compact
space [1,∞], for example δ(x, y) := |x−1 − y−1|.
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Theorem 8.1. Suppose that d = (di)n
1 are given for n ≥ 1 such that the

random variables Dn are uniformly square integrable and that lim infn →
∞P(Dn = 1) > 0. Then

(8.1) δ

(
χ(G(n,d)), 1 +

μ2
n

(μn − νn)+

)
p−→ 0.

If further μn − νn ≥ c > 0, for some fixed c, then also

(8.2) E

∣∣∣∣χ(G(n,d)) −
(

1 +
μ2

n

μn − νn

)∣∣∣∣ → 0,

and thus χ(G(n,d)) = 1 + μ2
n/(μn − νn) + op(1).

Proof. The uniform square integrability implies that supn E D2
n < ∞; hence

the variables Dn are tight, and we may by considering a subsequence assume
that Dn

d−→ D∞ for some random variable D∞ on Z≥0. However, this is
exactly Condition 2.1(i); furthermore P(D∞ = 1) > 0, and the uniform
square integrability of Dn implies that Conditions 2.1 and 2.3 hold (along
the subsequence). In particular, μn → μ∞ and νn → ν∞.

If ν∞ < μ∞, then, by Theorem 1.1 applied to the subsequence,
χ(G(n,d)) L1

−→ 1+μ2
∞/(μ∞−ν∞). Further, μ2

n/(μn−νn)+ → μ2
∞/(μ∞−ν∞),

and both claims follow.
If ν∞ ≥ μ∞, we have χ(G(n,d)) p−→ ∞ by Theorem 1.1; further, μn →

μ∞ > 0 and (μn−νn)+ → 0, and thus μ2
n/(μn−νn)+ → ∞, and (8.1) follows

in this case too.
Hence, there is always a subsequence along which the results hold. Since

we may start by taking an arbitrary subsequence, the results hold generally
by the standard subsubsequence principle, see e.g. [23, p. 12].

9. Approaching criticality

In order to study the critial behaviour more closely, we consider a family
of random graphs parametrized by a parameter λ besides n. We consider
asymptotics as n → ∞, and investigate how the limits depend on λ. More
precisely, we consider for simplicity the following case.

Let h(x) be the probability generating function of a non-negative integer-
valued random variable D such that ∞ > h′′(1) = E D(D − 1) > h′(1) =
E D; this thus corresponds to a supercritical G(n,d). Now, for a fixed λ ∈
(0, 1], add an even number n(1 − λ)/λ + O(1) of vertices of degree 1; this
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gives a random graph G(nλ,dλ) with a corresponding asymptotic degree
distribution D∞ that has the probability generating function

(9.1) gλ(x) = (1 − λ)x + λh(x).

In particular (we will often omit the argument λ from the notation),

μ∞ = μ∞(λ) = g′λ(1) = (1 − λ) + λh′(1),(9.2)

ν∞ = ν∞(λ) = g′′λ(1) = λh′′(1).(9.3)

Consequently, the random graph G(nλ,dλ) is critical when 1−λ+λh′(1) =
λh′′(1), i.e., when λ = λc given by

(9.4) λc :=
1

1 − h′(1) + h′′(1)
∈ (0, 1),

while it is subcritical for λ < λc and supercritical for λ > λc.
We consider the limits χ∞(λ) and χ̂∞(λ) of χ(G(nλ,dλ)) and χ̂(G(nλ,dλ))

as n → ∞, and investigate how they depend on λ as λ → λc. (We thus let
first n → ∞ and then λ → λc. A related problem, not considered here, is to
let λ → λc and n → ∞ simultaneously.)

For the subcritical case λ < λc we have, by Theorem 1.1 and (9.2)–(9.4),

χ∞ = 1 +
μ2
∞

μ∞ − ν∞
= 1 +

μ∞(λ)2

1 − λ + λh′(1) − λh′′(1)
= 1 +

μ∞(λ)2

1 − λ/λc
.

For λ ↗ λc, it follows that, with μc := μ∞(λc) = ν∞(λc) > 0,

χ∞ ∼ λcμ∞(λc)2

λc − λ
=

λcμ
2
c

λc − λ
.(9.5)

In the supercritical case λ > λc, the parameter κ = κ(λ) is given by
g′λ(κ) = κg′λ(1), or, by (9.1),

(9.6) 1 − λ + λh′(κ) = κ(1 − λ + λh′(1));

equivalently,

(9.7) 1 − κ = λ(1 − h′(κ) − κ + κh′(1)).
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We use ε := 1−κ as parameter, and have thus κ = 1− ε and, by (9.7) and
(9.4),

1
λ

=
ε + h′(1) − εh′(1) − h′(1 − ε)

ε
= 1 − h′(1) +

h′(1) − h′(1 − ε)
ε

,

1
λc

− 1
λ

= h′′(1) − h′(1) − h′(1 − ε)
ε

.(9.8)

As λ ↘ λc, κ ↗ 1 and thus ε = 1 − κ ↘ 0. Moreover, g′λ(κ) − κg′′λ(κ) →
g′λc

(1) − g′′λc
(1) = 0, and thus by Theorem 1.1(iii) and g′λ(κ) = κg′λ(1),

(9.9) χ̂∞ ∼ κ(g′λ(κ))2

g′λ(κ) − κg′′λ(κ)
=

(g′λ(κ))2

g′λ(1) − g′′λ(κ)
∼ μ2

c

g′λ(1) − g′′λ(κ)
,

where by (9.1)

g′λ(1) − g′′λ(κ) = 1 − λ + λh′(1) − λh′′(κ) = λ

(
1
λ
− 1

λc
+ h′′(1) − h′′(κ)

)
.

(9.10)

Let r(ε) be the remainder term in the Taylor expansion

h(1 − ε) = 1 − εh′(1) +
ε2

2
h′′(1) − r(ε),

and note that r(0) = r′(0) = r′′(0) = 0, while r′′′(ε) = h′′′(1− ε). Then (9.8)
and (9.10) can be written

1
λc

− 1
λ

=
r′(ε)

ε
,(9.11)

g′λ(1) − g′′λ(κ) ∼ λ

(
−r′(ε)

ε
+ r′′(ε)

)
.(9.12)

These yield, using (9.9),

λ − λc ∼ λ2
c

r′(ε)
ε

,

χ̂∞ ∼ μ2
c

g′λ(1) − g′′λ(κ)
∼ λ−1

c μ2
c

(
−r′(ε)

ε
+ r′′(ε)

)−1

and thus, as λ ↘ λc,
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(9.13) (λ − λc)χ̂∞ ∼ λcμ
2
c

r′(ε)
εr′′(ε) − r′(ε)

.

Since r′′(ε) =
∫ ε
0 r′′′(t) dt and r′(ε) =

∫ ε
0 (ε − t)r′′′(t) dt, (9.13) can be

written

(9.14) χ̂∞ ∼ λcμ
2
c

λ − λc
·

∫ ε
0 (ε − t)r′′′(t) dt∫ ε

0 tr′′′(t) dt
.

If E D3 < ∞, then with b := h′′′(1) = E D(D − 1)(D − 2) > 0 (because
h is supercritical), as ε → 0, r′′′(ε) ∼ b, r′′(ε) ∼ bε and r′(ε) ∼ bε2/2; thus
(9.13) or (9.14) yields, as λ ↘ λc

(9.15) χ̂∞ ∼ λcμ
2
c

λ − λc
.

Combining (9.15) and (9.5), we obtain as λ → λc from any side the sym-
metric asymptotic, assuming E D3 < ∞,

(9.16) χ̂∞ ∼ λcμ
2
c

|λ − λc|
.

(Hence, in terminology from percolation theory and mathematical physics,
the critical exponent γ equals 1.) Such symmetry between the subcritical and
supercritical sides has been observed in many different models, but there are
also exceptions: for example, for the CHKNS model, χ̂ has finite limits as
the parameter λ increases or decreases to the critical value, but the limits
are different and the derivative is finite on the supercritical side but not on
the subcritical side where there is a square-root singularity, see Callaway,
Hopcroft, Kleinberg, Newman and Strogatz [11] and [26, Section 6.3]. We
shall see that also for G(n,d) it is possible to have asymmetric asymptotics
when E D3 = ∞. We consider some examples, with less and less integrability
of D beyond E D2 < ∞, which we always assume. We let for convenience
c1, c2, . . . denote some positive constants (depending on D) whose values we
do not want to write explicitly.

Example 9.1. Let P(D = k) ∼ k−3−α as k → ∞, for some α ∈ (0, 1). Then
r′′′(ε) ∼ Γ(1 − α)εα−1 as ε → 0, and thus (9.14) yields, as λ ↘ λc,

χ̂∞ ∼ λcμ
2
c

λ − λc
·

∫ ε
0 (ε − t)tα−1 dt∫ ε

0 tα dt
=

λcμ
2
c

λ − λc
·

∫ 1
0 (1 − t)tα−1 dt∫ 1

0 tα dt
=

α−1λcμ
2
c

λ − λc
,

with the same exponent as on the subcritical side but a different constant.
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Example 9.2. Let P(D = k) ∼ k−3(log k)−α as k → ∞, for some α > 1.
Then r′′′(ε) ∼ 1/(ε| log ε|α) as ε → 0, and thus

εr′′(ε) − r′(ε) =
∫ ε

0
tr′′′(t) dt ∼ ε

| log ε|α ,

while r′(ε) ∼ (α − 1)−1ε/| log ε|α−1. Hence, by (9.13),

χ̂∞ ∼ c1

λ − λc
| log ε|.

Further, (9.11) yields

λ − λc ∼ λ−2
c

r′(ε)
ε

∼ c2

| log ε|α−1

and thus | log ε| ∼ c3(λ − λc)−1/(α−1). Consequently, as λ ↘ λc,

χ̂∞ ∼ c4(λ − λc)−α/(α−1),

with a critical exponent α/(α − 1) > 1, in contrast to the subcritical case
(9.5).

Example 9.3. Let P(D = k) ∼ k−3(log k)−1(log log k)−2 as k → ∞. Then,
r′′′(ε) ∼ ε−1 log(1/ε)−1(log log(1/ε))−2, and thus r′′(ε) ∼ 1/(log log(1/ε))
and r′(ε) ∼ ε/(log log(1/ε)), while

εr′′(ε) − r′(ε) =
∫ ε

0
tr′′′(t) dt ∼ ε

log(1/ε) · (log log(1/ε))2
.

Hence, (9.13) yields, as λ ↘ λc,

(9.17) χ̂∞ ∼ c5

λ − λc
log(1/ε) · log log(1/ε).

Furthermore, (9.11) yields

λ − λc ∼ λ2
c

r′(ε)
ε

∼ λ2
c

log log(1/ε)
.

and thus log(1/ε) = exp
(
(c6 + o(1))/(λ − λc)

)
. Consequently (9.17) yields

χ̂∞ = e(c6+o(1))/(λ−λc),
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with a more rapid growth than any power of (λ− λc)−1. (The critical expo-
nent is ∞.)

It seems that in this way we can find examples where χ̂∞ grows arbi-
trarily fast as λ ↘ λc.

10. Some counterexamples

We give some examples where Conditions 2.1 and 2.3 are not satisfied, in
order to show that the results in general do not hold without these condi-
tions.

Example 10.1. Let di = 1 for i ≥ 2, and d1 ∼ a
√

n for some a > 0. Thus
G(n,d) has n − 1 vertices of degree 1 and a single vertex of higher degree
d1. Consequently, the components are a single star with d1 + 1 vertices and
(n1 − 1 − d1)/2 isolated edges. Hence (deterministically),

(10.1) χ
(
G(n,d)

)
=

1
n

(
(d1 + 1)2 + 2(n − 1 − d1)

)
→ a2 + 2.

Condition 2.1 holds with p1 = 1 and pk = 0, k �= 1 (i.e., D∞ = 1 a.s.), so
μ∞ = 1 and ν∞ = 0. Further, μn = 1+O(

√
n) → μ∞ but νn = 1

nd1(d1−1) →
a2 �= ν∞ so Condition 2.3 fails. We have 1+μ2

∞/(μ∞−ν∞) = 2, and thus the
conclusion of Theorem 1.1(i) does not hold. This shows that Theorem 1.1
can fail if Condition 2.3 does not hold.

If further a < 1, then

1 +
μ2

n

μn − νn
= 1 +

1
1 − a2

+ o(1) =
2 − a2

1 − a2
+ o(1).

Consequently, Theorem 8.1 too fails for this example, which shows that the
theorem does not hold in general without the assumption of uniform square
integrability. Similarly, in the case a > 1, νn > μn (at least for large n), and
Theorem 8.1 would predict that χ(G(n,d))

p−→ ∞, while (10.1) shows that
in fact it has a finite limit.

Example 10.2. Modify Example 10.1 by taking two vertices with high
degree, for example d1 = d2 ∼ a

√
n and di = 1 for i ≥ 3, for some a > 0.

Thus the components of G(n,d) are either (when there is no edge 12) two
stars of order d1 + 1 ∼ a

√
n plus n/2 + o(n) isolated edges, or (when there

is an edge 12) one component of order 2d1 ∼ 2a
√

n plus n/2 + o(n) isolated
edges. Both events occur with positive limiting probabilities. (In fact, a
simple calculation of the number of labelled graphs of the two types shows
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that the probability of an edge 12 converges to a2/(a2 + 2).) Consequently,
χ(G(n,d)) is either 4a2+2+o(1) or 2a2+2+o(1), and χ(G(n,d)) converges
(in distribution) to a two-point distribution and not to a constant. Similarly,
χ̂(G(n,d)) is either 2 + o(1) or a2 + 2 + o(1), and again there is a limiting
two-point distribution. Consequently, the conclusions of Theorem 1.1(i) fail
for both χ and χ̂.

As in Example 10.1, Condition 2.1 holds with p1 = 1 but Condition 2.3
fails.

In the remaining examples p1 = 0, and thus Condition 2.1(iv) does not
hold.

Example 10.3. The random 2-regular graph G(n, 2) is critical, with p2 =
1 and pk = 0, k �= 2 (i.e., D∞ = 2 a.s.). It is well-known that G(n, 2)
has w.h.p. several large components with sizes Θp(n), and it follows that
χ(G(n, 2)), χ̂(G(n, 2))

p−→ ∞, in accordance with Theorem 1.1(ii).
Now perturb this example by adding a suitable number of vertices of

degree 4, say n4 = �n0.9� and n2 = n−n4. By ignoring all vertices of degree
2 in G∗(n,d) (contracting their adjacent edges to a single edge), we obtain
a random 4-regular multigraph, which w.h.p. is connected, cf. Remark 2.6.
Hence, w.h.p. all vertices of degree 4 belong to a single component. Moreover,
by splitting each vertex of degree 4 into two vertices of degree 2, considering
the (2-regular) configuration model for these vertices, and then recombining
the vertices of degree 4, it is easily seen that w.h.p. this is the giant compo-
nent C1 and that it contains all vertices except a small number of cycles with
a total size ≤ n0.2, say. Thus w.h.p. χ̂(G(n, 2)) ≤ n0.4−1 so χ̂(G(n, 2))

p−→ 0,
although this example is critical, and so Theorem 1.1(ii) fails for it.

Example 10.4. If p0 = 1 (i.e., D∞ = 0 a.s.), then Condition 2.1(iv) and
(ii) do not hold. We have μ∞ = 0 and |X| = 1 a.s., so χ∞ = 1. However,
χ(G(n,d))

p−→ 1 may fail.
For example, let di = 3 for i ≤ n3 and di = 0 for n3 < i ≤ n, where

we choose n3 := 2�a√n� for some a > 0. Then Conditions 2.1 and 2.3 hold
except for Condition 2.1(ii), (iv), with p0 = 1. G(n,d) consists of n0 = n−n3

isolated vertices together with a random cubic graph on n3 vertices. The
latter is w.h.p. connected, see Remark 2.6, and thus w.h.p.

χ
(
G(n,d)

)
=

1
n

(n − n3 + n2
3) → 1 + 4a2 > 1.

Hence, Theorem 1.1 fails for this example.
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