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Linearly bounded liars, adaptive covering codes,
and deterministic random walks

Joshua N. Cooper and Robert B. Ellis
∗

We analyze a deterministic form of the random walk on the integer
line called the liar machine, similar to the rotor-router model, find-
ing asymptotically tight pointwise and interval discrepancy bounds
versus random walk. This provides an improvement in the best-
known winning strategies in the binary symmetric pathological liar
game with a linear fraction of responses allowed to be lies. Equiv-
alently, this proves the existence of adaptive binary block covering
codes with block length n, covering radius ≤ fn for f ∈ (0, 1/2),
and cardinality O(

√
log log n/(1 − 2f)) times the sphere bound

2n/
(

n
≤�fn�

)
.

1. Introduction

In this paper we employ machinery of deterministic random walks to pro-
duce an improved strategy in the pathological liar game with a linearly
bounded liar. We also provide discrepancy bounds of independent interest
for a discretized random walk which we call the “liar machine.” Liar games,
introduced by Rényi and Ulam [10, 13], are played by a questioner and
responder, whom we can Paul and Carole, respectively, according to tradi-
tion; they model search in the presence of error. The original variant is like
“twenty questions” to identify a distinguished element of the search space,
except with lies; while in the pathological variant, Carole lies as much pos-
sible, and Paul tries to preserve at least one element of the search space.
Winning strategies in liar games correspond to adaptive codes, introduced
by Berlekamp [1]. A primary objective in developing winning strategies for
liar games is to optimize the size of a search space that can be processed
given the number of questions Paul can ask and a constraint on how Carole
may lie. Translated into coding theory language, this objective is to optimize
the size of a message set that can be handled given the number of bits to
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be transmitted and a constraint on how noise can corrupt the transmission.
Berlekamp’s codes in [1] are adaptive packing codes for error correction,
corresponding to the original liar game, whereas the pathological liar game,
introduced by the second author and Yan [6], corresponds to adaptive cover-
ing codes. When both liar game variants have the same parameters, except
for the variant-dependent winning condition for Paul, these parameters de-
termine the generalization of the Hamming ball in the discrete hypercube
that simultaneously defines the packing object for the corresponding adap-
tive packing codes, and the covering object for the corresponding adaptive
covering codes (see, for example, Theorem 19 of [8]). For both the liar game
and adaptive coding viewpoints there is a theoretical size limit on the search
space, called the sphere bound, that provides the target for optimization,
often in terms of a multiple of the sphere bound.

We combine two ideas to improve the best-known winning strategy for
the pathological liar game with Yes-No questions and a linearly bounded liar.
The first idea is to reduce the pathological liar game to a chip-moving ma-
chine on the integer line, which we call the liar machine, introduced implic-
itly by Spencer and Winkler for the original liar game [12]. The second is to
adapt the analysis of deterministic random walks on the integers, developed
by the first author, Doerr, Spencer, and Tardos [3], to the time-evolution
of the liar machine, and confirm a winning strategy in the pathological liar
game. Our main results are pointwise and interval discrepancy bounds on
the time-evolution of the liar machine as compared to random walks on the
integers, in Theorems 2 and 3; and an improved upper bound on the size
of the search space for which Paul can win the pathological liar game with
Yes-No questions and a linearly bounded liar, in Theorem 4.

2. Definitions and main results

2.1. The liar game and pathological variant

The Rényi-Ulam liar game is an n-round 2-person question-and-answer game
on a search space [M ] := {1, . . . ,M}. A fixed integer parameter e ≥ 0 is
the maximum number of lies an element of the search space can accumulate
before being disqualified, and the game begins with an initial function � :
{1, . . . ,M} → {0, 1, . . . , e}, representing the initial assignment of up to e lies
to each y ∈ [M ]. As elements of M are distinguished only by their number
of lies, we may ignore element labels and consider instead the initial state
vector x0 = (x0(0), x0(1), . . . , x0(e)), where x0(i) = |{y ∈ [M ] : �(y) = i}|
is the number of elements of [M ] initialized with i lies. Most often we set
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x0 = (M, 0, . . . , 0). Paul and Carole play an n-round game in which Paul
attempts to discover a distinguished element z ∈ [M ] of the search space. To
start each round, Paul weakly partitions [M ] into two parts by choosing a
question (A0, A1) such that [M ] = A0 ·∪A1, where ·∪ denotes disjoint union.
We interpret this choice as the question, “Is z ∈ A0?” Carole completes
the round by responding with her answer, an index j ∈ {0, 1}. For each
y ∈ [M ], if y ∈ Aj , no additional lie is assigned to y, but if y ∈ A1−j ,
one additional lie is assigned to y. Any y ∈ [M ] accumulating e + 1 lies is
disqualified. We interpret Carole’s answer of j = 0 as “Yes” and of j = 1 as
“No.” Analogous to the definition of x0, for each s = 1, . . . , n, let the state
vector xs = (xs(0), . . . , xs(e)) record the number of elements xs(i) that have
i lies at the end of round s. Paul’s question (A0, A1) in round s corresponds
to a question vector as = (as(0), . . . , as(e)) with 0 ≤ as(i) ≤ xs−1(i) for all
0 ≤ i ≤ e, by letting as(i) count the number of elements in A0 that have i
lies at the end of round s−1. Define the right-shift operator R on any vector
x = (x(0), . . . , x(e)) by R(x) = (0, x(0), . . . , x(e − 1)). Given xs−1 and as,
define

Y (xs−1, as) := as + R(xs−1 − as),
N(xs−1, as) := xs−1 − as + R(as);

and for each s = 1, . . . , n, set xs = Y (xs−1, as) if Carole responds j = 0
(“Yes”) in round s, and otherwise xs = N(xs−1, as) if Carole responds j = 1
(“No”) in round s. Elements y ∈ [M ] that accumulate e + 1 lies are shifted
out to the right and may be ignored for the rest of the game. Paul wins
the original liar game if

∑e
i=0 xn(i) ≤ 1, that is, if all but at most one

element are disqualified after n rounds; he wins the pathological liar game if∑e
i=0 xn(i) ≥ 1, that is, if at least one element survives after n rounds. We are

primarily interested in the pathological variant, which may be interpreted as
having a capricious Carole lying to eliminate elements as quickly as possible,
while Paul forms questions to prevent all elements from being disqualified.
The type of question that we will use to connect the pathological liar game
with the liar machine (defined next in Section 2.2) is the alternating question:
Paul enumerates the elements 1, . . . , M with the restriction that elements
with more lies get higher labels, and he puts the even-labeled chips in A0

and the odd-labeled chips in A1. We summarize the pathological liar game
as follows.

Definition 1. Let n,M, e ≥ 0 be integers, and let x = (x(0), x(1), . . . , x(e))
be a nonnegative integer vector with

∑e
i=0 x(i) = M . Define the (x, n, e)∗2-

game to be the n-round pathological liar game with Yes-No questions, initial
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configuration x, and e lies. We say that Paul can win the (x, n, e)∗2-game
provided there exists a winning strategy for Paul regardless of Carole’s re-
sponses.

In the notation (x, n, e)∗2, use of the asterisk indicates the pathological
variant of the liar game rather than the original. The subscript 2 means
that questions are binary and symmetric with respect to replacing as with
xs−1 − as while preserving the same two vectors as candidates for xs. This
corresponds in coding theory to the binary symmetric channel assumption;
see [5] for a much broader class of channel assumptions.

2.2. The liar machine and the linear machine

We define the “liar machine” as follows. Start with some configuration of
chips on the even or odd integers (but not both). At each time step number
the chips c1, c2, . . ., from left to right. At each location with, say, k chips,
send �k/2	 of the chips one step left, and �k/2	 one step right. If one chip
remains (because k is odd) we break the tie by sending the highest-indexed
cj one step left if j is even or one step right if j is odd. In other words, odd
piles of chips alternate sending their extra chip left or right, with the odd
pile at the lowest integer sending it to the right.

Formally, define the “starting configuration” to be a map f0 : Z → N

with finite support on 2Z or 2Z+1. Then, given ft : Z → N, define χt : Z →
{−1, 0, 1} by

(1) χt(j) =

{
0 if fj ≡ 0 (mod 2)

(−1)
∑

i<j
χt(i) if fj ≡ 1 (mod 2).

Then we define

ft+1(j) =
ft(j − 1) + ft(j + 1) + χt(j − 1) − χt(j + 1)

2
.

Now, we define the “linear machine” by taking g0 : Z → R to be any
function. Let the operator L : R

Z → R
Z be defined by

Lg(j) =
g(j − 1)

2
+

g(j + 1)
2

,

and define gt+1 = Lgt. Then gt(j) is just the expected number of chips at
location j after a simple random walk on Z starting from the configuration
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g0. In particular, we expect gt and ft to be relatively close to one another if
g0 ≡ f0. Also, define the operator Δ : R

Z → R
Z by

Δf(j) = f(j − 1).

It is easy to see that L and Δ are linear, and they commute with each
other. We write δj ∈ Z

Z for the function which is 1 at j and 0 elsewhere. In
order to consider intervals in a configuration, for a set S ⊂ Z and a function
h : Z → R, define h(S) =

∑
i∈S h(i).

2.3. Main results

Our first two main results are a pointwise and an interval discrepancy bound
in the time-evolution of the liar machine versus the linear machine starting
with the same initial configuration; these bounds are absolute, independent
of the initial configuration. All logarithms, here and throughout, are natural
logarithms.

Theorem 2. Let f0 ≡ g0, and define ft and gt according to the evolution of
the liar machine and linear machine, respectively, as described above. Then

|ft(j) − gt(j)| < 12 log t

for all t ≥ 2, j ∈ Z.

Theorem 3. Let I = [a, b] ⊂ Z and f0 ≡ g0, and define ft(I) and gt(I) ac-
cording to the evolution of the liar machine and linear machine, respectively,
as described above. Then

|ft(I) − gt(I)| ≤ c′ ·
{ √

t if B >
√

t/2
B log(t/B2) if B ≤

√
t/2,

where B = b − a and c′ is an absolute constant.

In Corollary 8 we prove that Theorems 2 and 3 are tight up to a constant
multiple for a general initial configuration f0. Corollary 25 allows extraction
of a winning strategy for the pathological liar game from the time-evolution
of the liar machine, yielding the following improved bound for the patholog-
ical liar game.

Theorem 4. Let M = 2n

( n

≤�fn�)
(4/(1 − 2f))c′

√
log log n(1 + o(1)), where c′

is the constant from Theorem 3. Then for n sufficiently large, Paul can
win the ((M, 0, . . . , 0), n, �fn	)∗2-pathological liar game with M elements and
�fn	 lies on the binary symmetric channel.
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We now discuss the improvement provided by Theorem 4. The previous
best known bound on M for f ∈ (0, 1/2) is Theorem 1 of [4], which in our
language bounds the smallest M for which Paul can win the ((M, 0, . . . , 0), n,
�fn	)∗2-game with a restricted strategy (called “non-adaptive” in the litera-
ture) of selecting all questions before any responses from Carole are available.

Theorem 5 (Delsarte and Piret). Let f ∈ (0, 1/2). The minimum M for
which Paul can win the ((M, 0, . . . , 0), n, �fn	)∗2-game with the restriction
that all n questions must be formed before any responses from Carole are
available is bounded by

M ≤
⌈

2n( n
≤�fn�

)n log 2

⌉
.

The quantity 2n/
( n
≤�fn�

)
is called the sphere bound, and so Theorem 4

provides an improved density in the best-known minimum M , from a linear
to sub-logarithmic factor in n times the sphere bound. The sphere bound is
an immediate lower bound on M ; this can be seen by defining an appropri-
ate weight function on the liar game state which Carole greedily minimizes
(cf. [7, Lemma 3]). In Theorem 5, the “spheres” are Hamming balls of radius
�fn	 that are used to cover the binary discrete hypercube (Hamming space)
of dimension n. The equivalence of winning strategies in the pathological
liar game to coverings of Hamming space by objects of size

( n
≤�fn�

)
is proved

in Theorem 3.7 of [5].
We conclude the section by outlining the rest of the paper. Section 3

contains the proofs of the liar machine discrepancy bounds: Theorems 2
and 3, and Corollary 25. Section 4 proves several technical distributional
facts about the binomial and hypergeometric distributions needed to bound
the distribution of chips in the liar machine (via discrepancy from the linear
machine). Section 5 reduces a strategy for Paul in the pathological liar game
to the liar machine and blends the preceding results into Theorem 4. Section
6 contains open questions and closing remarks.

3. Proofs of liar machine discrepancy bounds

The proofs of Theorems 2 and 3 flow directly from the definitions in Sec-
tion 2.2, and resemble the arguments in [3]. These proofs require a bound on,
and the bimodality in space of, a term that tracks the discrepancy between
the liar machine and the linear machine; we state these technical properties
as Lemma 6 but defer their proof until after those of Theorems 2 and 3.
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Next, Lemma 7 shows that the parity of the number of chips in the liar
machine can be pre-selected for an arbitrary product of intervals in space
and time, by choosing an appropriate initial configuration. This leads to a
complementary lower bound in Corollary 8 on discrepancy for a general ini-
tial configuration. We adopt the convention, here and throughout, that

(a
b

)
is zero unless a and b are nonnegative integers and b ≤ a.

Lemma 6. There exist constants c1, c2, c3, and c4 so that the following
holds for even B > 0. Define

hB(j) = 2−s

((
s

(s + j − B)/2

)
−

(
s

(s + j)/2

))
.

Then, when B ≥ √
s,

(2)
c1√
s
≤ max

j
|hB(j)| ≤ c2√

s
,

and when B ≤ √
s,

c3B

s
≤ max

j
|hB(j)| ≤ c4B

s
;

these inequalities hold for all s ≥ 1 except for the left-hand inequality in (2),
which holds for all s ≥ S, some absolute constant. Furthermore, hB(j) is
bimodal on its support.

Proof of Theorem 2. Evidently,

ft+1 = Lft +
1
2
(Δ − Δ−1)χt.

Therefore, by the linearity of L and the fact that it commutes with Δ,

ft = Ltf0 +
1
2

t−1∑
s=0

(Δ − Δ−1)Lsχt−1−s.

Since gt = Ltg0 = Ltf0,

2|ft − gt| =

∣∣∣∣∣
t−1∑
s=0

(Δ − Δ−1)Lsχt−1−s

∣∣∣∣∣
≤ 2 +

t−1∑
s=1

∣∣∣(Δ − Δ−1)Lsχt−1−s

∣∣∣ .
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Consider a fixed s. Denote by zi the ith element of the support of χt−1−s,
with z0 its minimal element and zi+1 > zi for each i. Note that the zi all
have the same parity, by our assumption that the chips occupy only even or
only odd integers. Then

(Δ − Δ−1)Lsχt−1−s = (Δ − Δ−1)Ls
∑

i

(−1)iδzi

=
∑

i

(−1)i(Δ − Δ−1)Lsδzi

=
∑

i

(−1)i(Δ − Δ−1)LsΔziδ0

=
∑

i

(−1)iΔzi(Δ − Δ−1)Lsδ0.(3)

Note that

(Δ − Δ−1)Lsδ0(j) = 2−s

((
s

(s + j − 1)/2

)
−

(
s

(s + j + 1)/2

))
.

Therefore, by Lemma 6, (Δ−Δ−1)Lsδ0 is bimodal on its support. This means
that the alternating sum

∑
i(−1)iΔzi(Δ−Δ−1)Lsδ0 is bounded by at most

four times the maximum (in absolute value) of the quantity (Δ−Δ−1)Lsδ0,
since the zi all have the same parity. This maximum, by Lemma 6, is at
most 3/s. Therefore,

|ft − gt| ≤
1
2

(
12

t−1∑
s=1

1
s

+ 2

)

≤ 12 log t.

Proof of Theorem 3. Without loss of generality, I = {1, . . . , B}. We may
also assume that B is even. Evidently,

ft+1(I) =
(
Lft(I) +

1
2
(Δ − Δ−1)χt(I)

)
.

Therefore, by the linearity of L and the fact that it commutes with Δ,

ft(I) = Ltf0(I) +
1
2

t−1∑
s=0

(Δ − Δ−1)Lsχt−1−s(I).
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Since gt(I) = Ltg0(I) = Ltf0(I),

2|ft(I) − gt(I)| =

∣∣∣∣∣
t−1∑
s=0

(Δ − Δ−1)Lsχt−1−s(I)

∣∣∣∣∣
≤ 2 +

t−1∑
s=1

∣∣∣(Δ − Δ−1)Lsχt−1−s(I)
∣∣∣ .

Denote by zi the ith element of the support of χt−1−s, with z0 its minimal
element and zi+1 > zi for each i. Then

(Δ − Δ−1)Lsχt−1−s(I) = (Δ − Δ−1)Ls
∑

i

(−1)iδzi
(I)

=
∑

i

(−1)i(Δ − Δ−1)Lsδzi
(I)

=
∑

i

(−1)i(Δ − Δ−1)LsΔziδ0(I)

=
∑

i

(−1)iΔzi(Δ − Δ−1)Ls
B∑

k=1

Δkδ0(0)

=
∑

i

(−1)iΔzi

B∑
k=1

Δk(Δ − Δ−1)Lsδ0(0)

=
∑

i

(−1)iΔzi(ΔB+1 + ΔB − Δ − 1)Lsδ0(0)

=
∑

i

(−1)i(Δ + 1)(ΔB − 1)Lsδ0(−zi).(4)

Note that Lsδ0(j) = 2−s
( s
(s+j)/2

)
, so that

(ΔB − 1)Lsδ0(j) = 2−s

((
s

(s + j − B)/2

)
−

(
s

(s + j)/2

))
.

By Lemma 6, when B = Ω(
√

s), the maximum possible value of the right-
hand side is Θ(1/

√
s); when B = o(

√
s), it is of order

2−sB · max
j

((
s

(s + j − 1)/2

)
−

(
s

(s + j + 1)/2

))
= Θ(B/s).

Since an alternating sum over a bimodal function like (Δ + 1)(ΔB − 1)Lsδ0
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is bounded by four times the maximum absolute value of that function,

|ft(I) − gt(I)| ≤ c
t−1∑
s=1

min(
√

s,B)
s + 1

≤ c′ ·
{ √

t if B >
√

t/2
B log(t/B2) if B ≤

√
t/2,

for some absolute constants c and c′.

Proof of Lemma 6. It is easy to see that

h2(j) = 2−s j − 1
s + 1

(
s + 1

(s + j)/2

)
.

Therefore,
h2(j)

Δ2h2(j)
=

(j − 1)(s − j + 4)
(j − 3)(s + j)

,

which equals one when j2 − 4j − (s− 2) = 0, i.e., j = 2±
√

s + 2. Then the
maximum of |h2(j)| can be bounded by

2−s |jmax| − 1
s + 1

max
j

(
s + 1

(s + j)/2

)
≤ 1 +

√
s + 2

s + 1
· 1√

3(s + 1)/2

≤ 1 + 2
(s + 1)

√
2

<
3
s
.

Since hB(j) =
∑B/2−1

i=0 h2(j − 2i), it immediately follows that

max
j

|hB(j)| ≤ B

2
max

j
|h2(j)| <

3B

2s
,

so we may take c4 = 3/2. Now, it is clear that

max
j

|hB(j)| < max
j

2−s ·
(

s

(s + j)/2

)

<
1√
s
,

so we may take c2 = 1.
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On the other hand, by a version of the Local Central Limit Theorem
(see, e.g., [9, Thm. 1.2.1]), 2−s

( s
(s+j)/2

)
=

√
2
πs · e−j2/2s + O(s−3/2), so that

we have

hB(j) =
√

2
πs

· e−(j−B)2/2s −
√

2
πs

· e−j2/2s + O(s−3/2).

Hence, when B ≥ √
s,

max
j

|hB(j)| ≥ |hB(0)|

=

∣∣∣∣∣
√

2
πs

· e−B2/2s −
√

2
πs

+ O(s−3/2)

∣∣∣∣∣
≥

√
2
πs

∣∣∣e−1/2 − 1
∣∣∣ + O(s−3/2)

>
1 + o(1)

4
√

s
,

so we may take c1 = 1/4 and S sufficiently large. Note that the error term
O(s−3/2) is uniform in j and therefore the o(1) does not depend on B.

When B <
√

s,

2shB(j) =

(
s

(s + j − B)/2

)
−

(
s

(s + j)/2

)

=

(
s

(s + j)/2

) ⎛
⎝B/2∏

i=1

s + j − B + 2i

s − j + 2i
− 1

⎞
⎠

=

(
s

(s + j)/2

) ⎛
⎝B/2∏

i=1

(
1 +

2j − B

s − j + 2i

)
− 1

⎞
⎠ ,

so we have

max
j

hB(j) ≥ hB(
√

s)

= 2−s

(
s

(s +
√

s)/2

) ⎛
⎝B/2∏

i=1

(
1 +

2
√

s − B

s −√
s + 2i

)
− 1

⎞
⎠

≥ 2−s

(
s

(s +
√

s)/2

) ⎛
⎝(

1 +
√

s

s

)B/2

− 1

⎞
⎠
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≥ c0√
s
· B

2
√

s
=

c0B

2s
,

so we can take c3 = c0/2.
Finally, we have

2s(hB(j − 2) − hB(j)) =

(
s

(s + j − B)/2 − 1

)
−

(
s

(s + j − B)/2

)

−
(

s

(s + j)/2 − 1

)
+

(
s

(s + j)/2

)

= 2s(h2(j − B) − h2(j))

=
j − B − 1

s + 1

(
s + 1

(s + j − B)/2

)
− j − 1

s + 1

(
s + 1

(s + j)/2

)
.

This quantity is positive when

(j − B − 1)

(
s + 1

(s + j − B)/2

)
> (j − 1)

(
s + 1

(s + j)/2

)
,

i.e.,

(j − B − 1)
B/2∏
i=1

(s + j − 2i + 2) > (j − 1)
B/2∏
i=1

(s − j + 2i + 2).

(We may assume that each term of both products is nonnegative.) When
1 ≤ j ≤ B + 1, this inequality cannot be satisfied, since the left-hand side
is nonpositive and the right-hand side is nonnegative. When j > B + 1, the
inequality is the same as

(
1 − B

j − 1

) B/2∏
i=1

(s + j − 2i + 2) >

B/2∏
i=1

(s − j + 2i + 2).

The left-hand side is nondecreasing in j and the right-hand side is nonin-
creasing in j, so hB(j − 2) − hB(j) has at most one change of sign in this
regime. When j < 1, we have the condition

B/2∏
i=1

(s + j − 2i + 2) <

(
1 +

B

j − B − 1

) B/2∏
i=1

(s − j + 2i + 2),
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where again the left-hand side is nondecreasing in j and the right-hand side
is nonincreasing in j, so hB(j − 2) − hB(j) has at most one more change of
sign. Therefore, hB(j) is bimodal on its support.

Lemma 7. For each function g : {0, . . . , N − 1} × {0, . . . , T − 1} → {0, 1},
there exists a chip-assignment function f0 : Z → N so that, for all 0 ≤ n < N
and 0 ≤ t < T ,

ft(n) ≡ g(n, t) (mod 2),

where ft is the state of the liar machine at time t if f0 is its initial state
(i.e., at time t = 0).

Proof. We proceed by induction. For T = 1, the result is immediate: we
simply set f0 ≡ g(·, 0). Suppose that the claim holds for T , i.e., there exists
an f0 so that ft agrees with g(·, t) in parity for each t ∈ {0, . . . , T − 1}. Now
we perform a second induction (on n) to show the following claim:

Claim. For each n ∈ {0, . . . , N−1}, there exists a chip-assignment function
f

(n)
0 : Z → N so that, for all pairs (n′, t) with 0 ≤ n′ < N and 0 ≤ t < T or

0 ≤ n′ < n and t = T ,

f
(n)
t (n′) ≡ g(n′, t) (mod 2),

where f
(n)
t is the state of the liar machine at time t if f

(n)
0 is its initial state.

Again, the claim is immediate for n = 0 (given the inductive hypothesis),
since we can just let f

(0)
0 = f0 from the top-level induction. Suppose it holds

for n. If f
(n)
T (n) ≡ g(n, T ) (mod 2), then setting f

(n+1)
0 = f

(n)
0 clearly suffices

to prove the claim for n + 1. If, however, f
(n)
T (n) �≡ g(n, T ) (mod 2), then

define f
(n+1)
0 by

f
(n+1)
0 (k) =

{
f

(n)
0 (k) if k �= n + T

f
(n)
0 (k) + 2T if k = n + T.

Then f
(n+1)
t (k) ≡ f

(n)
t (k) (mod 2) for t < T and 0 ≤ k < N , since the

“new” 2T chips placed at site n+T at time t = 0 are split exactly in half at
each time t < T , so that 2|2T−t|f (n+1)

t (k) − f
(n)
t (k) for all t < T . For t = T

and k < n, f
(n+1)
t (k) = f

(n)
t (k), since the “new” chips can only occupy sites

in [n + T − t, n + T + t] at time t, which for T = t is the interval [n, n + 2T ]
not containing k. Finally, there is one chip added to site n at time T , i.e.,
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f
(n+1)
T (n) = f

(n)
T (n)+1, because exactly one of the 2T “new” chips makes it

to site n after T steps. This means, in particular, that f
(n+1)
T (n) ≡ g(n, T )

(mod 2), completing the induction.

This “parity forcing” lemma implies that it is possible to set the func-
tion χt(j) for any finite space-time interval to whatever we wish. We may
now conclude that Theorems 2 and 3 are tight up to asymptotic order of
magnitude.

Corollary 8. Fix T , a nonnegative integer, and N , an integer. There exists
an f0 : Z → N so that, letting g0 ≡ f0, and defining ft and gt according to
the evolution of the liar machine and linear machine, respectively, we have

|fT (N) − gT (N)| = Ω(log T ).

Fix an interval I of any given length B. Then there exists an f ′
0 : Z → N so

that, letting g′0 ≡ f ′
0, and defining f ′

t and g′t according to the evolution of the
liar machine and linear machine, respectively, we have

|f ′
T (I) − g′T (I)| = Ω

({ √
T if B >

√
T/2

B log(T/B2) if B ≤
√

T/2

)
.

Proof. The same argument applies for both claims: we can set the number of
chips at each location and time so that the sums in the proof of Theorems 2
and 3 are maximized, in view of the lower bounds given by Lemma 6. In
the first case, let χ : {N − T, . . . , N + T} × {0, . . . , T − 1} → {−1, 0, 1}
be chosen to maximize the sum (3); in the second case, let χ : {min(I) −
T, . . . ,max(I)+T}×{0, . . . , T −1} → {−1, 0, 1} be chosen to maximize the
sum (4). Note that this requires that χ alternate in sign on the support of
its first argument. Let mt be the minimum element of the support of χ(·, t).
Define

g(k, t) =

⎧⎪⎨
⎪⎩

1−χ(mt,t)
2 if k = N − T − 1

|χ(k, t)| if N − T ≤ k ≤ N + T
0 otherwise,

in the first case, or else

g(k, t) =

⎧⎪⎨
⎪⎩

1−χ(mt,t)
2 if k = min(I) − T − 1

|χ(k, t)| if min(I) − T ≤ k ≤ max(I) + T
0 otherwise,

in the second case. Then, we may obtain the desired f0 by applying the
preceding lemma to g. Since the (possible) chip at k = N − T − 1 or k =
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min(I) − T − 1 can never even reach the site N or any of I before time
T , the relevant sums are unaffected by this small modification. However,
the presence of such a chip when appropriate ensures that χt(j) = χ(j, t)
for each (j, t) ∈ {N − T, . . . , N + T} × {0, . . . , T − 1} or (j, t) ∈ {min(I) −
T, . . . ,max(I) + T} × {0, . . . , T − 1} (where χt(j) is as defined in (1)).

4. Liar machine distributional bound

We need several technical facts to obtain lower bounds for the configuration
of chips in the time-evolution of the liar machine. Lemma 9 shows that the
cumulative distribution of the binomial random variable drops off sharply
just below where it is evaluated. Lemma 10 shows that the ratio of the
evaluations at the same relative position of the cumulative distributions of
binomial random variables with a similar number of trials is not too small.
This is needed to bound the left tail of the liar machine from below. Because
for Theorem 26 we will run n steps of the liar machine in two stages of
n1 and n2 steps, respectively, terms of a hypergeometric distribution arise.
Theorem 12 quotes a result on the closeness of the median to the mean
of a generalized hypergeometric distribution from [11], specialized to the
hypergeometric distribution in Corollary 13. Then in Proposition 14 we show
that for r sufficiently close to but below the mean μ, asymptotically almost
half of the hypergeometric distribution lies below r. This allows transferring
from a partial sum of hypergeometric distributions in n1 and n2 to that of
the binomial distribution in n, in Proposition 15. This last result is critical
for Theorem 26 in negotiating a lower bound on the number of chips between
two stages in the time-evolution of the liar machine, so that at least one chip
survives in a prescribed interval after n rounds.

Throughout the section, we use the following notation. Let n → ∞, fix
f ∈ (0, 1/2), and set

n1 = n −
⌊

4
(1 − 2f)2

log log n

⌋

and n2 = n − n1. The numbers of rounds in the first and second stages of
the n-round liar machine, are n1 and n2, respectively. Define F = �fn	,
F1 = �fn1	, and F2 = F − F1.

Lemma 9. For any integer sequence n3 = n3(n) → ∞, there is a function
ε(n, f) with limn→∞ ε(n, f) = 0 so that

F∑
i=F−n3

(n
i

)
( n
≤F

) ≥ 1 − ε(n, f).
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Proof. Note that ( n
F−t

)
(n
F

) =
F !(n − F )!

(F − t)!(n − F + t)!

≤ F t

(n − F + 1)t

≤ (fn)t

((1 − f)n)t
=

(
f

1 − f

)t

.

Therefore,

F−n3∑
i=0

(
n

i

)
≤

F−n3∑
i=0

(
n

F

) (
f

1 − f

)F−i

≤
(

n

F

) ∞∑
j=n3

(
f

1 − f

)j

≤
(

n

≤ F

) (
f

1 − f

)n3

· 1 − f

1 − 2f
.

It follows that

F∑
i=F−n3

(n
i

)
( n
≤F

) = 1 −
F−n3−1∑

i=0

(n
i

)
( n
≤F

)
≥ 1 −

(
f

1 − f

)n3

· 1 − f

1 − 2f
,

which clearly tends to 1 as n → ∞, since f < 1/2 implies f/(1−f) < 1.

Lemma 10. There exists a function δ(n, f) with limn→∞ δ(n, f) = 0 so that

2n( n
≤F

) ·
(n1

F1

)
2n1

≥ (log n)2−δ(n,f).

Proof. First of all, note that

2n( n
≤F

) ·
(n1

F1

)
2n1

= 2n−n1

(n1

F1

)
(n
F

) ·
(n
F

)
( n
≤F

) .

Denote by A, B, and C the three factors on the right-hand side. Since

n − n1 =
⌊

4
(1 − 2f)2

log log n

⌋
≥ 4

(1 − 2f)2
log log n − 1,
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we have

A ≥ 1
2
(log n)4 log 2/(1−2f)2 .

Then, applying the estimates from the proof of Lemma 9,

(
n

≤ F

)
=

(
n

F

)
F∑

t=0

( n
F−t

)
(n
F

)
≤

(
n

F

) ∞∑
t=0

(
f

1 − f

)t

=

(
n

F

)
· 1 − f

1 − 2f
,

so that C ≥ 1−2f
1−f . Now, we use the fact that

( n
αn

)
= 2H(α)n+O(1)/

√
n, where

H(x) = −x log2 x − (1 − x) log2(1 − x) is the entropy function. We may
therefore write B as (n1

F1

)
(n
F

) = 2H(f)(n1−n)+O(1) ·
√

n√
n1

≥ β

(
2

−4H(f)
(1−2f)2

log log n
)

= β(log n)−
4H(f) log 2
(1−2f)2 ,

where β > 0 is an absolute constant. Combining these bounds, we have

ABC ≥ β

2
1 − 2f

1 − f
(log n)

4 log 2
(1−2f)2

(1−H(f))
.

It is easy to check that 4 log 2
(1−2f)2 (1−H(f)) > 2 for all f ∈ (0, 1/2), from which

the desired bound follows.

Lemma 11.

log

(
n

≤ �fn	

)
= Θ(n),

where the implicit constant depends on f .

Proof. This follows immediately from the estimate
(

n

�fn	

)
= 2H(f)n+O(log n)

as in the proof of Lemma 10.

The following result appears in [11].
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Theorem 12. Let an urn contain R red balls and B black balls. Suppose each
red ball has weight w◦ and each black has weight w•. Suppose that the balls
are selected one-by-one without replacement where each as yet unselected
ball is given a probability of being selected at the next round that equals its
current fraction of the total weight of all unselected balls. Suppose r and b
satisfy r = R(1 − e−w◦ρ) and b = B(1 − e−w•ρ), for some fixed ρ > 0. Let
r + b balls be drawn from the urn as prescribed. Let X◦ be the number of
red balls selected by this random process, and let X• be the number of black,
so that X◦ + X• = r + b. Then r′ = �r� or �r	 and b′ = �b� or �b	 are the
medians of X◦ and X•, respectively.

By taking w◦ = w•, i.e., r/b = R/B, this result gives the median of the
hypergeometric distribution. If we let r + b = T be the total number of balls
drawn, then this gives b = BT/(R + B), i.e., the mean of X◦. Hence, we
have the following Corollary.

Corollary 13. If μ is the mean and m the median of a hypergeometric
distribution, then m = �μ� or m = �μ	.
Proposition 14. Let 0 ≤ r ≤ fn2. Suppose that fn1 + r elements are
drawn uniformly at random (without replacement) from a set S = S1 ·∪S2

with |S1| = n1, |S2| = n2, and n = n1 + n2. Let X denote the number of
such elements in S2. If n1, n2 → ∞ and n2 = o(n), there is some function
h : N → R with h = ω(1) so that, for fn2 ≥ r ≥ fn2 − h(n), we have

Pr (X ≤ r) = 1/2 − o(1).

Proof. X follows a hypergeometric distribution with parameters n = n1+n2,
n2, and R = fn1 +r. Its expectation is therefore given by μ = n2

n (fn1 +r) =
n2R/n. Writing p(k) for the probability that X = k, note that

p(k) =

(n2

k

)( n1

R−k

)
(n
R

) .

When k = μ + Δ, we have

p(k)
p(k − 1)

=

(n2

k

)(n−n2

R−k

)
( n2

k−1

)( n−n2

R−k+1

)
=

(k − 1)!(n2 − k + 1)!(R − k + 1)!(n − n2 − R + k − 1)!
k!(n2 − k)!(R − k)!(n − n2 − R + k)!

=
(n2 − k + 1)(R − k + 1)

k(n − n2 − R + k)
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=
(n2 − Rn2

n − Δ + 1)(R − Rn2
n − Δ + 1)

(Rn2
n + Δ)(n − n2 − R + Rn2

n + Δ)
.

Then, since R = fn1 + r = fn1 + fn2 − o(n) = fn(1 + o(1)) and n2 = o(n),

∣∣∣∣ p(k)
p(k − 1)

− 1
∣∣∣∣ =

∣∣∣∣∣ nR − 2n2R − n2Δ + 2nΔ + nn2 + n

(Rn2 + Δn)(n − n2 − R + Rn2/n + Δ)

∣∣∣∣∣
=

∣∣∣∣∣ fn2(1 + o(1)) − n2Δ(1 + o(1))
n(fn2(1 + o(1)) + Δ)(n(1 − f + o(1)) + Δ)

∣∣∣∣∣
= O

(
n(1 + Δ)

(n2 + Δ)(n + Δ)

)
= o(1),

as long as Δ = o(n2). Therefore, as n → ∞, the number of k’s so that p(k)
is within 1 + o(1) of p(μ) grows without bound. This implies that p(k) =
O(1/g(n)) for some function g : N → R with g = ω(1) and all k. If we let
h(n) =

√
g(n), the total probability that r ≤ X ≤ μ is O(1/

√
g(n)) = o(1).

Since, by Corollary 13, �μ� or �μ	 is the median m of the hypergeometric
distribution, this implies that Pr(X ≤ r) ≥ 1/2 + o(1). On the other hand,
since μ ≥ r,

Pr(X ≤ r) ≤ Pr(X ≤ μ) = Pr(X ≤ m) + o(1) = 1/2 + o(1).

Proposition 15. For n tending to infinity and a fixed f ∈ (0, 1/2),

F∑
k=F1

k∑
s=F1

(
n1

s

)(
n2

k − s

)
=

(
1
2
− o(1)

) F∑
k=0

(
n

k

)

Proof. Let n3 = �h(n)/2�, where n = n1 +n2 and h(n) is the function given
by Proposition 14. Then we have

∑k
s=F1

(n1

s

)( n2

k−s

)
(n
k

) =
1
2
− o(1),

for k ∈ [F −n3, F ] since the left-hand quantity represents the probability, if
a set of k = F1+r elements is drawn uniformly at random, F2−n3 ≤ r ≤ F2,
that at most r of the points will be taken from the last n2 of all n = n1 +n2
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elements. Therefore, by the above and then by Lemma 9,

F∑
k=F1

k∑
s=F1

(
n1

s

)(
n2

k − s

)
=

F∑
k=F−n3

k∑
s=F1

(
n1

s

)(
n2

k − s

)

+
F−n3−1∑

k=F1

k∑
s=F1

(
n1

s

)(
n2

k − s

)

=
(

1
2
− o(1)

) fn∑
k=F−n3

(
n

k

)

=
(

1
2
− o(1)

)
(1 − o(1))

F∑
k=0

(
n

k

)

=
(

1
2
− o(1)

) F∑
k=0

(
n

k

)
.

5. Reduction from liar machine to the pathological liar game

We now consider the alternating-question strategy for Paul, and show in
Theorem 24 that Carole has no better response strategy than always assign-
ing a lie to each of the odd-numbered chips. The time-evolution of the chips
under these question-and-response strategies is equivalent to that of the liar
machine, as described in the proof of Corollary 25. We then combine results
of the previous sections to prove Theorem 4 on parameters for which Paul
can win the ((M, 0, . . . , 0), n, e)∗2-game.

Definition 16 (Position vector). Given the state vector x = (x(0), . . . , x(e))
of a liar game with M elements, the position vector u = u(x) = (u(1), u(2),
. . . , u(M)) corresponding to x is defined by

u(j) := min

{
k :

k∑
i=0

x(i) ≥ j

}
.

Example 17. The position vector of a state vector essentially labels the M
elements tracked by the state vector from left to right, and records as u(j)
the number of lies associated with the jth element.

If x = (2, 0, 1, 3, 0), then
u = u(x) = (0, 0, 2, 3, 3, 3).
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Position vectors are monotonic increasing, and provided the maximum
number of lies is available (from context, for example), the state vector
can be recovered from the position vector. We analyze the round-by-round
evolution of state vectors by comparing their corresponding position vectors
under the weak majorization partial order, presented for analysis of the
original liar game by [12].

Definition 18 (Partial order on position vectors). Let M ∈ Z
+, and let

U = {(u(1), . . . , u(M)) ∈ N
M : u(1) ≤ · · · ≤ u(M)}

be the set of position vectors with M entries. For u, v ∈ U , we define the
partial order u ≤ v provided for all 1 ≤ k ≤ M ,

∑k
j=1 u(j) ≤ ∑k

j=1 v(j).

Example 19. The partial order on position vectors gives (0, 2, 2)≤(1, 1, 2)≤
(1, 2, 2) ≤ (2, 2, 2).

In order to analyze position vectors within the partial order, it will be
convenient to continue tracking disqualified elements, with position at least
e+1, in the position vector. We do this with the understanding that disqual-
ified elements are dropped when converting back to the state vector. The
alternating question for Paul puts all elements tracked by an even (odd)
index in the position vector u into A0 (A1). The number of lies associated
with each element is easily read from the position vector. Carole’s response
either assigns an additional lie to the elements indexed by the odd positions,
to obtain the new position vector odd(u), or assigns an additional lie to the
elements indexed by the even positions, to obtain the new position vector
even(u).

Definition 20 (odd(u) and even(u)). Given the position vector u =
(u(1), . . . , u(M)), define the position vector odd(u) to be the result of sort-
ing (u(1)+1, u(2), u(3)+1, u(4), . . . , u(M)+ (M mod 2)) in nondecreasing
order, and define the position vector even(u) to be the result of sorting
(u(1), u(2)+1, u(3), u(4)+1, . . . , u(M)+ (M +1 mod 2)) in nondecreasing
order.

The following two properties appear in the proof of Lemma 2 of [12].
There is a minor error in the proof of the second property which we describe
and correct after stating the lemma.

Lemma 21. Let u and v be position vectors of liar games with the same
number of elements on the binary symmetric channel. Then
(1) even(u) ≤ odd(u), and
(2) If u ≤ v, then even(u) ≤ even(v).
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The proof of (1) is a straightforward verification. We defer the proof of
(2) until after describing how to transform u into v in manageable steps.
Close inspection will reveal that the proof in [12] does not find a trans-
formation from u = (0, 1, 2) to v = (1, 1, 1); a successful procedure is as
follows.

Algorithm 22 (Position vector transformation).
Input: Position vectors u = (u(1), . . . , u(M)) and v = (v(1), . . . , v(M)) with
u < v.
Output: A position vector u′ with u < u′ ≤ v.
0. Initialize u′ = u.
1. If

∑M
i=1 u(i) <

∑M
i=1 v(i), then set u′(M) = u(M)+

∑M
i=1 v(i)−∑M

i=1 u(i).
2. Otherwise, if

∑M
i=1 u(i) =

∑M
i=1 v(i):

2a. Maximize j such that u(j) < v(j).
2b. Minimize k > j such that u(k) > v(k).
2c. Set u′(j) = u(j) + 1 and u′(k) = u(k) − 1.

(By design of j and k, u(j) < v(j), u(j + 1) = v(j + 1), . . . , u(k − 1) =
v(k − 1), u(k) > v(k). Furthermore, u′ is already in nondecreasing order.)

Proof. The algorithm is easy to verify for u′ produced by Step 1. Suppose
Step 2 is executed. Step 2a certainly produces a maximum j: u < v implies
that

∑�
i=1 u(i) <

∑�
i=1 v(i) for some �, and so at least one choice for j with

u(j) < v(j) exists. Step 2b produces a minimum k: using the j from Step
2a and combining the inequalities

∑j−1
i=1 u(i) ≤ ∑j−1

i=1 v(i), u(j) < v(j), and∑M
i=1 u(i) =

∑M
i=1 v(i) yields

∑M
i=j+1 u(i) >

∑M
i=j+1 v(i); and so there is at

least one choice of k for which u(k) > v(k). For all indices i strictly between
j and k, u(i) < v(i) is impossible by maximality of j, and u(i) > v(i) is
impossible by minimality of k. The middle entries of u and v are as follows:

(5) u(j) < v(j), u(j + 1) = v(j + 1), . . . , u(k − 1) = v(k − 1), u(k) > v(k).

It remains to verify that u < u′ ≤ v for u′ constructed in Step 2c. Already u′

is in nondecreasing order, by definition of u′, inspection of (5), and noting
that u(j) < u′(j) ≤ v(j) and v(k) ≤ u′(k) < u(k). Furthermore, for 1 ≤ � ≤
j − 1,

∑�
i=1 u(i) =

∑�
i=1 u′(i) ≤ ∑�

i=1 v(i). With u(j) + 1 = u′(j) ≤ v(j), we
have 1 +

∑j
i=1 u(i) =

∑j
i=1 u′(i) ≤ ∑j

i=1 v(i). Since u(i) = u′(i) = v(i) for
all j + 1 ≤ i ≤ k − 1, we have 1 +

∑�
i=1 u(i) =

∑�
i=1 u′(i) ≤ ∑�

i=1 v(i) for
all j + 1 ≤ � ≤ k − 1. With v(k) ≤ u′(k) = u(k) − 1, we have

∑k
i=1 u(i) =∑k

i=1 u′(i) ≤ ∑k
i=1 v(i). Since u ≤ v and u′(i) = u(i) for i > k,

∑�
i=1 u(i) =∑�

i=1 u′(i) ≤ ∑�
i=1 v(i) for k + 1 ≤ � ≤ M .
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Proof of Lemma 21 Part (2). Iterative application of Algorithm 22 produces
a sequence of position vectors u = u0 < u1 < · · · < ut = v. The sequence
terminates because there are a bounded number of position vectors satis-
fying the precondition

∑M
i=1 u(i) =

∑M
i=1 v(i) to execute Step 2 of the al-

gorithm. Now let 0 ≤ s < t and consider us < us+1. If us+1 was created
by applying Step 1 of the algorithm to us (thereby forcing s = 0), then
even(us) ≤ even(us+1) is easy to verify.

Otherwise Step 2 created us+1 from us. Inspection of (5) reveals that
us(j) < us+1(j) = us(j) + 1 ≤ us+1(k) = us(k) − 1 < us(k). Ignoring for a
moment the jth and kth entries of us and us+1, and applying even to all
other entries and then resorting, we have the following identical structure
for even(us) and even(us+1):

· · · ≤ us(j) + χ2|j ≥ us(j) + 1 + χ2|j · · · ≤ us(k) − 1 + χ2|k ≥ us(k) + χ2|k · · · .

Here, χ2|j (χ2|k) equals 1 if 2 divides j (k) and equals 0 otherwise; the
vertical separators denote that smaller entries lie to the left and larger to
the right. Now we can see that even(us) is the same as inserting us(j)+χ2|j
and us(k) + χ2|k from left to right at the two separators without need for
resorting. Similarly, even(us+1) is the same as inserting us(j) + 1 + χ2|j
and us(k) − 1 + χ2|k from left to right at the two separators without need
for resorting. With this observation it is simple to verify that even(us) <
even(us+1).

Since s was arbitrary in the preceding argument, we have even(u) =
even(u0) < even(u1) < · · · < even(ut) = even(v), and so combined
with the case t = 0 for which even(u) = even(v), Part (2) of the lemma
holds.

Corollary 23. Let u and v be position vectors of liar games with the
same number of elements on the binary symmetric channel. If u ≤ v, then
odd(u) ≤ odd(v).

Proof. We use a trick to piggyback on Lemma 21 Part (2). Set u′ = (−2, u(1),
. . . , u(M)) and v′ = (−2, v(1), . . . , v(M) and observe that u ≤ v implies u′ ≤
v′. The first entry of u′ and of v′ is sufficiently separated, and so even(u′) =
(−2,odd(u)) and even(v′) = (−2,odd(v)). Applying Lemma 21 to u′ and
v′ yields even(u′) ≤ odd(v′). As even(u′)(1) = even(v′)(1) = −2, this
forces odd(u) ≤ odd(v).

Next we show that when Paul’s strategy is to always ask the alternating
question, Carole’s best possible response strategy in the pathological liar
game is to move the odd-numbered elements. This will provide an upper
bound on the minimum number of elements required for Paul to have a
winning strategy in the (x, n, e)∗2-game.
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Theorem 24. Let x be an initial state vector, and n, e ∈ N. Assume that
Paul always asks the alternating question. In the (x, n, e)∗2-game, Carole’s
best strategy is to move the odd-numbered elements.

Proof. Let us be the position vector after s rounds of the game, where u0

is the position vector corresponding to the initial state vector x. Carole
wins the (x, n, e)∗2-game iff un(1) > e. Consider the 2n leaves of the strategy
tree of the game determined by every possible length n sequence of choices
for Carole to select odd(us) or even(us) to complete round s + 1. Thus
odd

n(u0) is the leaf corresponding to Carole always moving the odd ele-
ments. It suffices to show that odd

n(u0) ≥ v for all other leaves v of the
strategy tree. We prove this by induction on n. The base case n = 1 is
provided by Lemma 21 Part (1). Now let 0 < s < n, assume that v is a posi-
tion vector after s rounds, and assume that v ≤ odd

s(u0). By Corollary 23,
odd(v) ≤ odd(odd

s(u0)) = odd
s+1(u0), and by Lemma 21 Part (1) and

transitivity, even(v) ≤ odd
s+1(v). All position vectors after s + 1 rounds

are obtained by applying odd or even to a position vector after s rounds,
and so the induction succeeds.

By a simple transformation, Carole’s odd response strategy is equivalent
to the time-evolution of the liar machine.

Corollary 25. Let the liar machine have initial configuration f0 with M
chips at the origin and none elsewhere. If

∑−n+2e
i=−n fn(i) ≥ 1, then Paul can

win the ((M, 0, . . . , 0), n, e)∗2-game.

Proof. Let us and xs be the position and state vectors, respectively at the
end of round s, of the ((M, 0, . . . , 0), n, e)∗2-game in which Paul always asks
the alternating question, and Carole always chooses us+1 = odd(us). By
Theorem 24, we need only transform odd

s(u0) into fs, where u0 is the
position vector corresponding to the initial state vector (M, 0, . . . , 0). By
definition of odd(u) and of one step of the liar machine, this is accomplished
by observing that xs(i) = fs(−s + 2i) for all 0 ≤ i ≤ s. Consequently
odd

n(u0)(1) ≤ e iff
∑e

i=0 fn(−n + 2i) ≥ 1.

The converse is not true. For some games the alternating question strat-
egy is not optimal, so that Paul has a winning strategy, but odd

n(u0(1)) > e.
For example, Paul can win the ((1, 11), 4, 1)∗2-game (as the reader can read-
ily verify – the first question is (1, 4)), but the progression of configurations
given by the liar machine is (1, 11) → (0, 7) → (0, 3) → (0, 1) → (0, 0).

We again use the following notation. Let n → ∞, fix f ∈ (0, 1/2), and set
n1 = n−

⌊
4

(1−2f)2 log log n
⌋

and n2 = n− n1. Define F = �fn	, F1 = �fn1	,
and F2 = F − F1.
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Theorem 26. Let n,M ∈ Z
+. Let f0 : Z → N be the initial configuration

of the liar machine defined by f0(0) = M , and f0(j) = 0 otherwise. For n
sufficiently large, if

M ≥ 2n( n
≤F

)(2 + o(1))c′
√

n2,

where c′ is the constant from Theorem 3, then
∑F

i=F1
fn(−n + 2i) ≥ 1.

Proof. Set g0 = f0 and let gs be the chip distribution in the linear machine
after s rounds. Then for F1 ≤ j ≤ F , the number of chips at position
−n1 + 2j in the linear machine after n1 rounds is

(6) gn1(−n1 + 2j) =

(n1

j

)
2n1

2n( n
≤F

)(2 + o(1))c′
√

n2.

Since F < n1/2 for n sufficiently large, the minimum occurs at j = F1, and
is ω(log n) by Lemma 10. Applying Theorem 2, for F1 ≤ j ≤ F we have

(7) fn1(−n1 + 2j) ≥
(n1

j

)
2n1

2n( n
≤F

)(2 + o(1))c′
√

n2.

Now for F1 ≤ j ≤ F , define hn1(−n1 + 2j) = fn1(−n1 + 2j), and define
hn1(j) = 0 elsewhere. Thus hn1 is obtained from fn1 by removing chips
outside of the interval [−n1 + 2F1,−n1 + 2F ]. We run the linear machine
with initial state hn1 for n2 rounds to produce hn, and obtain for F1 ≤ i ≤ F
that

hn(−n + 2i) ≥
i∑

j=F1

(n1

j

)
2n1

2n( n
≤F

)(2 + o(1))c′
√

n2

( n2

i−j

)
2n2

,

as for i and j fixed, the contribution to hn(−n + 2i) from hn1(−n1 + 2j) is
hn1(−n1 + 2j)

( n2

i−j

)
/2n2 . Summing hn(−n + 2i) over i and applying Propo-

sition 15,
F∑

i=F1

hn(−n + 2i) ≥ c′
√

n2(1 + o(1)).

Noting that
√

n2 = o(F − F1) and applying Theorem 3 to hn1 , we obtain∑F
i=F1

fn(−n + 2i) ≥ 1 as desired.

Proof of Theorem 4. Corollary 25 reduces the ((M, 0, . . . , 0), n, e)∗2-game to
the liar machine with winning condition

∑−n+2e
i=−n fn(i) ≥ 1, which Theo-

rem 26 shows is satisfied for the given form of M .
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6. Concluding remarks and acknowledgements

The major open question is whether the time-evolution of the liar machine
with M elements at the origin and zero elsewhere can be given in closed form,
or at least whether the leftmost chip can be tracked more tightly. Either case
would yield an improvement by decreasing the minimum M for which Paul
can win the ((M, 0, . . . , 0), n, e)∗2-game. We suppose that the best hope is for
the optimal M to be asymptotically a constant multiple above the sphere
bound. Similarly, by the reduction in [12] from the ((M, 0, . . . , 0), n, e)2-
game (original liar game) to the linear machine, improved tracking of the
leftmost chip could provide an alternative proof of Theorem 3 of [14], which
is equivalent to a lower bound on M for which Paul can win the original
liar game. Optimistically, the bound in [14] on M might be improved to a
constant multiple below the sphere bound.

We thank Joel Spencer for discussions that helped to crystallize the ideas
for this paper—with the first author during an extended collaboration on
deterministic random walks, and with the second author at a conference in
2004 on alternate viewpoints for the liar game. We also thank the anonymous
referee for various helpful comments.
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