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Increasing the chromatic number of a random graph

Noga Alon
∗

and Benny Sudakov
†

What is the minimum number of edges that have to be added to
the random graph G = Gn,0.5 in order to increase its chromatic
number χ = χ(G) by one percent? One possibility is to add all
missing edges on a set of 1.01χ vertices, thus creating a clique of
chromatic number 1.01χ. This requires, with high probability, the
addition of Ω(n2/ log2 n) edges. We show that this is tight up to
a constant factor, consider the question for more general random
graphs Gn,p with p = p(n), and study a local version of the question
as well.

The question is motivated by the study of the resilience of graph
properties, initiated by the second author and Vu, and improves
one of their results.

1. Introduction

Consider the probability space whose points are graphs on n labeled vertices,
where each pair of vertices forms an edge, randomly and independently with
probability p. The random graph Gn,p denotes a random point in this prob-
ability space. This concept is one of the central notions in modern discrete
mathematics and it has been studied intensively during the last 50 years.
By now, there are thousands of papers and two excellent monographs by
Bollobás [5] and by Janson et al. [9] devoted to random graphs and their
diverse applications. The subject of the theory of random graphs is the in-
vestigation of the asymptotic behavior of various graph parameters. We say
that a graph property P holds asymptotically almost surely (a.a.s.) if the
probability that Gn,p has P tends to one as n tends to infinity.

One of the most important parameters of the random graph Gn,p is its
chromatic number, which we denote by χ(Gn,p). Trivially for every graph
χ(G) ≥ |V (G)|/α(G), where α(G) denotes the size of the largest independent
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set in G. It can be easily shown, using first moment computations, that a.a.s.
α(Gn,p) ≤ 2 logb(np), where b = 1/(1−p) (all logarithms in this paper are in
the natural base e). This provides a lower bound on the chromatic number
of the random graph, showing that χ(Gn,p) ≥ n

2 logb(np) . The problem of
determining the asymptotic behavior of χ(Gn,p), posed by Erdős and Rényi
in the early 60s, stayed for many years as one of the major open problems
in the theory of random graphs, until its solution by Bollobás [4], using a
novel approach based on martingales that enabled him to prove that a.a.s.
χ(Gn,p) = (1 + o(1)) n

2 logb(np) for dense random graphs. Later �Luczak [14]
showed that this estimate also holds for all values of p ≥ c/n. In this paper
we strengthen these classical results, by showing that the chromatic number
remains (1 + o(1)) n

2 logb(np) even if we are allowed to add to Gn,p any set of
not too many additional edges. To describe the main results it is convenient
to use the framework of resilience, introduced by Sudakov and Vu [15].

A graph property is called monotone increasing (decreasing) if it is pre-
served under edge addition (deletion). Following [15], we define:

Definition 1.1. Let P be a monotone increasing (decreasing) graph prop-
erty.

• The global resilience of G with respect to P is the minimum number r
such that by deleting (adding) r edges from G one can obtain a graph
not having P.

• The local resilience of a graph G with respect to P is the minimum
number r such that by deleting (adding) at most r edges at each vertex
of G one can obtain a graph not having P.

Intuitively, the question of determining the resilience of a graph G with
respect to a graph property P is like asking, “How strongly does G possess
P?”. Using this terminology, one can restate many important results in
extremal graph theory in this language. For example, the classical theorem
of Dirac asserts that the complete graph Kn has local resilience �n/2� with
respect to having a Hamilton cycle. In [15], the authors have initiated the
systematic study of global and local resilience of random and pseudo-random
graphs. They obtained resilience results with respect to various properties
such as perfect matching, Hamiltonicity, chromatic number and having a
nontrivial automorphism (the last result appeared in an earlier paper with
Kim [10]). For example, they proved that if p > log4 n/n then a.a.s. any
subgraph of G(n, p) with minimum degree (1/2 + o(1))np is Hamiltonian.
Note that this result can be viewed as a generalization of Dirac’s theorem
mentioned above, since a complete graph is also a random graph G(n, p)
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with p = 1. This connection is natural and most of the resilience results
for random and pseudo-random graphs can be viewed as generalizations
of classical results from graph theory. For additional recent resilience type
results, see, e.g., [7, 8, 12, 6, 3].

In [15], Sudakov and Vu proved that the local resilience of dense Gn,p

with respect to having chromatic number (1 + o(1)) n
2 logb(np) is at least

np2/ log5 n. The main aim of the present short paper is to obtain the follow-
ing new bounds on both the global and the local resilience of the chromatic
number of the random graph, which substantially improve this result from
[15].

Theorem 1.2. Let ε > 0 be a fixed constant and let n−1/3+δ ≤ p ≤ 1/2 for
some δ > 0. Then a.a.s. for every collection E of 2−12ε2 n2

log2
b(np)

edges the
chromatic number of Gn,p ∪ E is still at most (1 + ε) n

2 logb(np) .

This shows that the global resilience of Gn,p with respect to having chro-
matic number at most (1 + ε) n

2 logb(np) is of order n2/ log2
b(np). The result is

tight up to a constant factor. Indeed, take an arbitrary set of, say, n/ logb(np)
vertices of the random graph and add to it all the missing edges to make it a
clique. This adds less than 1

2n2/ log2
b(np) edges but increases the chromatic

number by a factor of 2.

Theorem 1.3. Let ε > 0 be a fixed constant and let n−1/3+δ ≤ p ≤ 1/2
for some δ > 0. Then a.a.s. for every graph H on n vertices with maximum
degree Δ(H) ≤ 2−8ε n

logb(np) log log n the chromatic number of Gn,p ∪H is still
at most (1 + ε) n

2 logb(np) .

As before, by transforming a subset of n/ logb(np) vertices of the random
graph to a clique, it follows that this result is tight up to the log log n factor.
Both these theorems show that adding quite large and dense graphs to Gn,p

has very little impact on its chromatic number. It may be instructive to
compare the above two theorems to the following folklore result (see, e.g.,
[13] Chapter 9).

Fact 1.4. Let G and H be two graphs on the same set of points. Then

χ(G ∪ H) ≤ χ(G)χ(H),

and there are pairs of G and H such that the equality holds.

The rest of this short paper is organized as follows. In the next section
we prove our key technical lemma, which shows that in the random graph
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Gn,p the independent sets of nearly maximal size are rather uniformly dis-
tributed. Using this lemma we establish Theorems 1.2 and 1.3 in Section 3.
The last section of the paper contains some concluding remarks and open
questions. Throughout the paper, we systematically omit floor and ceiling
signs whenever they are not crucial for the sake of clarity of presentation.
We also do not make any serious attempt to optimize the absolute constants
in our statements and proofs.

2. The distribution of independent sets in random graphs

In this section we prove the statement which will be our main technical tool.
It shows that no matter which set of m edges we add to the random graph
Gn,p, a.a.s. there will be an independent set of nearly maximal size which
contains only a few of these edges. In order to state our result precisely we
need some preliminaries.

Let n−1/3+δ ≤ p ≤ 1/2 for some δ > 0 and let k0 = k0(n, p) be defined
by

(1) k0 = max

{
k :

(
n

k

)
(1 − p)(

k

2) ≥ n4

}
.

One can show easily that k0 satisfies k0 ∼ 2 logb(np) with b = 1/(1−p). Also,
it follows from known results on the asymptotic value of the independence
number of G(n, p) (see, e.g., [9, 2]) that a.a.s. the difference between k0 and
the independence number of G(n, p) is bounded by an absolute constant, as
long as p(n) is in the above range.

Let μ be the expected number of independent sets of size k0 in Gn,p.
Clearly

μ =

(
n

k0

)
(1 − p)(

k0
2 ) ≥ n4,

by the definition of k0. For a pair u, v ∈ Gn,p, let Zu,v be the random variable
counting the number of independent sets of size k0 in Gn,p that contain both
u and v. Let μ0 = E[Zu,v], then

μ0 =

(
n − 2
k0 − 2

)
(1 − p)(

k0
2 ) .

It is easy to see that μ0/μ = (1 + o(1))k2
0/n2.

Let X be the random variable which is equal to the size of a largest
collection of independent sets of size k0 in the random graph Gn,p such that
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no pair of vertices u, v belongs to more than 4μ0 of these sets. We need the
following lemma, which shows that with high probability the value of X is
concentrated around μ.

Lemma 2.1.

Pr[X ≤ 3μ/5] ≤ e
− μ2

300μ2
0

n2p .

To prove this lemma we will need first to estimate from below the ex-
pectation of X. For a pair of vertices u, v in Gn,p set

Z+
u,v =

{
Zu,v, Zu,v > 4μ0 ≥ 2μ0/(1 − p),
0, otherwise.

We also define Z+ =
∑

u,v Z+
u,v. This random variable has been considered

before in [11], where the authors studied the probability that the random
graph Gn,p contains an independent set of size k0. We will need the following
claim, proved in that paper.

Proposition 2.2. E[Z+] = o(μ).

From this proposition we can immediately deduce the following bound
on the expectation of X.

Corollary 2.3. Let X be the size of a largest collection of independent sets
of size k0 in the random graph Gn,p such that no pair of vertices belongs to
more than 4μ0 of these sets. Then E[X] = (1 − o(1))μ.

Proof. Let F be the collection of all independent sets in Gn,p of size k0.
By the definition of k0, we have that E[|F|] = μ. For every pair of vertices
u, v which is contained in more than 4μ0 independent sets of size k0, delete
all these sets from F . Note that for every pair of vertices u, v we deleted
at most Z+

u,v sets and therefore the total number of deleted sets is at most
Z+. It is easy to see that the remaining independent sets cover every pair
of vertices at most 4μ0 times and therefore their number is at most X. By
Proposition 2.2, this implies that

E[X] ≥ E[|F|] − E[Z+] = (1 − o(1))μ.

This completes the proof, since clearly E[X] ≤ μ.
Let I be a largest collection of independent sets of size k0 in the random

graph Gn,p such that no pair of vertices belongs to more than 4μ0 of these
sets and recall that X = |I|. Note that when we connect by a new edge a
pair of non-adjacent vertices u, v of Gn,p we can decrease the value of X only
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by the number of independent sets in I which contain u, v. By definition,
this is at most 4μ0. Now suppose we delete an existing edge (u, v) of the
random graph. Although this might create many new independent sets of
size k0, they all contain u, v and we can include only at most 4μ0 of them in
I. Hence also in this case the value of X changes by at most 4μ0, i.e., X is
a so called 4μ0-Lipschitz function. Now to finish the proof of Lemma 2.1 we
apply a concentration inequality for such functions, proved by Alon, Kim
and Spencer ([1], see also [2], Theorem 7.4.3). They considered a random
variable Y given on the space generated by mutually independent 0/1 choices
such that probability that a choice i is one is pi. Let ci be such that changing
choice i can change Y by at most ci, C = maxi ci and let the total variance
satisfy

∑
i pi(1 − pi)c2

i ≤ σ2. Then if aC < 2σ2 for some positive a, then

Pr
[
Y − E[Y ] < −a

]
≤ e−a2/(4σ2).

Proof of Lemma 2.1. As we already mentioned X is a 4μ0-Lipschitz random
variable, which depends on

(n
2

)
random choices for the edges of Gn,p. This

implies that the total variance is at most 16μ2
0

(n
2

)
p(1 − p) ≤ 8μ2

0n
2p = σ2.

Let a = μ/3. Using that k0 > 1/p and μ/μ0 = (1 + o(1))n2/k2
0, it is easy to

check that 4μ0a ≤ 2σ2 = 16μ2
0n

2p. Note that by Corollary 2.3, if X ≤ 3μ/5
then we also have that X − E[X] < −a. Therefore, the desired estimate for
the lower tail of X follows from the above inequality of [1].

Remark. Using the same proof one can also obtain estimates on the upper
tail of X and in particular show that for any fixed δ > 0

Pr
[∣∣ X − E[X]

∣∣ > δμ
]
< 2e

− δ2μ2

40μ2
0

n2p .

Finally we are ready to prove the main result of this section, which
roughly says that in the random graph Gn,p independent sets of nearly max-
imal size are uniformly distributed in the following sense. Suppose we add
to the random graph some set E of m edges. Consider a random subset of
vertices of size k0. By averaging, we expect that 2m/n2 fraction of its pairs
are edges from E. Our next lemma shows that with very high probability
Gn,p has an independent set of size k0, which has this property up to a
constant factor.

Lemma 2.4. If n−1/3+δ ≤ p ≤ 1/2 for some δ > 0, then with probability
at least 1 − e−n1+δ

the random graph Gn,p has the following property. For
every collection E of m edges, there is an independent set I in Gn,p of size
k0 such that I contains at most 7k2

0
m
n2 edges of E.
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Proof. Let I be a largest collection of independent sets of size k0 in random
graph Gn,p such that no pair of vertices belongs to more than 4μ0 of these
sets. Recall that μ0/μ = (1 + o(1))k2

0/n2. Also, by the definition of k0, it is
easy to check that k0 ≤ 2

p log n. Together this implies that

μ2

300μ2
0n

2p
≥ n2

400k4
0p

≥ n2p3

104 log4 n
> n1+δ.

Therefore, by Lemma 2.1 we have that with probability at least 1 − e−n1+δ

the size of I is at least 3μ/5. Consider an auxiliary bipartite graph H with
parts I and E in which independent set I ∈ I is adjacent to edge (u, v) ∈ E
iff both vertices u, v belong to I. By the definition of I, every edge (u, v) ∈ E
is contained in at most 4μ0 sets from I. Therefore the number of edges e(H)
is bounded by 4μ0m. Thus there is an independent set I ∈ I, whose degree
in H is at most e(H)/|I|. This I contains at most

e(H)
|I| ≤ 4μ0m

|I| ≤ 20μ0m

3μ
≤ 7k2

0

m

n2

edges from E.

Remark. As pointed out by an anonymous referee, one can give a slightly
shorter proof of the last lemma relying more on the results of [11], but we
prefer to include the proof above which is more transparent, even if a bit
longer.

3. Global and local resilience of the chromatic number

In this section we prove our main results. We start by recalling several
additional facts used in the proofs. The first is the following classical theorem
of Turán (see e.g., [2] p. 95), which provides a lower bound for the size of a
maximum independent set in a graph.

Lemma 3.1. Let G be graph on n vertices with e(G) edges. Then the inde-
pendence number α(G) of G satisfies

α(G) ≥ n2

2e(G) + n
.

We also need the following simple lemma which estimates the number
of edges spanned by small subsets of a random graph.
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Lemma 3.2. Let n−1/3 ≤ p ≤ 1/2 and let ε be a positive constant. Then
a.a.s. every subset of Gn,p of size s ≤ εn

16 log(np) contains at most εnp
8 log(np)s

edges.

Proof. Define r = εn
16 log(np) . The probability of existence of a subset violating

the assertion of the lemma is at most

r∑
s=rp

(
n

s

)( (s
2

)
2srp

)
p2srp ≤

r∑
s=rp

(
en

s

( es

4rp

)2rp
p2rp

)s

≤
r∑

s=rp

(
n
(e

4

)2rp
)s

= o(1).

Here we used that rp >
√

n together with the well known fact that
(a
b

)
≤

(ea/b)b.

Finally, recall the simple fact that any graph with a chromatic number
of at least r must have a subgraph with minimum degree r − 1.

Proof of Theorem 1.2. Let E be an arbitrary set of m = 2−12ε2n2/ log2
b(np)

edges, suppose it has been added to Gn,p, and put G = Gn,p ∪ E. Let
b = 1/(1 − p) and let k = 2 logb(np/ log3 n) = (1 + o(1))2 logb(np). Since
every subset of Gn,p is a random graph itself and the number of subsets
is at most 2n, using Lemma 2.4 together with the union bound, we obtain
that a.a.s. every subset of Gn,p of size s ≥ n/ log2 n has an independent
set I of size at least k which contains at most 7k2

0
m
s2 ≤ 8k2 m

s2 edges of E.
Repeatedly apply the following procedure until the remaining graph has at
most εn

16 log(np) vertices. Given a current subset, which has s vertices, find
in it an independent set I of Gn,p of size at least k which contains at most
8k2 m

s2 edges of E. Apply Lemma 3.1 to the induced subgraph G[I] to find
an independent set of G of size k2

16k2m/s2+k . Color it by a new color, remove
its vertices from G and continue.

If the current subgraph of G has s ≥ 2−in vertices, then we can find in it
an independent set of size at least k2

22i+4k2m/n2+k . Therefore if we start with
at most 2−i+1n vertices, then after pulling out

χi ≤ 2−in
/ k2

22i+4k2m/n2 + k
= 2i+4 m

n
+ 2−i n

k

independent sets we will remain with less than 2−in vertices. Let i0 be such
that 2i0 = 16ε−1 log(np). Summing up for all 1 ≤ i ≤ i0 we obtain that we
can color all but εn

16 log(np) vertices of G using only
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i0∑
i=1

χi =
i0∑

i=1

(
2i+4 m

n
+ 2−i n

k

)

≤ 2i0+5 m

n
+ n/k ≤ 29ε−1 log(np)

2−12ε2n

log2
b(np)

+ n/k

≤ ε

4
· log(np)
logb(np)

· n/k + n/k ≤ (1 + ε/4)n/k

colors. Next we prove that the remaining εn
16 log(np) vertices of G can be

colored by at most r = εn
3 logb(np) additional colors.

Indeed suppose that the remaining vertices form a graph with a chro-
matic number more than r. Then this graph contains a subgraph G′ with
minimum degree at least r−1. Denote by s the number of vertices of G′ and
note that r ≤ s ≤ εn

16 log(np) vertices. The number of edges in G′ is at least
s(r−1)/2. On the other hand, using that 1

p log(np) ≥ logb(np) together with
Lemma 3.2, we conclude that the number of edges in G′ is at most

εnp

8 log(np)
s + |E| ≤ εn

8 logb(np)
s +

2−12ε2n2

log2
b(np)

≤ εn

8 logb(np)
s +

2−10εn

logb(np)
s

< s
εn

7 logb(np)
<

s(r − 1)
2

.

This contradiction shows that any εn
16 log(np) vertices of G can be colored by

at most εn
3 logb(np)colors. Therefore the chromatic number of G is at most

(1 + ε/4)n/k + εn/(3 logb n) < (1 + ε) n
2 logb(np) , completing the proof.

Proof of Theorem 1.3. The proof of this result follows along the same lines
as the one for global resilience. Let H be a graph with maximum degree
Δ ≤ 2−8ε n

logb(np) log log n and let G = Gn,p ∪ H. Set b = 1/(1 − p) and
k = 2 logb(np/ log3 n) = (1 + o(1))2 logb(np). Let S be a subset of Gn,p of
size s = |S| ≥ n/ log2 n and let e(H[S]) be the number of edges of H spanned
by S. Since H has bounded maximum degree we have that e(H[S]) ≤ Δs/2.
We can again assume, by Lemma 2.4, that every such subset S has an
independent set I of Gn,p of size at least k which contains at most

7k2
0

e(H[S])
s2

≤ 8k2 e(H[S])
s2

≤ 4k2Δ
s

edges of H. Applying Lemma 3.1 to the induced subgraph G[I], we find in
it an independent set of G of size k2

8k2Δ/s+k . Repeatedly color every such
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independent set by a new color and remove it from G until the remaining
graph has at most n

log2 n
vertices.

If the current subgraph of G has s ≥ 2−in vertices, then we can find in
it an independent set of size at least k2

2i+3k2Δ/n+k . Therefore if we start with
at most 2−i+1n vertices, then after pulling out

χi ≤ 2−in
/ k2

2i+3k2Δ/n + k
= 8Δ + 2−i n

k

independent sets, we will remain with less than 2−in vertices. Let i0 be such
that 2i0 = log2 n, then i0 ≤ 3 log log n. Summing up for all 1 ≤ i ≤ i0 we
obtain that we can color all but n

log2 n
vertices of G using only

i0∑
i=1

χi =
i0∑

i=1

(
8Δ + 2−i n

k

)
≤ n

k
+ 8Δi0 ≤ n

k
+ 24 log log n

2−8εn

logb(np) log log n

≤ (1 + ε/4)
n

k

colors.
Consider any subset S of s ≤ n

log2 n
vertices of G. By Lemma 3.2 it has

at most εnp
8 log(np)s edges of Gn,p. The number of edges of H inside S is clearly

at most Δs/2. Therefore there are at most
( εnp

8 log(np) + Δ/2
)
s edges in the

subgraph of G induced by S. Using that 1
p log(np) ≥ logb(np) we conclude

that G[S] has a vertex of degree at most

2e(G[S])/s ≤ εnp

4 log(np)
+ Δ <

εn

2 logb(np)
+

2−8εn

logb(np) log log n
<

3εn

5k
− 1.

This shows that we can color the remaining n
log2 n

vertices in 3εn/(5k) colors
and the whole graph G by (1 + ε/4 + 3ε/5)n

k < (1 + ε) n
2 logb(np) colors.

4. Concluding remarks and open problems

We have studied the global and local resilience of random graphs with respect
to the property of having a chromatic number close to its typical value. Our
bounds for global resilience are tight up to a constant factor, but the ones
for the local case are only tight up to a log log n factor. It seems plausible to
conjecture that the assertion of Theorem 1.3 holds even when the log log n
term is omitted in the hypothesis. It is also possible that Theorem 1.2 can be
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strengthened, and that the most economical way to increase the chromatic
number of the random graph Gn,p by a factor of (1 + ε) is to construct an
appropriately large clique in it. If this is the case, then one has to add to
Gn,p, a.a.s., more than n2/(16 log2

b n) edges in order to increase its chromatic
number by a factor of (1+ε), for any fixed ε > 0 and sufficiently large n. This
remains open. It may also be interesting to estimate the minimum number
of edges that have to be added to Gn,p in order to increase the chromatic
number by a lower order term. This is related to the question of estimating
the concentration of the chromatic number of random graphs, and appears
to be difficult.
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