
Journal of Combinatorics

Volume 1, Numbers 3–4, 335–344, 2010

Disjoint edges in topological graphs∗

János Pach
†

and Géza Tóth
†

A topological graph G is a graph drawn in the plane so that its
edges are represented by Jordan arcs. G is called simple, if any
two edges have at most one point in common. It is shown that the
maximum number of edges of a simple topological graph with n
vertices and no k pairwise disjoint edges is O(n log5k−10 n). The
assumption that G is simple cannot be dropped: for every n, there
exists a complete topological graph of n vertices, whose any two
edges cross at most twice.

1. Introduction

A topological graph G is a graph drawn in the plane so that its vertices are
represented by points in the plane and its edges by (possibly intersecting)
Jordan arcs connecting the corresponding points and not passing through
any vertex other than its endpoints. We also assume that no three edges
cross at the same point, and no two edges of G “touch” each other, i.e., if
two edges share an interior point, then at this point they properly cross.
Let V (G) and E(G) denote the vertex set and edge set of G, respectively.
We will make no notational distinction between the vertices (edges) of the
underlying abstract graph, and the points (arcs) representing them in the
plane.

A topological graph G is called simple if any two edges cross at most
once. G is called x-monotone if (in a properly chosen (x, y) coordinate sys-
tem) every line parallel to the y-axis meets every edge at most once. Clearly,
every geometric graph, i.e., every graph drawn by straight-line edges, is both
simple and x-monotone.

The extremal theory of geometric graphs is a fast growing area with
many exciting results, open problems, and applications in other areas of
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mathematics [P99]. Most of the known results easily generalize to simple
x-monotone topological graphs. For instance, it was shown by Pach and
Törőcsik [PT94] that for any fixed k, the maximum number of edges of a
geometric graph with n vertices and no k pairwise disjoint edges is O(n).
The special cases k = 2 and 3 had been settled by Perles and by Alon and
Erdős [AE89], respectively. All known proofs readily generalize to simple
x-monotone topological graphs. (See [T00] for a more precise statement.)

Of course, here we cannot drop the assumption that G is simple, because
one can draw a complete graph so that any pair of its edges cross. However,
it is possible that the above statement remains true for all simple topological
graphs, i.e., without assuming x-monotonicity. The aim of the present note is
to discuss this problem. We will apply some ideas of Kolman and Matoušek
[KM04] and Pach, Shahrokhi, and Szegedy [PSS96] to prove the following
result.

Theorem 1. For any k ≥ 2, the number of edges of every simple topo-
logical graph G with n vertices and no k pairwise disjoint edges is at most
Cn log5k−10 n, where C is an absolute constant.

In fact, Theorem 1 holds with the smaller exponent (1 + ε)(4k − 8), for
any ε > 0. For ε = 0, the proof gives the upper bound Ckn log4k−8 n, where
Ck is a constant depending k.

As an immediate consequence of Theorem 1, we obtain

Corollary. Every simple complete topological graph with n vertices has
Ω (log n/ log log n) pairwise disjoint edges.

Fox and Sudakov [FS09] recently improved this bound to Ω
(
(log n)1+ε

)
,

for some constant ε > 0. See also [PST03] for a weaker result.
We also prove that Theorem 1 does not remain true if we replace the

assumption that G is simple by the slightly weaker condition that any pair
of its edges cross at most twice.

Theorem 2. For every n, there exists a complete topological graph of n
vertices whose any pair of edges have exactly one or two common points.

The analogous question, when the excluded configuration consists of k
pairwise crossing (rather than pairwise disjoint) edges, has also been con-
sidered. For k = 2, the answer is easy: every crossing-free topological graph
with n > 2 vertices is planar, so its number of edges is at most 3n − 6.
For k = 3, it was shown by Agarwal et al. [AAP97] that every geometric
graph G with n vertices and no 3 pairwise crossing edges has O(n) edges.
Pach, Radoičić and Tóth [PRT04], extended this argument to all topological
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graphs. For k = 4, Ackerman [A09] proved that every topological graph with
no 4 pairwise crossing edges has O(n) edges. It is a major unsolved prob-
lem to decide whether, for any fixed k > 4, every geometric (or topological)
graph of n vertices which contains no k pairwise crossing edges has O(n)
edges. It is known, however, that the number of edges cannot exceed n times
a polylogarithmic factor [PSS96, V98, A09, FP08]. Here the assumption that
G is simple does not seem to play such a central role as, e.g., in Theorem 1.

2. Auxiliary results

In this section, after introducing the necessary definitions, we review, modify,
and apply some relevant results of Kolman and Matoušek [KM04] and Pach,
Shahrokhi, and Szegedy [PSS96].

Let G be a graph with vertex set V (G) and edge set E(G). For any
partition of V (G) into two non-empty parts, V1 and V2, let E(V1, V2) denote
the set of edges connecting V1 and V2. The set E(V1, V2) ⊂ E(G) is said
to be a cut. The bisection width b(G) of G is defined as the minimum size
|E(V1, V2)| of a cut with |V1|, |V2| ≥ |V |/3. The edge expansion of G is

β(G) = min
V1∪V2=V (G)

|E(V1, V2)|
min {|V1|, |V2|}

,

where the first minimum is taken over all partitions V1 ∪ V2 = V (G).
Clearly, we have β(G) ≤ 3b(G)/n. On the other hand, it is possible that

β(G) is small (even 0) but b(G) is large. However, it is very easy to prove

Lemma 1. [KM04] Every graph G of n vertices has a subgraph H of at least
2n/3 vertices such that β(H) ≥ b(G)/n.

An embedding of a graph H in G is a mapping that takes the vertices of
H to distinct vertices of G, and each edge of H to a path of G between the
corresponding vertices. The congestion of an embedding is the maximum
number of paths passing through an edge of G.

As Kolman and Matoušek have noticed, combining a result of Leighton
and Rao [LR99] for multicommodity flows with the rounding technique of
Raghavan and Thompson [RT87], we obtain the following useful result.

Lemma 2. [KM04] Let G be any graph of n vertices with edge expansion
β(G) = β. There exists an embedding of the complete graph Kn in G with
congestion O(n log n

β ).
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The crossing number cr(G) of a graph G is the minimum number of
crossing points in any drawing of G. The pairwise crossing number pair-cr(G)
and the odd-crossing number odd-cr(G) of G are defined as the minimum
number of pairs of edges that cross, resp., cross an odd number of times,
over all drawings of G. It follows directly from the definition that for any
graph G cr(G) ≥ pair-cr(G) ≥ odd-cr(G). For any graph G, let

ssqd(G) =
∑

v∈V (G)

d2(v),

where d(v) is the degree of the vertex v in G, and ssqd is the shorthand for
the “sum of squared degrees.”

Next we apply Lemmas 1 and 2 to obtain the following assertion, slightly
stronger than the main result of Kolman and Matoušek [KM04], who estab-
lished a similar inequality for the pairwise crossing number.

Two edges of a graph are called independent if they do not share an
endpoint.

Lemma 3. There is a constant c > 0 such that for every graph G, we have

b(G) ≤ c log n
√

odd-cr(G) + ssqd(G).

Proof. Let H be a subgraph of G satisfying the condition in Lemma 1. Using
the trivial inequality odd-cr(G) ≥ odd-cr(H), it is sufficient to show that

odd-cr(H) ≥ Ω
(

n2β2(H)
log2 n

)
− O(ssqd(H)).

Letting m denote the number of vertices of H, we have n ≥ m ≥ 2n/3.
Fix a drawing of H, in which precisely odd-cr(H) pairs of edges cross

an odd number of times. For simplicity, this drawing (topological graph) will
also be denoted by H. In view of Lemma 2, there exists an embedding of
Km in H with congestion O(m log m

β(H) ). In a natural way, this embedding gives
rise to a drawing of Km, in which some portions of Jordan arcs representing
different edges of Km may coincide. By a slight perturbation of this drawing,
we can obtain another one that has the following properties:

1. any two Jordan arcs cross a finite number of times;
2. all of these crossings are proper;
3. if two Jordan arcs originally shared a portion, then after the pertur-

bation every crossing between the modified portions occurs in a very
small neighborhood of some (point representing a) vertex of H.
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Let e1 and e2 be two edges of Km, represented by two Jordan arcs, γ1

and γ2, respectively. By the above construction, each crossing between γ1

and γ2 occurs either in a small neighborhood of a vertex of H or in a small
neighborhood of a crossing between two edges of H. Therefore, if γ1 and
γ2 cross an odd number of times, then either (i) one of their crossings is
very close to a vertex of H, or (ii) γ1 and γ2 contain two subarcs that run
very close to two edges of H that cross an odd number of times. Clearly, the
number of pairs (γ1, γ2) satisfying conditions (i) and (ii) is at most the square
of the congestion of the embedding of Km in H multiplied by ssqd(H) and
by odd-cr(H), respectively. Thus, we have

odd-cr(Km) = O

(
(ssqd(H) + odd-cr(H))

n2 log2 n

β2(H)

)
.

On the other hand, odd-cr(K5) = 1 [C34], therefore, by an easy enu-
meration we obtain that odd-cr(Km) = Ω(m4) ([PT00]). Comparing these
two bounds and taking into account that m ≥ 2n/3, we obtain that

odd-cr(G) ≥ Ω
(

b2(G)
log2 n

)
− O(ssqd(G)).

Therefore, for some c > 0 we have

b(G) ≤ c log n
√

odd-cr(G) + ssqd(G).

Theorem 3. For any k ≥ 2, every topological graph of n vertices that
contains no k independent edges such that every pair of them cross an odd
number of times, has at most Cn log5k−10 n edges, for a suitable absolute
constant C.

Proof. Let C be a constant such that C ≥ 4 and C ≥ 2c2
where c is the

constant from Lemma 3. We use double induction on n and k. For k = 2
and for every n, the statement immediately follows from an old theorem of
Hanani [C34], according to which odd-cr(G) = 0 holds if and only if G is
planar.

Assume that we have already proved Theorem 3 for some k ≥ 2 and for
all n. For n ≤ 2c2

the statement is trivial. Let n > 2c2
and suppose that the

assertion is also true for k + 1 and for all topological graphs having fewer
than n vertices.

We have to give an upper bound on the number of edges of a topological
graph G with n vertices, which has no k + 1 edges that pairwise cross an
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odd number of times. For simplicity, the underlying abstract graph is also
denoted by G. For any edge e ∈ E(G), let Ge ⊂ G denote the topological
graph consisting of all edges of G that cross e an odd number of times.
Clearly, Ge has no k edges so that any pair of them cross an odd number of
times. By the induction hypothesis, we have

odd-cr(G) ≤ 1
2

∑
e∈E(G)

|E(Ge)| ≤
1
2
|E(G)|C(n log5k−10 n).

Using the fact that ssqd(G) ≤ 2|E(G)|n holds for every graph G, it follows
from Lemma 3 that

b(G) ≤ c log n

√
C

2
|E(G)|n log5k−10 n + 2|E(G)|n

≤ c log n
√

C|E(G)|n log5k−10 n.

Consider a partition of V (G) into two parts of sizes n1, n2 ≤ 2n/3 such
that the number of edges running between them is b(G). Neither of the
subgraphs induced by these parts has k + 1 edges, any pair of which cross
an odd number of times. Applying the induction hypothesis to both parts,
we obtain

|E(G)| ≤ C(n1 log5k−5 n1 + n2 log5k−5 n2) + b(G)

≤ Cn log5k−5 n − C

2
n log5k−6 n + c log n

√
C|E(G)|n log5k−10 n.

If we consider |E(G)| as a variable, then this inequality holds for 0 ≤
|E(G)| ≤ T and it does not hold for |E(G)| > T for some threshold T .
Therefore, it follows from the inequality that |E(G)| ≤ T . If we substitute
|E(G)| = Cn log5k−10 n, then the inequality does not hold, therefore, T <
Cn log5k−10 n, so we can conclude that |E(G)| < Cn log5k−10 n.

3. Proofs of the main results

Proof of Theorem 1. Let G be a simple topological graph with no k pairwise
disjoint edges. Let G′ be a bipartite topological subgraph of G, consisting of
at least half of the edges of G, and let V1 and V2 denote its vertex classes.

Applying a suitable homeomorphism (continuous one-to-one transfor-
mation) to the plane, if necessary, we can assume without loss of generality
that
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Figure 1: The redrawing procedure.

1. all vertices in V1 lie above the line y = 1;
2. all vertices in V2 lie below the line y = 0;
3. each piece of an edge that lies in the strip 0 ≤ y ≤ 1 is a vertical

segment.

Replace the part of the drawing of G′ that lies above the line y = 1 by
its reflection about the y-axis. Erase the part of the drawing in the strip
0 ≤ y ≤ 1, and re-connect the corresponding pairs of points on the lines
y = 0 and y = 1 by straight-line segments. Slightly perturb these segments,
if necessary, so that no three of them cross at the same point.

If in the original drawing two edges, e1, e2 ∈ E(G′), have crossed each
other an even number of times, then after the transformation their number
of crossings will be odd, and vice versa. Indeed, if originally ei crossed the
strip ki times, then ki was odd (i = 1, 2). After the transformation, we have
k1 + k2 pairwise crossing segments in the strip 0 ≤ y ≤ 1. From the

(k1+k2

2

)
crossings between them,

(ki

2

)
correspond to self-intersections of ei. Thus, the

number of crossings between e1 and e2 in the resulting drawing is equal to
their original number of crossings plus

(
k1 + k2

2

)
−

(
k1

2

)
−

(
k2

2

)
.

However, this sum is always odd, provided that k1 and k2 are odd. Note
that one can easily get rid of the resulting self-intersections of the edges by
locally modifying them in small neighborhoods of these crossings.

Suppose that the resulting drawing of G′ has k edges, any two of which
cross an odd number of times. Then any pair of the corresponding edges
in the original drawing must have crossed an even number of times. Since
originally G′ was a simple topological graph, i.e., any two of its edges crossed
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Figure 2: A drawing of K4 in which any two edges have exactly one or two
common points.

at most once, we can conclude that the original drawing of G′ (and hence
the original drawing of G) had k pairwise disjoint edges, contradicting our
assumption.

Thus, the new drawing of G′ has no k edges that pairwise cross an odd
number of times. Now it follows directly from Theorem 3 that |E(G)| ≤
2|E(G′)| ≤ 2Cn log4k−8 n, as required.

The assumption that G is simple was used only once, at the end of the
proof. Another implication of the redrawing procedure is that the analogue
of Theorem 3 also holds if we replace“odd” by “even.”

Proof of Theorem 2. Let v1, v2, . . . , vn be the vertices of Kn. For 1 ≤ i ≤ n,
place vi at (i, 0). Now, for any 1 ≤ i < j ≤ n, represent the edge vivj by a
polygon whose vertices are

(i, 0), (0, i − j/n), (i − j/n − n, 0), (0, i − j/n − n), (j, 0).

It is easy to verify that any two of these polygons cross at most twice.
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[AE89] N. Alon and P. Erdős, Disjoint edges in geometric graphs, Discrete
Comput. Geom. 4 (1989), 287–290. MR0996763
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