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Dedicated to the 60th birthday of Joel Spencer

We take a quantitative approach based on probability theory to
several number theoretic problems, which all have the common
form of counting lattice points in some nice domain. It is well-
known that the number of solutions to Pell equations can be counted
with a bounded error term. We relax Pell equations to (inhomo-
geneous) Pell inequalities and study the corresponding question.
A naive area principle (=the number of lattice points in and the
area of nice domains are close) guides the intuition for the answer,
but the intuition is sometimes correct, sometimes not. On the one
hand, the intuition fails for continuum many translated copies of
the corresponding hyperbolic domain (Theorem 1). On the other
hand, the intuition is correct for almost all translated copies (The-
orems 2 and 3).

1. From Pell’s equation to the Area Principle

1.1.

It is hard to overestimate the importance of the book Probabilistic Methods
in Combinatorics by the late Paul Erdős and Joel Spencer, published in
1974. This little book is only about 100 pages long, and was published by
a minor publisher (Akadémiai Kiadó, Budapest); nevertheless, it played an
absolutely crucial role in popularizing the so-called “probabilistic method”,
which since became (arguably) the single most important method in discrete
mathematics. (To convince the skeptics, it suffices to have a quick look at
the wide range of applications of the method in very different areas from,
say, geometry to computer science; see e.g. the later book The Probabilistic
Method by N. Alon and Spencer.)

This paper is very much in the spirit of the Erdős–Spencer book. It
demonstrates the power of the probabilistic method (Markov chains, second
moment arguments, etc.) in a field—lattice point counting, (combinatorial)
number theory—where these ideas were hardly used before, and the method
quickly leads to elegant new results.
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Our starting point is the famous Pell’s equation. As an illustration, con-
sider for example the special case x2 − 2y2 = ±1. It is well-known that this
equation has infinitely many integral solutions; in fact, the set of all integral
solutions (xk, yk) ∈ Z

2 forms a cyclic group generated by the least positive
solution:

xk + yk

√
2 = ±(1 +

√
2)k, k ∈ Z.

All integral solutions of x2 − 2y2 = 1 are given by

xk + yk

√
2 = ±(1 +

√
2)2k,

and all of x2 − 2y2 = −1 by

xk + yk

√
2 = ±(1 +

√
2)2k+1.

In particular, all positive integer solutions of x2 − 2y2 = 1 are given by

xk + yk

√
2 = (1 +

√
2)2k = (3 + 2

√
2)k, k = 1, 2, 3, . . .

Taking the algebraic conjugate xk − yk

√
2 = (3 − 2

√
2)k, and adding/sub-

tracting these two equations together, we obtain the explicit formula

(1.1)

xk =
(3 + 2

√
2)k+ (3 − 2

√
2)k

2
and yk = (3 − 2

√
2)k − (3 − 2

√
2)k2

√
2.

Since 0 < 3 − 2
√

2 < 1 (in fact, 0 < 3 − 2
√

2 < 1/5), we have

xk = the nearest integer to
1

2(3 + 2
√

2)k

and

yk = the nearest integer to
1

2
√

2
(3 + 2

√
2)k.

If k is large, the error is very tiny. For example, the 10th solution of x2−2y2 =
1 in positive integers is the pair

x10 = 22, 619, 537 and y10 = 15, 994, 428.

On the other hand,

1
2
(3 + 2

√
2)10 = 22, 619, 536.99999998895 . . .
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and
1

2
√

2
(3 + 2

√
2)10 = 15, 994, 428.000000007815 . . . .

Let F (N) = F (
√

2; 1;N) denote the number of positive integer solutions of
the Pell equation x2 − 2y2 = 1 up to N in the sense x ≥ 1 and 1 ≤ y ≤ N .
(For the simplicity of notation it is convenient to focus on y instead of x.)
We have

k ≤ F (N) ⇐⇒ (3 + 2
√

2)k − (3 − 2
√

2)k

2
√

2
≤ N,

which implies the asymptotic formula

(1.2) F (N) = F (
√

2; 1;N) =
log N

log(3 + 2
√

2)
+ O(1).

Formula (1.2) says that the counting function F (N) = F (
√

2; 1;N) has an
extremely predictable/deterministic behavior: it is const · log N plus some
negligible bounded fluctuation.

Note that (1.2) has some far-reaching generalizations. Let [γ1, γ2] be an
arbitrary interval, and let F (

√
2; [γ1, γ2];N) denote the number of positive

integer solutions of the Pell inequality γ1 ≤ x2 − 2y2 ≤ γ2, x ≥ 1 and
1 ≤ y ≤ N . By using the theory of indefinite binary quadratic forms, it is
easy to prove the following analog of (1.2):

(1.3) F (
√

2; [γ1, γ2];N) = c0(
√

2; γ1, γ2) · log N + O(1),

where the constant factor c0(
√

2; γ1, γ2) is independent of N .
What is more, we can switch from

√
2 to any other quadratic irrational

α: it means that α is a root of a quadratic equation Ax2 + Bx + C = 0
with integral coefficients such that the discriminant B2 − 4AC ≥ 2 is not
a complete square. An equivalent definition is that α = (a +

√
d)/b where

a, b, d are integers with b �= 0 and d ≥ 2 is not a complete square. Note
that the quadratic irrationals are perfectly characterized by their continued
fraction: the continued fraction of α is (ultimately) periodic if and only if α
is a quadratic irrational. For example,

√
2 = 1 +

1
2 + 1

2+···
= [1; 2, 2, 2, 2, . . .] = [1; 2]

24 −
√

15
17

= 1 +
1

5 + 1
2+···

= [1; 5, 2, 3, 2, 3, 2, 3, . . .] = [1; 5, 2, 3].
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Let’s go back to (1.3), that is, to the special case α =
√

2. For example,
if −2 < γ1 ≤ −1 < 1 ≤ γ2 < 2, then

(1.4) c0(
√

2; γ1, γ2) =
1

log(1 +
√

2)
=

2
log(3 + 2

√
2)

,

if −1 < γ1 ≤ 1 ≤ γ2 < 2, then

(1.5) c0(
√

2; γ1, γ2) =
1

log(3 + 2
√

2)
,

and finally, if −1 < γ1 ≤ γ2 < 1, then of course

(1.6) c0(
√

2; γ1, γ2) = 0.

1.2. The Naive Area Principle

It is very interesting to compare these well-known asymptotic results about
the number of solutions of the Pell equation/inequality to what I like to call
the “naive area principle”. Perhaps the most natural guiding intuition in
lattice point theory is the following: if a “nice region” has “large” area, then
it should contain a “large” number of lattice points, and the actual number
should be “close” to the area.

I refer to this vague intuition as the Naive Area Principle. Of course,
the heart of the matter is how to define “nice region” precisely. Consider,
for example, the infinite open horizontal strip of height one: 0 < y < 1,
−∞ < x < ∞; it has infinite area, but it contains no lattice point. I think
the reader agrees that the infinite strip is a “nice region”, so the Naive Area
Principle is clearly violated here.

A less trivial example comes from the Pell inequality

(1.7) − 1
2
≤ x2 − 2y2 ≤ 1

2
,

which is a hyperbolic region of infinite area, and contains no lattice point
except the origin. I think the reader agrees that the hyperbolic region (1.7)
is also “nice”, so this is again a violation of the Naive Area Principle.

Next we switch from (1.7) to the general Pell inequality

(1.8) γ1 ≤ x2 − 2y2 ≤ γ2,
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where −∞ < γ1 < γ2 < ∞ are arbitrary real numbers. Of course, the
hyperbolic region (1.8) has infinite area; what we want to compute is the
area of a finite segment. Consider the finite region

H(
√

2; [γ1, γ2];N) =
{
(x, y) ∈ R

2 : γ1 ≤ x2 − 2y2 ≤ γ2

where x ≥ 1 and 1 ≤ y ≤ N
}
.(1.9)

If N is large compared to γ1, γ2, then the finite region H(
√

2; [γ1, γ2];N)
looks like a “hyperbolic needle”.

It is easy to give a good estimation for the area of the “hyperbolic needle”
H(

√
2; [γ1, γ2];N).

Lemma 1.1. Let γ1 < γ2, then

(1.10) area
(
H(

√
2; [γ1, γ2];N)

)
=

γ2 − γ1

2
√

2
log N + O(1),

where the implicit constant in O(1) is independent of N (but may depend
on γ1 and γ2).

The proof of (1.10) is based on the familiar factorization

(1.11) x2 − 2y2 = (x + y
√

2)(x − y
√

2),

and on the routine computation of the Jacobian of the corresponding substi-
tution (this explains the factor 2

√
2 in the denominator in (1.10)). I postpone

the details to Section 3.
Now let’s return to the Naive Area Principle. Comparing (1.3) with

(1.9)–(1.10), it is “reasonable” to expect—in view of the Naive Area Prin-
ciple—that the counting function F (

√
2; [γ1, γ2];N) is “close” to the area of

the hyperbolic needle H(
√

2; [γ1, γ2];N). In other words, it is “reasonable”
to expect that

(1.12) c0(
√

2; γ1, γ2) =
γ2 − γ1

2
√

2
.

Unfortunately, the Naive Area Principle is “mostly” violated in the quan-
titative sense that (1.12) fails for the overwhelming majority of the choices
−∞ < γ1 < γ2 < ∞. In fact, the left-hand side and the right-hand side
of (1.12) have completely different behavior: the left-hand side of (1.12) has
discrete jumps and the right-hand side is a continuous function of γ1 and γ2.
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For example, as γ1 and γ2 run in the interval −2 < γ1 < γ2 < 2, the constant
factor c0(

√
2; γ1, γ2) has only 3 possible values (see (1.4)–(1.6)):

0,
1

log(3 + 2
√

2)
,

2
log(3 + 2

√
2)

.

This shows—in a quantitative way—how the general Pell inequality (see
(1.8))

γ1 ≤ x2 − 2y2 ≤ γ2

violates the Naive Area Principle.

1.3. Inhomogeneous case—extra large fluctuations

Using the familiar factorization (1.11), we can rewrite the Pell equation
x2 − 2y2 = ±1, restricted to positive x, y, as follows:

(1.13)
|x2 − 2y2| ≤ 1 ⇐⇒ |y

√
2 − x| · (y

√
2 + x) ≤ 1 ⇐⇒ ‖y

√
2‖ · (y

√
2 + x) ≤ 1,

where ‖z‖ denotes, as usual, the distance of a real number z from the nearest
integer. Notice that in (1.13) x is the nearest integer to y

√
2 (=an irrational

number, namely an integral multiple of
√

2, where the integer y ≥ 1). Since
y
√

2 ≈ x, (1.13) is “basically” equivalent to the “vague” inequality

(1.14) ‖y
√

2‖ ≤ 1 + o(1)
2
√

2y
.

The vagueness of (1.14) comes from the additive term o(1), which tends to
0 as y → ∞. Formula (1.14) is more like a physicist’s notation, but I am
sure every mathematician understands it.

An expert in number theory would classify (1.14) as a typical problem in
diophantine approximation. Next I give a nutshell summary of diophantine
approximation.

The classical problem of the theory of diophantine approximation is to
find “good” rational approximations of irrational numbers. More precisely,
we want to decide whether an inequality

(1.15) ‖nα‖ <
1

nϕ(n)
⇐⇒

∥∥∥∥α − m

n

∥∥∥∥ <
1

n2 · ϕ(n)
,
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or in general,

(1.16) ‖nα − β‖ <
1

nϕ(n)
,

where α is a given irrational and β is a given real number, has infinitely many
integral solutions in n, and if this is the case, to determine the solutions, or
at least determine the asymptotic number of integral solutions. As always,
‖z‖ denotes the distance of a real z from the nearest integer, and ϕ(n) is a
positive increasing function of n.

(1.15) is called a homogeneous, and (1.16) is called an inhomogeneous
(diophantine) inequality. For example, in the homogeneous case the best
possible result is Hurwitz’s well-known theorem: for any irrational α,

‖nα‖ <
1√
5n

has infinitely many positive integer solutions.
In the inhomogeneous case we can mention an old result of Kronecker

that, for any irrational α and for any real β,

‖nα − β‖ <
3
n

has infinitely many positive integer solutions. Perhaps the strongest inho-
mogeneous result is Minkowski’s theorem: for any irrational α,

‖nα − β‖ <
1

4|n|

has infinitely many integer solutions (not necessarily positive), unless 0 <
β < 1 is an integral multiple of α modulo one.

The homogeneous case (1.15) has a complete theory based on continued
fractions. These are classical results mostly due to Euler and Lagrange. Un-
fortunately, we know much less about the inhomogeneous case. Very recently
I proved some new results in this direction: I basically covered the case where
α is an arbitrary quadratic irrational and β is a typical real number. These
results form a large part of my recent book Beck [Be010].

Before formulating some main results, first I need to elaborate on the
connection between (homogeneous and inhomogeneous) diophantine inequal-
ities such as (1.15)–(1.16) and (homogeneous and inhomogeneous) Pell in-
equalities.
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1.4. Homogeneous and inhomogeneous Pell inequalities

The general form of a quadratic curve on the plane is

(1.17) a11x
2 + a12xy + a22y

2 + a13x + a23y + a33 = 0.

We are interested in the integral solutions (x, y) ∈ Z
2 of an arbitrary in-

equality

(1.18) γ1 ≤ a11x
2 + a12xy + a22y

2 + a13x + a23y ≤ γ2,

where γ1 < γ2 are given real numbers. Equation (1.18) defines a plane re-
gion; the boundary consists of two curves of type (1.17). If the discriminant
is negative: D = a2

12 − 4a11a22 < 0, then (1.18) defines a bounded region
where the boundary curves are two ellipses. The case of positive discriminant
D = a2

12 − 4a11a22 > 0 is much more interesting, because then (1.18) de-
fines an unbounded region, where the boundary curves are two hyperbolas.
Unboundedness means that we have a chance for infinitely many integral
solutions of (1.18).

For simplicity assume that the coefficients a11, a12, a22 in (1.18) are in-
tegers and D = a2

12 − 4a11a22 > 0. We can factorize the quadratic part as
follows:

(1.19) a11x
2 + a12xy + a22y

2 = a11(x − αy)(x − α′y),

where

(1.20) α =
−a12 +

√
D

2a11
, α′ =

−a12 −
√

D

2a11
.

Using (1.19) we can rewrite (1.18) in the form

(1.21) γ1 ≤ (x − αy + ρ1)(x − α′y + ρ2) ≤ γ2,

where
ρ1 + ρ2 =

a13

a11
, α′ρ1 + αρ2 = −a23

a11

(note that γ1, γ2 are generic numbers; the pair γ1, γ2 in (1.18) is not (neces-
sarily) the same as the pair γ1, γ2 in (1.21)).

Without loss of generality we can assume that |a12| ≤ a11 ≤
√

D/3 (this
is a well-known fact from the Reduction Theory of binary quadratic forms;
we omit the proof), and then we have α > 0 > α′.
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For simplicity assume that the interval [γ1, γ2] is symmetric to 0, i.e.,
[γ1, γ2] = [−γ, γ]. Also, assume that we are interested in the positive integral
solutions of (1.21). Since α > 0 > α′, for “large” positive x and y the second
factor (x−α′y +ρ2) in (1.21) is also “large” positive, implying that the first
factor (x− αy + ρ1) in (1.21) has to be very small. That is, x has to be the
nearest integer to (yα − ρ1). It follows that the symmetric version of (1.18)

(1.22) − γ ≤ a11x
2 + a12xy + a22y

2 + a13x + a23y ≤ γ,

where γ > 0 is a given real number, is equivalent to the diophantine inequal-
ity

(1.23) ‖yα − ρ1‖ <
c

y + O(1)
where c =

γ

α − α′ =
γa11√

D
.

Let’s return to equation (1.18). If the linear part a13x + a23y is missing,
i.e., a13 = a23 = 0, then we have a complete theory based on the Pell
equation. More precisely,

γ1 ≤ Q(x, y) ≤ γ2 ⇐⇒ Q(x, y) = m, γ1 ≤ m ≤ γ2, m ∈ Z

with Q(x, y) = a11x
2 + a12xy + a22y

2, and we have a complete characteri-
zation of the integral solutions of Q(x, y) = m for any integer m as follows.
For any integer m there is a finite list of “primary solutions”, say, (xj , yj),
j ∈ J where |J | < ∞ and Q(x, y) = m such that, every solution x = u, y = v
of Q(x, y) = m can be written in the form

u − αv = ±
(

u0 + v0

√
D

2

)n

· (xj − αyj)

for some j ∈ J and n ∈ Z, where x = u0 > 0, y = v0 > 0 is the least positive
solution of Pell’s equation x2 − Dy2 = 4. As a byproduct, we obtain that
the number of positive integral solutions of

γ1 ≤ Q(x, y) ≤ γ2 with 1 ≤ x ≤ N, 1 ≤ y ≤ N

has the simple asymptotic form c log N + O(1), where c = c(a11, a12, a22, γ1,
γ2) is a constant and the error term O(1) is uniformly bounded as N → ∞.
(For a more detailed proof; see Lang [La66].)

Exactly the same holds if there is a non-zero linear part a13x + a23y in
(1.18), but its effect “cancels out”: ρ1 in (1.21) is an integer.
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Finally, if ρ1 is not an integer, then I call (1.21) an inhomogeneous Pell
inequality. In view of (1.23), an inhomogeneous Pell inequality (1.21) is ba-
sically equivalent to an inhomogeneous diophantine inequality

(1.24) ‖nα − β‖ <
c

n

with c = γa11/
√

D, where α is a quadratic irrational defined in (1.20).
Inequality (1.24) is a special case of (1.16) where ϕ(n) is a constant.

One of the main results in my book Beck [Be010] is to describe the
asymptotic behavior of the number of positive integral solutions of (1.18)
for every non-square integer discriminant D > 0 and for almost all a13, a23.
The number of solutions exhibits

(1) extra large fluctuations (proportional to the area(!), see Theorem 1
below),

(2) satisfies an elegant central limit Theorem (see Theorem A later in
Section 2),

(3) satisfies a shockingly precise law of the iterated logarithm; see Theo-
rem B later.

For notational simplicity, I formulate the results in the special case of
discriminant D = 8, which corresponds to the most famous quadratic irra-
tional: α =

√
2.

Since the class number of discriminant D = 8 is one, the general form
of an inhomogeneous Pell inequality of discriminant D = 8 is

(1.25) γ1 ≤ (x + β1)2 − 2(y + β2)2 ≤ γ2

where γ1 < γ2 and β1, β2 ∈ [0, 1) are fixed constants. For notational simplic-
ity we restrict ourselves to symmetric intervals [−γ, γ] in (1.25); note that
everything works similarly for general intervals [γ1, γ2].

The factorization

(1.26) (x + β1)2 − 2(y + β2)2 = (x + β − y
√

2)(x + β′ + y
√

2),

where β = β1 −β2

√
2 and β′ = β1 +β2

√
2, clearly indicates that the asymp-

totic number of integral solutions of (1.25) heavily depends on the “local”
behavior of n

√
2 mod 1. In fact, (1.25) is essentially equivalent to the inho-

mogeneous diophantine inequality

(1.27) ‖n
√

2 − β‖ <
c

n

with c = γ/2
√

2.



Lattice point counting and the probabilistic method 181

To turn the vague term “essentially equivalent” into a precise statement,
let F (

√
2;β1, β2; γ;N) be the number of integral solutions (x, y) ∈ Z

2 of
(1.25) with γ2 = γ, γ1 = −γ satisfying 1 ≤ y ≤ N and x ≥ 1. It means
counting lattice points in a long and narrow hyperbola segment. Next let
f(
√

2;β; c;N) be the number of integral solutions n of (1.27) satisfying 1 ≤
n ≤ N , where β = β1 − β2

√
2. Now essentially equivalent means that,

for almost all pairs β1, β2, F (
√

2;β1, β2; γ;N) − f(
√

2;β; c;N) = O(1) as
N → ∞, where c = γ/2

√
2 (and β = β1 − β2

√
2). More precisely, we have

Lemma 1.2. Let γ > 0 and β2 be arbitrary real numbers. Then for almost
all β1 there exist a finite 0 < C(β1, β2, γ) < ∞ such that

∫ 1

0
C(β1, β2, γ) dβ < ∞ and∣∣∣F (

√
2;β1, β2; γ;N) − f(

√
2;β; c;N)

∣∣∣ < C(β1, β2, γ) for all N ≥ 1,

where c = γ/2
√

2 and β = β1 − β2

√
2.

I postpone the simple proof to Section 3.
In view of Lemma 1.2 it suffices to study the special case β2 = 0, β1 = β:

(1.28) − γ ≤ (x + β)2 − 2y2 ≤ γ

where γ > 0 and β ∈ [0, 1) are fixed constants. For simplicity, let F (
√

2;β; γ;
N) denote the number of integral solutions (x, y) ∈ Z

2 of (1.28) satisfying
1 ≤ y ≤ N and x ≥ 1.

In the special case γ = 1 and β = 0, (1.28) becomes the simplest Pell
equation x2 − 2y2 = ±1. The integral solutions (xk, yk) form a cyclic group
generated by the smallest positive solution x = y = 1 in the well-known
way: xk + yk

√
2 = (1 +

√
2)k, implying the familiar asymptotic formula

(1.29) F (
√

2;β = 0; γ = 1;N) =
log N

log(1 +
√

2)
+ O(1),

where 1 +
√

2 is the fundamental unit of the real quadratic field Q(
√

2).
In sharp contrast to the bounded fluctuation in the homogeneous case

β = 0, the inhomogeneous case can exhibit “extra large fluctuations pro-
portional to the area”; see Theorem 1 below. To explain this, first we have
to compute the mean value of F (

√
2;β; γ;N) as β runs in the unit interval

0 ≤ β < 1.
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Lemma 1.3. We have

(1.30)
∫ 1

0
F (

√
2;β; γ;N) dβ =

γ√
2

log N + O(1),

where the implicit constant in O(1) is independent of N (but may depend on
γ). Moreover, for an arbitrary subinterval 0 ≤ a < b ≤ 1 we have the limit
formula

(1.31) lim
N→∞

1
b−a

∫ b
a F (

√
2;β; γ;N) dβ

log N
=

γ√
2
.

Formulas (1.30)–(1.31) express the almost trivial geometric fact that the
average number of lattice points contained in all the translated copies of a
given region (in our special case: a hyperbola segment) is precisely the area
of the region (see Lemma 3.1). I will give a detailed proof of Lemma 1.3 in
Section 3.

Next we formulate an “extra large fluctuation” result: Theorem 1. Note
that this is hardly more than a simple illustration; we devote another long pa-
per to the many generalizations of Theorem 1 (they require a completely dif-
ferent and much harder proof technique: the Riesz product; see e.g. (1.33)).

Theorem 1. For γ = 1/2 there are continuum many “divergence points”
β∗ ∈ [0, 1) in the sense that

(1.32) lim sup
n→∞

F (
√

2;β∗; γ = 1/2;n)
log n

> lim inf
n→∞

F (
√

2;β∗; γ = 1/2;n)
log n

.

I postpone the proof of Theorem 1 to Section 3.
Note that the fluctuation const · log n in (1.32) is as large as possible

apart from a constant factor. This follows from Lemma 2.1; see the next
section. It is fair to say that Theorem 1 represents a sophisticated violation
of the Naive Area Principle. The two main results of the paper—Theorems 2
and 3—to be be discussed in the next section, will both support the Naive
Area Principle.

I conclude Section 1 with mentioning, without proof, one far-reaching
generalization of Theorem 1. It says that Theorem 1 in fact holds for every
γ > 0, and we actually have the stronger inequality

(1.33) lim sup
n→∞

F (
√

2;β∗; γ;n)
log n

>
γ√
2

> lim inf
n→∞

F (
√

2;β∗; γ;n)
log n

.
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2. Defending the Naive Area Principle

2.1. Determinism vs. randomness

Equations (1.29) and (1.32) display the two extreme cases: (1) bounded
fluctuations, and (2) extra large fluctuations proportional to the area. But
what fluctuations do we have for a typical 0 < β < 1? We show that for
a typical β the asymptotic number of solutions F (

√
2;β; γ;N), as N →

∞, justifies the Naive Area Principle; and going far beyond that, a more
thorough look reveals “advanced randomness”.

We know from probability theory that the two most important param-
eters of a random variable are the expectation (or mean value) and the
variance. By (1.30) the expectation equals

∫ 1

0
F (

√
2;β; γ;N) dβ =

γ√
2

log N + O(1).

Next we explain why it is natural to use exponential scaling here. Note
that for any 1 < M < N , the counting function is “slowly changing” in the
following sense:

(2.1) F (
√

2;β; γ;N) − F (
√

2;β; γ;M) = O (log(N/M)) ;

notice that const· log(N/M) is the corresponding area. The geometric reason
behind (2.1) is the exponentially sparse occurence of the lattice points in
the corresponding long and narrow tilted hyperbola. The proof of (2.1) is a
straightforward application of Lemma 2.1 below.

We have the following corollary of (2.1): If M = cN , i.e., n runs in
cN < n < N with some constant 0 < c < 1, then the fluctuation of
F (

√
2;β; γ;N) is a trivial O(1). This negligible constant size change, as

n runs in cN < n < N (i.e., (2.1)), explains why it is perfectly natural to
switch to the exponential scaling F (

√
2;β; γ; eN ). In the rest we will often

prefer the exponential scaling.

The variance. It comes from the following result: for any γ > 0 there is a
positive effective constant σ = σ(γ) > 0 such that

lim
N→∞

1
N

∫ 1

0

(
F (

√
2;β; γ; eN ) − γ√

2
N

)2

dβ = σ2(γ).
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Note that the proof of this limit formula is based on a combination of Fourier
analysis and the arithmetic of the quadratic number field Q(

√
2); see Beck

[Be010] (see also the survey papers [Be98a] and [Be98b]).
The first probabilistic result—nicely fitting the general scheme of “deter-

minism vs. randomness”—is the following (for the proof; see Beck [Be010]).

Theorem A (“central limit theorem”). The renormalized counting function

F (
√

2;β; γ; eN ) − γ√
2
N

σ(γ)
√

N
, 0 ≤ β < 1

has a standard normal limit distribution as N → ∞.

To give at least a vague intuition behind Theorem A, we write

Gj(β) = F (
√

2;β; γ; ej) − F (
√

2;β; γ; ej−1), j = 1, 2, . . . , N.

That is, Gj(β) is the number of integral solutions n ∈ N of (1.28) satisfying
ej−1 < n ≤ ej . Note that Gj(β) is a bounded function—this follows from
the following lemma, and the simple geometric fact that a short hyperbola
segment, corresponding to Gj , can be approximated by an inscribed rectan-
gle R1 of slope 1/

√
2 and a circumscribed rectangle R2 of slope 1/

√
2 such

that the ratio of the areas is uniformly bounded.

Lemma 2.1. Every tilted rectangle of slope 1/
√

2 and area 1/5 contains at
most one lattice point.

I postpone the proof of this lemma to the next section. Note that
Lemma 2.1 can be easily generalized as follows. The same proof gives that
for any quadratic irrational α there is a positive constant c0 = c0(α) > 0
such that, every tilted rectangle of slope α and area c0 contains at most one
lattice point.

Let’s return to the vague intuition: our key observation is that the
bounded function Gj(β) resembles the j-th Rademacher function, so the
sum

F (
√

2;β; γ; eN ) − γ√
2
N =

N∑
j=1

(
Gj(β) − γ√

2

)
,

as a function of β ∈ [0, 1), behaves like a sum of N independent Bernoulli
variables (“N -step random walk”)

(2.2) F (
√

2;β; γ; eN ) − γ√
2
N ≈ ±1 ± 1 ± · · · ± 1 (N terms).
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Our next result—Theorem B—can be interpreted as a variant of Khint-
chine’s famous law of the iterated logarithm in probability theory. We show
that the number of solutions F (

√
2;β; γ; en) of (1.28) oscillates between the

sharp bounds (ε > 0)

γ√
2
n − σ

√
n
√

(2 + ε) log log n < F (
√

2;β; γ; en)

<
γ√
2
n + σ

√
n
√

(2 + ε) log log n(2.3)

as n → ∞ for almost all β. Note that (2.3) fails for 2 − ε instead of 2 + ε
(where ε > 0). Here the main term γ√

2
n means the “area”, so (2.3) can be

considered as a highly sophisticated justification of the Naive Area Princi-
ple.

(2.3) is particularly interesting in view of the fact that the classical Cir-
cle Problem is unsolved (and seems to be hopeless for the available proof
techniques). What (2.3) means is that, we can solve a “Hyperbola Problem”
instead of the Circle Problem. More precisely, we can prove for long and nar-
row tilted hyperbola segments, what nobody can prove for large concentric
circles. Namely, we can show that, for almost all centers (i.e., for almost all
values of the translation parameter β), the number of lattice points asymp-
totically equals the area plus an error, which, even in the worst case scenario,
is about the square root of the area. (For circles the corresponding maximum
error should be the square root of the circumference—at least this is what
the conjecture claims.)

Note that the law of the iterated logarithm is one of the most fa-
mous results in classical probability theory, and it describes the “maximum
fluctuation” in the infinite (one-dimensional) random walk. The term infi-
nite random walk refers to an infinite sequence of random Bernoulli trials,
where a trial means tossing a fair coin. Of course, “coin tossing” belongs to
the physical world; it is not a mathematical concept. But there is a well-
known pure mathematical problem, which is considered equivalent: we can
study the digit distribution of a typical real number written in the binary
form

β =
b1

2
+

b2

22
+

b3

23
+ · · · ,

where each bi = 0 or 1 (for simplicity assume that 0 < β < 1). The infinite
0–1 sequence

b1 = b1(β), b2 = b2(β), b3 = b3(β), . . . ,
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i.e., the sequence of binary digits of 0 < β < 1, represents an infinite Heads-
and-Tails sequence, say, 1 is Heads and 0 is Tails. The sum

Bn = Bn(β) = b1 + b2 + b3 + · · · + bn

counts the number of 1’s (“Heads”) among the first n binary digits of 0 <
β < 1. Borel’s classical theorem about normal numbers asserts that

Bn(β)
n

→ 1
2

for almost all 0 < β < 1.

Let Sn = Sn(β) denote the corresponding error term

Sn = Sn(β) = 2Bn(β) − n = number of Heads − number of Tails.

That is, Sn = Sn(β) represents the number of Heads minus the number of
Tails among the first n random trials (“coin tossings”).

A well-known theorem of Khintchine [Kh24] asserts that

lim sup
n

Sn(β)√
2n log log n

= 1 for almost all 0 < β < 1.

Notice that Khintchine’s theorem is a far-reaching quantitative improvement
on Borel’s theorem on “normal numbers”. The “long form” of Khintchine’s
theorem says that, for any ε > 0 and for almost all β, we have the following
two statements: (1)

Sn(β) < (1 + ε)
√

2n log log n

for all sufficiently large values of n, and (2)

Sn(β) > (1 − ε)
√

2n log log n

holds for infinitely many values of n.
This strikingly elegant and precise result is the simplest form of the law

of the iterated logarithm (called the “Khintchine’s form”).
Let’s return to (2.3). The fact that it is an analog of Khintchine’s law

of the iterated logarithm suggests the vague intuition that the lattice point
counting function F (

√
2;β; γ; en) behaves like a “generalized digit sum” (as

β runs in 0 < β < 1).
What we are going to actually formulate below (see Theorem B) are

two generalizations/refinements of (2.3). The first generalization is that, for
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almost all β, (2.3) holds for all γ, or in general, for all intervals [γ1, γ2].
This is a variant of the so-called Cassels’s form of the law of the iterated
logarithm (see [Ca51]).

The second generalization of (2.3) is the Kolmogorov-Erdős form (see
[Er42] and [Fe43]), an ultimate convergence-divergence criterion, which con-
tains the Khintchine’s form as a simple corollary.

Theorem B (“law of the iterated logarithm”). (a) Let ε > 0 be an arbi-
trarily small but fixed constant. Then for almost all β,

γ√
2
n − σ

√
n
√

(2 + ε) log log n < F (
√

2;β; γ; en)

<
γ√
2
n + σ

√
n
√

(2 + ε) log log n(2.4)

holds for all γ > 0 and for all sufficiently large n (i.e., for all n > n0(β, γ)).
Note that (2.4) is sharp in the sense that 2 + ε cannot be replaced by 2 − ε.

(b) Let ϕ(n) be an arbitrary positive increasing function of n. Let γ > 0
be fixed, then for almost all β,

(2.5) F (
√

2;β; γ; en) >
γ√
2
n + ϕ(n)σ

√
n

holds for infinitely many n’s if and only if the series

(2.6)
∞∑

n=1

ϕ(n)
n

e−ϕ2(n)/2 diverges.

Exactly the same holds for the other inequality

(2.6′) F (
√

2;β; γ; en) <
γ√
2
n − ϕ(n)σ

√
n.

Remarks. By Lemma 1.2, f(
√

2;β; c;N) = F (
√

2;β; γ;N) + O(1) as N →
∞, where c = γ/2

√
2. So Lemma 1.2 implies that Theorems A and B remain

true if F (
√

2;β; γ;N) is replaced with the number of solutions f(
√

2;β; c;
N) = of the inhomogeneous diophantine inequality (1.27).

In Theorem B(a) there is a dramatic difference between rational β and
almost all β. For every rational β the counting function has the form

(2.7) F (
√

2;β; γ;N) = c(γ) log N + O(1) as N → ∞

for all γ > 0, and it remains true if
√

2 is replaced by any quadratic irra-
tional. This bounded size fluctuation around the main term c log N (which
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is typically not the area) jumps up considerably: we have square root (of
the area) size fluctuation around the main term (=area), described in (2.4),
and this holds for almost all β and all γ > 0.

Let’s return to (2.3): it is a special case of Theorem B(b) with

ϕ(n) = ((2 ± ε) log log n)1/2.

Indeed, with this choice of ϕ(n) the series (2.6) is divergent or convergent
depending on whether we have 2 + ε or 2 − ε.

We can obtain a much more delicate result with the choice of a large
integer k ≥ 4 and

ϕ(n) =
(
2 log2 n + 3 log3 n + 2 log4 n + · · · + 2 logk−1 n + (2 ± ε) logk n

)1/2
.

Warning: here, and here only, we use the space-saving notation log2 n =
log log n, i.e., it means the iterated logarithm (instead of the usual meaning
as the base 2 logarithm), and in general, logk n = log(logk−1 n) denotes the
k-times iterated logarithm of n. With this choice of ϕ(n),

∞∑
n=1

ϕ(n)
n

e−ϕ2(n)/2

≈
∑
n

1
n log n log2 n log3 n · · · logk−1 n(logk n)1±ε/2

,

which is divergent or convergent depending on whether we have 2 + ε or
2 − ε.

This example clearly illustrates the remarkable precision of Theorem B(b).

2.2. Formulating Theorems 2 and 3

Next we focus on a simple consequence of Theorem B. Let c > 0 be arbi-
trarily small but fixed, then by Theorem B the inhomogeneous diophantine
inequality

(2.8) ‖n
√

2 − β‖ <
c

n

has infinitely many integer solutions n ≥ 1 for almost all β (in the sense of
the Lebesgue measure).

Inequality (2.8) corresponds to the hyperbola segment (β is fixed):

|y − β| <
c

x
, x ≥ 1,
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which has infinite area.
But we may go further, and consider the smaller region

|y − β| <
1

x log x
, and the even smaller region |y − β| <

1
x log x log log x

,

and so on. They all have infinite area, since

∫ N

e

dx

x log x
= log log N, and

∫ N

ee

dx

x log x
= log log log N,

and the rest all tend to infinity as N → ∞. It is very natural, therefore, to
ask the following question.

Question. Consider the inequalities

‖n
√

2 − β‖ <
c

n log n
(n ≥ 2),(2.9)

‖n
√

2 − β‖ <
c

n log n log log n
(n ≥ 3),(2.10)

and so on; 0 ≤ β < 1 is a fixed constant. Is it true that, for almost all β (in
the sense of the Lebesgue measure), inequality (2.9) (and (2.10), and so on)
does have infinitely many integer solutions n ≥ 1?

Well, the answer is yes.

Theorem 2 (“Area Principle for
√

2”). Let ψ(x) be any positive decreasing
function of the real variable x with∑

n

ψ(n) = ∞.

Then the inhomogeneous inequality

‖nα − β‖ < ψ(n)

has infinitely many integral solutions for almost all 0 ≤ β < 1 (in the sense
of Lebesgue measure).

What is more, there is an interesting generalization of Theorem 2 where√
2 is replaced by any real α.

To explain this generalization (see Theorem 3 below), I briefly recall the
basic question of diophantine approximation: we want to know whether an
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inequality

(2.11)
∣∣∣∣α − p

q

∣∣∣∣ < 1
q2

, equivalently, |qα − p| <
1
q

with integers p, q, or more generally, of an inequality

(2.12) ‖qα‖ < ψ(q)

has infinitely many integral solutions in q, and if this is the case, we want
to determine the solutions, or at least determine the asymptotic number of
integral solutions. (As usual, ‖x‖ denotes the distance of a real x from the
nearest integer, and ψ(q) is a positive increasing function of q.)

It is perfectly natural to study the inhomogeneous analog of (2.12):

(2.13) ‖qα − β‖ < ψ(q)

where β is an arbitrary fixed real number. Of course, we may assume 0 ≤
β < 1.

Is there any connection between the solvability of the homogeneous
(2.12) and the inhomogeneous (2.13)? I recall that Theorem 2 is about the
Naive Area Principle in the special case α =

√
2. The Naive Area Principle

is a vague intuition claiming that a “nice region of infinite area must contain
infinitely many lattice points”. We know that the Naive Area Principle is
false for the hyperbolic region −1/2 ≤ x2 − 2y2 ≤ 1/2, which has infinite
area and contains only one lattice point (the origin). This Pell inequality is
basically equivalent to the diophantine inequality

(2.14) ‖q
√

2‖ <
c

q
with c ≤ 2−5/2,

and (2.14) has only a finite number of integral solutions in q if the constant
c < 2−5/2. We can put Theorem 2 in the following form: the failure of the
Naive Area Principle for (2.14) is “compensated” by the success of the Naive
Area Principle for the inhomogeneous inequality

(2.15) ‖q
√

2 − β‖ < ψ(q),

for almost all β. That is, (2.15) has infinitely many integral solution q for
almost all β, provided ψ(x) is any positive decreasing function of the real
variable x with

(2.16)
∞∑

n=1

ψ(n) = ∞.
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The next result generalizes the special case α =
√

2 for arbitrary real α.

Theorem 3 (“Area Principle in general”). Let ψ(x) be any positive decreas-
ing function of the real variable x with

(2.17)
∞∑

n=1

ψ(n) = ∞.

For any real number α, at least one of the following two cases always holds:
(i) the homogeneous inequality

(2.18) ‖qα‖ < ψ(q)

has infinitely many integral solutions,
(ii) the inhomogeneous inequality

(2.19) ‖qα − β‖ < ψ(q)

has infinitely many integral solutions for almost all 0 ≤ β < 1 (in the sense
of Lebesgue measure).

Remarks. (1) Note that divergence condition (2.17) is necessary. Indeed,
if

(2.20)
∞∑

n=1

ψ(n) < ∞

then the set of pairs (α, β) for which the inequality

(2.21) ‖qα − β‖ < ψ(q)

has infinitely many integral solutions q, has 2-dimensional Lebesgue measure
zero. This statement immediately follows from the other statement that, for
every fixed β, the set of α which satisfy (2.21) for infinitely many q, has
Lebesgue measure zero. The second statement has an easy proof as follows:
every such α in 0 < α < 1 is contained in infinitely many intervals of the
form [

p + β

q
− ψ(q)

q
,
p + β

q
+

ψ(q)
q

]
with q ≥ N , 1 ≤ p ≤ q integers, and the total length of these intervals is
less than

2
∑
q≥N

ψ(q),

which by (2.20) tends to zero as N → ∞.
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This means that Theorem 3 is a precise convergence-divergence type
result, or we may call it a “zero-one law” (to borrow a well-known concept
from probability theory).

(2) Let’s return to the inhomogeneous inequality (2.21). If α is rational
and β is irrational, then (2.21) has only a finite number of integral solutions
for any ψ(q) → 0 as q → ∞. Well, this is trivial. It is far less trivial to find
an irrational α and a decreasing function ψ with

∑
q ψ(q) = ∞ such that for

almost all β (2.21) has only a finite number of integral solutions. We can
take any irrational 0 < α < 1 with “sufficiently large” partial quotients in
the following quantitative sense:

α =
d

a1 +
1

a2 + · · ·

= [a1, a2, a3, . . .]

where

(2.22) ak ≈ k(log k)2 ,

and take

(2.23) ψ(q) =
1

q log q
.

Then the denominator qk of the kth convergent of α is roughly

(2.24) qk ≈ a1a2 · · · ak ≈ kk(log k)2 ,

and so ∑
k

d

log qk
≤ const

∑
k

1
k(log k)3

< ∞.

I recall the well-known fact ∣∣∣∣α − pk

qk

∣∣∣∣ < 1
qkqk+1

which implies

(2.25)
∣∣∣∣nα − npk

qk

∣∣∣∣ < n

qkqk+1
.
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If qk ≤ n < qk+1k
−2 and

‖nα − β‖ <
1

n log n

then by (2.24)–(2.25)

(2.26)
∥∥∥∥β − npk

qk

∥∥∥∥ <
1

k2qk
+

1
n log n

<
2

k(log k)3qk
.

If qk+1k
−2 ≤ n < qk+1 then define the set

(2.27) Ak =
⋃
n

[
nα − 1

n log n
, nα +

1
n log n

]
(mod 1)

where the summation in (2.27) is extended over all n with qk+1k
−2 ≤ n <

qk+1, and motivated by (2.26) define the set

(2.28) Bk =
⋃

0≤j<qk

[
j

qk
− 2

k(log k)3qk
,

j

qk
+

2
k(log k)3qk

]
(mod 1).

Clearly

(2.29)
∑
k

meas(Bk) ≤
∑
k

4
k(log k)3

< ∞,

where meas stands for the usual Lebesgue measure, and

∑
k

meas(Ak) ≤ const
∑
k

log(k2)
k(log k)3

≤ const
∑
k

1
k(log k)2

< ∞.(2.30)

It follows from (2.29)–(2.30) that almost all β are contained only in a finite
number of Ak and in a finite number of Bk. In view of (2.26)–(2.28) this
implies that, for almost all β, inequality (2.21) has only a finite number of
integral solutions (where α and ψ are defined by (2.22)–(2.23)).

For the proofs of Theorems A–B, I refer the reader to my new book Beck
[Be010] that will be published soon.

The next section is devoted to the proofs of Theorem 1 and Lemmas 1.1,
1.2, 1.3 and 2.1. Theorems 2 and 3 will be proved in Sections 4 and 5.
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Probably the reader is wondering: why do we include a separate proof
for Theorem 2 when it is just a special case of Theorem 3 for α =

√
2?

Well, the short answer is that we wanted to illustrate a new idea on a
simple example. The periodicity of the continued fraction of

√
2 quickly

leads us to the concept of homogeneous Markov chains (a slight relaxation of
independence), and makes it possible to have a shortcut: a direct application
of probability theory. Besides the proof of Theorem 2, Markov chains also
play a key role in the proofs of Theorems A and B (that I omitted for the
lack of space), so the reader can have at least a vague idea how those much
longer proofs actually go.

On the other hand, the proof of Theorem 3 does not use Markov chains—
instead it is based entirely on the theory of continued fraction.

3. Proving Theorem 1 and the lemmas

3.1. Proof of Lemma 1.1

In view of the familiar factorization

x2 − 2y2 = (x + y
√

2)(x − y
√

2),

it is more convenient to compute the area of the following slight variant of
region (1.10): let

H∗(
√

2; [γ1, γ2];N) =
{
(x, y) ∈ R

2 : γ1 ≤ x2 − 2y2 ≤ γ2

where 1 ≤ x + y
√

2 ≤ 2
√

2N
}
.(3.1)

Consider the substitution

(3.2′) u1 = x + y
√

2, u2 = x − y
√

2,

which is equivalent to

(3.2′′) x =
u1 + u2

2
, y =

u1 − u2

2
√

2
;

the corresponding determinant is

∂(u, v)
∂(x, y)

=

∣∣∣∣∣1 −
√

2
1

√
2

∣∣∣∣∣ = 2
√

2.
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Applying the substitution (3.2′)–(3.2′′), we have

area(H∗(
√

2; [γ1, γ2];N)) =
∫

H∗(
√

2;[γ1,γ2];N)
1 dxdy

=
1

2
√

2

∫
1≤u1≤2

√
2N

(∫
γ1/u1≤u2≤γ2/u1

1 du2

)
du1

=
1

2
√

2

∫ 2
√

2N

1

γ2 − γ1

u1
du1 =

γ2 − γ1

2
√

2
log N + O(1).(3.3)

A simple geometric consideration shows that

area
(
H(

√
2; [γ1, γ2];N)

)
= area

(
H∗(

√
2; [γ1, γ2];N)

)
+ O(1),

and so (3.3) completes the proof of Lemma 1.1.

3.2. Proof of Lemma 1.3

First I prove formula (1.30). Consider the hyperbolic needle HN (γ) =
HN (

√
2; γ) defined as

(3.4)
HN (γ) =

{
(x, y) ∈ R

2 : −γ ≤ x2 − 2y2 ≤ γ where 1 ≤ x + y
√

2 ≤ 2
√

2N
}

.

Comparing (3.4) with (3.1), we see that

HN (γ) = H∗(
√

2; [−γ, γ];N),

so by (3.3) we obtain the area:

(3.5) area(HN (γ)) =
γ√
2

log N + O(1).

Next we need the following almost trivial result.

Lemma 3.1. Let A ⊂ R
2 be a Lebesgue measurable set in the plane with

finite measure (that I call the “area”). Then∫ 1

0

∫ 1

0
|(A + x) ∩ Z

2| dx = area(A),

where A + x is the translated copy of set A, translated by the vector x ∈ R
2.
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First I derive Lemma 1.3 from Lemma 3.1. By Lemma 3.1,

(3.6)
∫ 1

0

∫ 1

0
|(HN (γ) + v) ∩ Z

2| dv = area(HN (γ)),

where A + v denotes the translated copy.
If v = (v1, v2) ∈ [0, 1)2 is chosen in such a way that v1 − v2

√
2 ≡ β

(mod 1) is fixed, then clearly

(3.7)
∣∣∣F (

√
2;β; γ;N) − |(HN (γ) + v) ∩ Z

2|
∣∣∣ < c0(γ),

where c0(γ) < ∞ is a constant independent of β and N . Combining (3.6)–
(3.7), equation (1.30) follows.

Next we prove (1.31). Let 0 ≤ a < b ≤ 1 be fixed, and for any M ≥ 1
define the parallelogram

(3.8) PM = {v = (v1, v2) ∈ R
2 : a ≤ v1 − v2

√
2 ≤ b, 0 ≤ v1 + v2

√
2 ≤ M}.

If M is large, then PM is a long and narrow parallelogram, but we can turn it
into a “round” shape by applying an appropriate automorph of the quadratic
form x2 − 2y2. The substitution x1 = x + 2y, y1 = x + y is a fundamental
automorph of x2−2y2 (indeed, x2

1−2y2
1 = (x+2y)2−2(x+y)2 = −(x2−2y2)),

and

Ak =

(
1 2
1 1

)k

, k ∈ Z

give rise to infinitely many automorphs preserving the lattice points and the
area. The eigenvectors of A = ( 1 2

1 1 ) are parallel to the sides of parallelogram
PM , so applying an appropriate power Ak on the long and narrow parallel-
ogram PM , we obtain a “round” parallelogram AkPM with sides parallel to
that of PM , and

area(AkPM ) = area(PM ) = const · M.

“Round” means that the diameter of parallelogram AkPM is O(
√

M), so
the number of unit squares [0, 1)2 + n, n ∈ Z

2 intersecting the boundary of
AkPM is O(

√
M).

Combining this geometric fact with Lemma 3.1 (see (3.6)), we have

(3.9)
1

area(PM )

∫
PM

|(HN (γ) + v) ∩ Z
2| dv = area(HN (γ))

(
1 + O(M−1/2)

)
.
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If v = (v1, v2) ∈ [0, 1)2 is chosen in such a way that v1 − v2

√
2 ≡ β

(mod 1) is fixed, then clearly

(3.10)
∣∣∣F (

√
2;β; γ;N) − |(HN (γ) + v) ∩ Z

2|
∣∣∣ < c0(γ,M),

where c0(γ,M) < ∞ is a constant independent of β and N . Combining (3.5),
(3.9) and (3.10),

1
b−a

∫ b
a F (

√
2;β; γ;N) dβ

log N

=
(

γ√
2

+ O(1/ log N)
)(

1 + O(M−1/2)
)

+
c0(γ,M)

log N
.(3.11)

Since M can be arbitrarily large, (3.11) implies (1.31). The proof of Lemma 1.3
is complete.

For the sake of completeness I include a

3.3. Proof of Lemma 3.1

First assume that A is bounded. Let N be a “large” integer. By using the
periodicity of Z

2 we have∫ N

0

∫ N

0
|(A + x) ∩ Z

2| dx = N2
∫ 1

0

∫ 1

0
|(A + x) ∩ Z

2| dx.

On the other hand,∫ N

0

∫ N

0
|(A + x) ∩ Z

2| dx =
∑
n∈Z2

area
{
x ∈ [0, N ]2 : n ∈ A + x

}
=
∑
n∈Z2

area
{
(n− A) ∩ [0, N ]2

}
.

Without loss of generality we can assume that the origin is inside A. Let d(A)
denote the diameter of A. Then (n − A) ⊂ [0, N ]2 if n ∈ [d(A), N − d(A)]2,
and (n − A) ∩ [0, N ]2 = ∅ if n �∈ [−d(A), N + d(A)]2. Thus we have

(N + 2d(A))2 · area(A) ≥
∑
n∈Z2

area
{
(n− A) ∩ [0, N ]2

}
≥ (N − 2d(A))2 · area(A).
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Dividing the last line by N2, and combining the equations above, Lemma 3.1
follows as N tends to infinity. If A is unbounded, then we approximate A
with an increasing sequence A1 ⊂ A2 ⊂ A3 ⊂ . . . of subsets of A such
that each Ak is bounded and area(A \ Ak) → 0. The last step is to use the
continuity of the Lebesgue measure.

3.4. Proof of Lemma 1.2

For notational simplicity I just prove the special case β2 = 0 (the general case
is the same). Again the key step is to apply Lemma 3.1. For 1 ≤ K < L ≤ ∞
we define the following four regions:

HK,L(β; γ) =
{
(x, y) ∈ R

2 : −γ ≤ (x + β)2 − 2y2 ≤ γ

where K ≤ y ≤ L, x > 0
}
,

H̃K,L(β; γ) =
{
(x, y) ∈ R

2 : |x + β − y
√

2| · 2
√

2y < γ

where K ≤ y ≤ L, x > 0
}
,

H̃+
K,L(β; γ) =

{
(x, y) ∈ R

2 : |x + β − y
√

2| · (2
√

2y + 1) < γ

where K ≤ y ≤ L, x > 0
}
,

H̃−
K,L(β; γ) =

{
(x, y) ∈ R

2 : |x + β − y
√

2| · (2
√

2y − 1) < γ

where K ≤ y ≤ L, x > 0
}
.

In view of factorization (1.26), (x, y) ∈ HK,L(β; γ) implies that x + β =
y
√

2 + o(1); in fact, we have the stronger form x + β = y
√

2 + O(1/y). Thus
there is a threshold c1 = c1(γ) such that

H̃+
K,L(β; γ) ⊂ HK,L(β; γ) ⊂ H̃−

K,L(β; γ)

holds for all L > K > c1(γ). On the other hand, it is trivial that

H̃+
K,L(β; γ) ⊂ H̃K,L(β; γ) ⊂ H̃−

K,L(β; γ).

Consider now the special case K = 1, L = ∞, β = 0, and study the difference
set

D(γ) = H̃−
1,∞(0; γ) \ H̃+

1,∞(0; γ).
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We estimate the area of the difference set D(γ):

area(D(γ)) = O(1)
∫ ∞

1

(
1

2
√

2y − 1
− 1

2
√

2y + 1

)
dy

= O(1)
∫ ∞

1

dy

8y2 − 1
= O(1).

Combining this with Lemma 3.1, we have

(3.12)
∫ 1

0

∫ 1

0
|(D(γ) + v) ∩ Z

2| dv = area(D(γ)) < ∞.

If v = (v1, v2) ∈ [0, 1)2 is chosen in such a way that v1 − v2

√
2 ≡ β (mod 1)

is fixed, then

(3.13) D(γ) + v ⊃ HK,L(β; γ) � H̃+
K,L(β; γ),

where A � B = (A \ B) ∪ (B \ A) is the symmetric difference of A and B.
Combining (3.12) and (3.13), Lemma 1.2 easily follows.

3.5. Proof of Lemma 2.1

Consider a rectangle of slope 1/
√

2 which contains two lattice points P =
(k, �) and Q = (m,n); in fact, assume that P,Q are two corner-points of
the rectangle. Let PQ-vector= v = (m − k, n − �), and consider the two
perpendicular unit vectors

e1 =

(√
2√
3
,

d√
3

)
and e2 =

(
d√
3
,
−
√

2√
3

)
.

Then the two sides, a and b, of the rectangle can be expressed in terms of
the inner products e1 · v and e2 · v:

a = |e1 · v| =
|p
√

2 + q|√
3

and b = |e2 · v| =
|p − q

√
2|√

3
,

where p = m − k and q = n − �. Thus we have

area = ab =
|p
√

2 + q| · |p − q
√

2|
3

.
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Without loss of generality we can assume that p ≥ 0 and q ≥ 0. Since
(p, q) �= (0, 0), we have

|p − q
√

2| =
|p2 − 2q2|
p + q

√
2

=
1

p + q
√

2
,

and so

area =
|p
√

2 + q| · |p − q
√

2|
3

≥ 1
3
· p

√
2 + q

p + q
√

2

≥ 1
3
· p/

√
2 + q

p + q
√

2
=

d

3
√

2
>

1
5
,

proving Lemma 2.1.

3.6. Proof of Theorem 1

We show that the set of β’s in question (“set of divergence points”) contains
a Cantor set. This guarantees that the cardinality of the set is continuum.

We make a standard Cantor set construction, i.e., we apply the method
of “nested intervals”. For notational convenience, we write F (

√
2;β; γ;N) =

F (β; γ;N). By (1.30),∫ 1

0
F (β; γ;N) dβ =

γ√
2

log N + O(1),

and applying it with γ = 1/4, we obtain the existence of a 0 < β1 < 1 and
an arbitrarily large integer N1 such that

F (β1; γ = 1/4;N1) >
1
8

log N1.

Since 1/4 < 1/2, there is an interval I1 = [a, b] with 0 < a < b < 1 such that
β1 ∈ I1 and

(3.14) F (β; γ = 1/2;N1) >
1
8

log N1 for all β ∈ I1.

Next let n = (n1, n2) ∈ Z
2 be a lattice point such that β2 = n1 − n2

√
2 ∈

I1. Since the equation |x2 − 2y2| ≤ 3/4 does not have a non-zero integral
solution, trivially

F (β2; γ = 3/4;N) <
1

100
log N for all N ≥ N2,



Lattice point counting and the probabilistic method 201

where N2 < ∞ is a sufficiently large threshold. We can clearly assume that
N2 > N1. Since 3/4 > 1/2, there is an interval I2 = [a, b] with some 0 < a <
b < 1 (a and b are generic numbers) such that β2 ∈ I2 and

(3.15) F (β; γ = 1/2;N2) <
1

100
log N2 for all β ∈ I2.

We can clearly assume that I2 is a proper subinterval of I1. Let I(0) = I2,
and repeating the second argument, there is another closed subinterval I(1)
such that, I(0) ∪ I(1) ⊂ I1, I(0) and I(1) are disjoint, and

(3.16) F (β; γ = 1/2;N (1)
2 ) <

1
100

log N
(1)
2 for all β ∈ I(1).

We can clearly assume that N
(1)
2 > N1.

By (1.31),

1
|I(0)|

∫
I(0)

F (β; γ;N) dβ = (1 + o(1))
γ√
2

log N,

and applying it with γ = 1/4, we obtain the existence of a 0 < β3 < 1 and
a large integer N3 such that

F (β3; γ = 1/4;N3) >
1
8

log N3.

Since 1/4 < 1/2, there is an interval I3 = [a, b] with 0 < a < b < 1 such that
β3 ∈ I3 and

(3.17) F (β; γ = 1/2;N3) >
1
8

log N3 for all β ∈ I3.

We can clearly assume that I3 is a proper subinterval of I(0). Write I(0, 0) =
I3. Similarly, there is another subinterval I(0, 1) such that, I(0, 0)∪I(0, 1) ⊂
I(0), I(0, 0) and I(0, 1) are disjoint, and

(3.18) F (β; γ = 1/2;N (1)
3 ) >

1
8

log N
(1)
3 for all β ∈ I(0, 1).

There are similar disjoint subintervals I(1, 0) and I(1, 1) of I(1).
Next let n = (n1, n2) ∈ Z

2 be a lattice point such that β4 = n1−n2

√
2 ∈

I(0, 0). Since the equation |x2 − 2y2| ≤ 3/4 does not have a non-trivial
integral solution,

F (β4; γ = 3/4;N) <
1

100
log N for all N ≥ N4,
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where N4 < ∞ is a sufficiently large threshold. We can clearly assume that
N4 > N3. Since 3/4 > 1/2, there is an interval I4 = [a, b] with 0 < a < b < 1
such that β4 ∈ I4 and

(3.19) F (β; γ = 1/2;N4) <
1

100
log N4 for all β ∈ I4.

We can clearly assume that I4 is a proper subinterval of I(0, 0). Let I(0, 0, 0) =
I4, and repeating the last argument, there is another closed subinterval
I(0, 0, 1) such that, I(0, 0, 0) ∪ I(0, 0, 1) ⊂ I(0, 0), I(0, 0, 0) and I(0, 0, 1)
are disjoint, and

(3.20) F (β; γ = 1/2;N (1)
4 ) <

1
100

log N
(1)
4 for all β ∈ I(0, 0, 1),

and so on. Repeating this argument, we build an infinite binary tree:

I1 ⊃ Iε1 ⊃ Iε1,ε2 ⊃ Iε1,ε2,ε3 ⊃ · · ·

where ε1 = 0 or 1, ε2 = 0 or 1, ε3 = 0 or 1, and so on.
For an arbitrary infinite 0–1 sequence ε1, ε2, ε3, . . ., let

β ∈ I1 ∩ Iε1 ∩ Iε1,ε2 ∩ Iε1,ε2,ε3 ∩ · · · ,

then by (3.14)–(3.20) there is an infinite sequence 1 < M1 < M2 < M3 <
M4 < . . . of integers such that

F (β; γ = 1/2;M2k−1) >
1
8

log M2k−1

and

F (β; γ = 1/2;M2k) <
1

100
log M2k,

where k = 1, 2, 3, . . . . This proves Theorem 1.

4. Proof of Theorem 2: Markov chains

4.1. Quadratic irrational scale and Markov chains

Instead of using the familiar decimal representation of real numbers, we
switch to the unusual “(1 +

√
2) scale representation” of the translation

constant β. The “(1 +
√

2) scale representation” of real numbers goes as



Lattice point counting and the probabilistic method 203

follows. Since 2 < 1 +
√

2 < 3, we can certainly write every real 0 < β < 1
in the form

(4.1) β =
b1

1 +
√

2
+

b2

(1 +
√

2)2
+

b3

(1 +
√

2)3
+ · · ·

where bi ∈ {0, 1, 2} for every i ≥ 1, but this representation is clearly not
unique. Since

(4.2a) 2(1 +
√

2)−1 + (1 +
√

2)−2 = 2(
√

2 − 1) + (3 − 2
√

2) = 1,

and in general,

(4.2b) 2(1 +
√

2)−i + (1 +
√

2)−i−1 = (1 +
√

2)−i+1,

we can guarantee uniqueness by enforcing the following Extra Rule in (4.1):

(4.3) bi = 2 implies bi+1 = 0.

We also use a somewhat similar representation for any integer n; the novelty
is alternation. To motivate this “alternating representation”, I recall the fact
that (1 +

√
2)j = pj + qj

√
2, j = 1, 2, 3, . . . describes the whole family of

positive solutions 1 ≤ x = pj , 1 ≤ y = qj of the Pell equation x2−2y2 = ±1.
It follows that (1 −

√
2)j = pj − qj

√
2, implying

(4.4) qj

√
2 − pj = −(1 −

√
2)j =

(−1)j+1

(1 +
√

2)j
,

that is, the distance of qj

√
2 from the nearest integer has an alternating

positive-negative behavior as j = 1, 2, 3, . . ..
This alternating nature of qj

√
2−pj motivates the following “alternating

representation of integers”: we search for n in the form with k odd

(4.5) n = dkqk − dk−1qk−1 + dk−2qk−2 − dk−3qk−3 + dk−4qk−4 ∓ . . .

where dj ∈ {0, 1, 2} for all j ≤ k, and dk �= 0. Here qj is the “y” in the jth
positive solution of the Pell equation x2 − 2y2 = ±1, that is,

(4.6) qj =
(1 +

√
2)j − (1 −

√
2)j

2
√

2
.
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The reason why (4.1) and (4.5) form a perfect match is explained by the
following argument:

n
√

2 − β =
k∑

j=1

(
(−1)j+1djqj

√
2 − bj(1 +

√
2)−j

)
−
∑
i>k

bi(1 +
√

2)−i,

and so by working modulo one we have (see (4.4))

n
√

2 − β ≡
k∑

j=1

(
(−1)j+1dj(qj

√
2 − pj) − bj(1 +

√
2)−j

)
−
∑
i>k

bi(1 +
√

2)−i

≡
k∑

j=1

(
(dj − bj)(1 +

√
2)−j

)
−
∑
i>k

bi(1 +
√

2)−i,(4.7)

where (4.7) is a (mod 1) equality. Formula (4.7) tells us how to find an
integer n such that ‖n

√
2 − β‖ is “very small”. Assume that the (1 +

√
2)

scale representation of β (see (4.1)) has a long block of consecutive 0s: there
is an odd k such that

(4.8) bk �= 0, bk+1 = bk+2 = bk+1 = · · · = bk+� = 0,

where � is “large”. Choose an integer n in the form (4.5) such that

(4.9) dj = bj for 1 ≤ j ≤ k.

Then by (4.7)

‖n
√

2 − β‖ ≤
∑

i>k+�

bi(1 +
√

2)−i

≤
∑

i>k+�

2(1 +
√

2)−i =
√

2
(1 +

√
2)k+�

(4.10)

where � is defined by (4.10); it is the length of the zero-block.
Let’s apply (4.9) in (4.5); I claim that the resulting n satisfies the lower

bound (recall that k is odd)

(4.11) n ≥ qk−1.

Indeed, since dk = bk �= 0, by the Extra Rule we have dk−1 = bk−1 �= 2, and
so

(4.12) n ≥ qk − qk−1 − 2qk−3 − 2qk−5 − qk−7 − · · · .
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We have
qk − qk−1 = qk−1 + qk−2,

qk−2 − 2qk−3 = qk−4,

qk−4 − 2qk−5 = qk−6,

and so on, and using these inequalities in (4.12) we obtain (4.11).
On the other hand, we have the easy upper bound

(4.13) n ≤ qk+1.

Indeed,

(4.14) n ≤ 2qk + 2qk−2 + 2qk−4 + 2qk−6 + · · · ,

and because 2qi = qi+1 − qi−1, the right-hand side of (4.14) is a telescoping
sum, implying (4.13).

By using formula (4.6) in (4.10) we have

‖n
√

2 − β‖ ≤
√

2
(1 +

√
2)k+�

=
2
√

2
(1 +

√
2)k+1

1
2(1 +

√
2)�−1

<
1

qk+1
· 1
(1 +

√
2)�−1

≤ 1
n
· 1
(1 +

√
2)�−1

,(4.15)

where in the last step we used (4.13), qk−1 ≤ n ≤ qk+1, and � is defined by
(4.8) (it is the length of the zero-block).

In view of (4.15) and (4.8) we can say that, the longer the zero-block in
(4.8), the better inequality (4.15). This leads to the following question: Why
is it true that almost all real numbers 0 < β < 1 contain “long” zero-blocks
of the “digits” in the (1 +

√
2) scale representation (see (4.1))?

The digit sequence b1 = b1(β), b2 = b2(β), b3 = b3(β), . . . in (4.1)
does not form independent random variables as β runs in the unit interval
0 < β < 1: the Extra Rule “bi = 2 implies bi+1 = 0” clearly contradicts (sta-
tistical) independence. What we have here is in fact a homogeneous Markov
chain.

A good way to define a (finite) Markov chain is to look at it as an asym-
metric random walk on a (finite) directed graph (with loops and multiple
edges). For example, our concrete Markov chain b1 = b1(β), b2 = b2(β),
b3 = b3(β), · · · can be visualized as an asymmetric random walk on a di-
rected graph with 3 vertices. The vertices are officially called states. Our
Markov chain has three states: 0, 1, and 2, representing the three possible
values bk = bk(β) = 0 or 1 or 2.
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A homogeneous Markov chain has a short term memory in the following
sense: conditional upon the present, the future does not depend on the past.

The transition matrix A = (pi,j)i,j (0 ≤ i, j ≤ 2) with the transition
probabilities pi,j =“probability to go from state i to state j (in one step)”
completely describes a homogeneous Markov chain. In our special case

(4.16) A =

⎛⎜⎝p0,0 p0,1 p0,2

p1,0 p1,1 p1,2

p2,0 p2,1 p2,2

⎞⎟⎠ =

⎛⎜⎝τ τ τ2

τ τ τ2

1 0 0

⎞⎟⎠
where τ =

√
2 − 1 = (

√
2 + 1)−1.

The steady-state behavior (or long-term behavior) of the Markov chain
is described by the stationary distribution q = (q0, q1, q2), which is a prob-
ability distribution satisfying the fixpoint equation

(4.17) q = qA, that is, qj = q0p0,j + q1p1,j + q2p2,j , j = 0, 1, 2

A simple calculation gives

(4.18) q0 =
1
2
, q1 =

√
2

4
, q2 =

2 −
√

2
4

= τq1

The stationary (or fixpoint) distribution is also a limit distribution in the
following sense (justifying the name “long-term behavior”). The kth power
Ak of the transition matrix represents the k-step transition probabilities
pi,j(k) =“probability to go from state i to state j in k steps”: Ak = (pi,j(k))i,j

(0 ≤ i, j ≤ 2). The eigenvalues λ1, λ2, λ3 of the transition matrix are λ1 = 1,
λ2 = −τ2 = 2

√
2 − 3, λ3 = 0, so we can rewrite the transition matrix as

A = B−1

⎛⎜⎝λ1 0 0
0 λ2 0
0 0 λ3

⎞⎟⎠B

for some invertible matrix B, and we obtain

(4.19) Ak = B−1

⎛⎜⎝λk
1 0 0
0 λk

2 0
0 0 λk

3

⎞⎟⎠B = B−1

⎛⎜⎝1 0 0
0 (2

√
2 − 3)k 0

0 0 0

⎞⎟⎠B

By (4.19) we have the following simple formula for the k-step transition
probabilities:

(4.20) pi,j(k) = qj + ci,j(2
√

2 − 3)k,
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where q0 = 1/2, q1 =
√

2/4, q2 = (2 −
√

2)/4 is the stationary distribution
(see (4.17) and (4.18)), and ci,j are appropriate constants independent of k.
Since |2

√
2− 3| < 1 (in fact < 1/5), (4.20) tells us that the k-step transition

probability pi,j(k) converges to qj , as k → ∞, exponentially fast.
It is worthwhile to know the recipe how to determine the constant factors

ci,j in (4.20). Comparing (4.16) to (4.20) with k = 1, we have

τ = p0,0 = q0 − c0,0τ
2 =⇒ c0,0 =

1/2 − τ

τ2
,

and similarly,

c1,0 =
1/2 − τ

τ2
, c2,0 =

1
2τ2

,

c0,1 =
√

2/4 − τ

τ2
= c1,1, c2,1 =

√
2/4τ2,

c0,2 =
2 −

√
2

4τ2
− 1 = c1,2, c2,2 =

2 −
√

2
4τ2

.

Even if equation (4.20) is relatively simple, it is rather inconvenient
to work with the k-step transition probabilities pi,j(k). Luckily there is a
simple way to go back to independence: the trick is to switch to “0”, “1”,
“20” (instead of the original values “0”, “1”, “2”); formally,

(4.21) b1b2b3 . . . = B1B2B3 . . . where Bi = 0 or 1 or 20.

The sequence defined by (4.21)

(4.22) B1(β), B2(β), B3(β), . . . as 0 < β < 1

does form independent random variables with common distribution

(4.23)
Pr[Bi = 0] = Pr[Bi = 1] =

√
2− 1 and Pr[Bi = 20] = (

√
2− 1)2 = 3− 2

√
2,

where Pr (i.e., “probability”) means the ordinary one-dimensional Lebesgue
measure.

The independence in (4.22) comes from self-similarity, that is to say, it
is a corollary of the one-digit periodicity of the continued fraction

√
2 =

[1; 2, 2, 2, . . .].
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Notice that (4.23) is just a restatement of (4.2)–(4.3), or using the
Markov chain terminology, (4.23) comes from the first two rows of the tran-
sition matrix in (4.16) (the third row explains the use of “20” instead of
“2”).

A long zero-block of bis is equivalent to a long zero-block of Bis (with a
possible loss of “20” at the beginning), so we reduced our number-theoretic
problem to a purely probabilistic question—long runs of 0s—for indepen-
dent trials. The simplest probabilistic model comes from tossing a fair coin
repeatedly, and then the analog problem is to study the long runs of Heads.
This natural problem is somehow ignored by practically all textbooks of
probability theory, so we have to make a detour here to solve this prob-
lem.

4.2. Long runs of Heads

Suppose that we toss a fair coin N times, and write down the outcomes; thus
we obtain a TH-sequence where T and H stand for Tails and Heads: say
THHTHTHTT . . . THH . Let L = L(N) denote the length of the longest
block of consecutive Heads. This L is a random variable with possible values
0 ≤ L ≤ N . What is the typical size of L = L(N)? It is easy to guess
that L = L(N) ≈ log2 N (binary logarithm of N). What is surprising is
that L = L(N) is in fact concentrated on a constant number of values
log2 N +O(1) centered at log2 N with probability close to one. The following
result gives the complete answer (we don’t really need such a delicate result,
but the proof is short and very instructive).

Lemma 4.1. For simplicity assume that N is a power of two (i.e., log2 N

is an integer); then for any fixed integer d we have

(4.24) Pr[L = L(N) = log2 N + d] = e−2−d−2 − e−2−d−1
+ o(1),

where the error term o(1) tends to zero if d is fixed and N → ∞.

Remarks. As far as I know, the study of L(n) goes back (at least) to Erdős
and Rényi, but this particular result seems to be unpublished. I learned it
from János Komlós (oral communication)—it is probably his (unpublished)
theorem, or perhaps it is folklore; I don’t know.

The maximum of the exponential expression in (4.24) is attained at
d = −1, and d = −2, 0,−3, 1 give the remaining relatively large values in
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decreasing order:

e−1/2 − e−1 = 0.2387 for d = −1

e−1 − e−2 = 0.2325 for d = −2

e−1/4 − e−1/2 = 0.1723 for d = 0

e−2 − e−4 = 0.1174 for d = −3

e−1/8 − e−1/4 = 0.1037 for d = 1.

Notice that the five values d = −1,−2, 0,−3, 1 represent more than 85 per-
cent probability, so the longest run of Heads L = L(N) is basically concen-
trated on a constant number of values log2 N + O(1). There is nothing sur-
prising about log2 N , but the extreme concentration around log2 N + O(1),
and the elegant limit theorem above is truly surprising.

Since this result is primarily an illustration, the proof below is somewhat
sketchy; I leave some details of the calculations to the reader.

Proof of Lemma 4.1. We are going to prove

(4.25) Pr[L = L(N) ≥ log2 N + d] = 1 − e−2−d−1
+ o(1).

Notice that (4.25) immediately implies (4.24); indeed,

Pr[L = L(N) = log2 N + d] = Pr[L = L(N)
≥ log2 N + d] − Pr[L = L(N) ≥ log2 N + d + 1]

=
(
1 − e−2−d−1

+ o(1)
)
−
(
1 − e−2−d−2

+ o(1)
)

= e−2−d−2 − e−2−d−1
+ o(1).

The proof of (4.25) uses the Inclusion-Exclusion Principle and the trick is to
include the “T” at both endpoints of the longest run of Heads. This way the
evaluation of the usually very messy Inclusion-Exclusion formula becomes a
routine exercise for the Poisson paradigm.

More precisely, if H · · ·H is the longest block of consecutive Heads, then
there is a T at both ends (unless the block is already at the end, i.e., it begins
at 1 or ends at N), and we consider the T -closed H-block TH · · ·HT , or
possibly H · · ·HT (if it begins at 1) or TH · · ·H (if it ends at N). The crucial
property of the T -closed H-blocks is that they cannot overlap, except that
they may share a common T at the end.

Let E(i, j) denote the event that the ith outcome is Tails, the rth out-
come is Heads with i + 1 ≤ r ≤ i + j, and the (i + j + 1)st outcome is Tails
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again; this is a typical T -closed H-block TH · · ·HT . Also, let Estart(j) de-
note the event that the rth outcome is Heads with 1 ≤ r ≤ j, and the (j+1)st
outcome is Tails; this is a T -closed H-block H · · ·HT that begins at 1. Fi-
nally, let Eend(j) denote the event that the (N − j)th outcome is Tails, and
the rth outcome is Heads with N−j+1 ≤ r ≤ N ; this is a T -closed H-block
H · · ·HT that ends at N . Notice that the event {L = L(N) ≥ log2 N + d}
is the union of the events

(4.26) A1 =
⋃

E(i, j) where 1 ≤ i, i + j + 1 ≤ N, j ≥ log2 N + d

and

(4.27) A2 =
⋃

Estart(j) where N ≥ j ≥ log2 N + d

and

(4.28) A3 =
⋃

Eend(j) where N ≥ j ≥ log2 N + d.

To compute the probability of a union of events, we have to use the
Inclusion-Exclusion formula

(4.29)
Pr [∪iEi] =

∑
i

Pr[Ei]−
∑

i1<i2

Pr[Ei1 ∩Ei2 ] +
∑

i1<i2<i3

Pr[Ei1 ∩Ei2 ∩Ei3 ]∓ · · ·

(4.29) is rather hopeless in general (it contains too many terms), but be-
cause of symmetry and the non-overlapping of the T -closed H-blocks, for
the unions (4.26)–(4.28) this turns out to be a relatively simple calculation.

Note that

(4.30)
Pr[E(i, j)] = 2−j−2, Pr[Estart(j)] = 2−j−1, Pr[Eend(j)] = 2−j−1,

and so the linear part of (4.29) (see the first sum on the right-hand side) is
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easy to evaluate: let n = log2 N , then

Linear[A1] =
∑

n+d≤j≤N−2

∑
1≤i≤N−j−1

2−j−2

=
∑

n+d≤j≤N−2

∑
1≤i≤N−j−1

2−j−2

=
∑

n+d≤j≤N−2

(N − j − 1)2−j−2

= (N − n − d − 1)
∑

j≥n+d

2−j−2

− 2−n−d−1

(
1
2

+ 2
(

1
2

)2

+ 3
(

1
2

)3

+ · · ·
)

= (N − n − d − 1)2−n−d−1 − 2−n−d−1 + O(N2−N ).(4.31)

A similar but simpler argument gives

(4.32) Linear[A2] = Linear[A3] = 2−n−d + O(2−N ).

Summarizing, by (4.31)–(4.32) the linear part of (4.29) with A1 ∪ A2 ∪ A3

equals

Linear part = (N − n − d + 2)2−n−d−1 + O(N2−N )

=
(

1 − n + d − 2
N

)
2−d−1 + O(N2−N ),(4.33)

because N = 2n. We can further simplify (4.33) to the very short form

(4.34) Linear part = 2−d−1 + negligible.

Next consider the contribution of the “pairwise intersections” in (4.29)
with A1 ∪ A2 ∪ A3. We don’t want the exact solution, we just want to
find the analog of the very short form (4.34). If two T -closed H-blocks
overlap (more than just sharing a common T ), then the intersection of the
corresponding events has zero probability, so this case has no contribution
in (4.29). Otherwise we have

Pr[E(i1, j1) ∩ E(i2, j2)] = 2−j1−2−j2−2 or 2−j1−2−j2−1

depending on whether the two T -closed H-blocks are disjoint or share a
common T . It is clear that the main contribution comes from the disjoint
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case, the rest are negligible. Formally,

Pairwise intersections =

(
N

2

)⎛⎝ ∑
j1≥n+d

2−j1−2

⎞⎠⎛⎝ ∑
j2≥n+d

2−j2−2

⎞⎠
+ negligible

=

(
N

2

)(
2−n−d−1

)2
+ negligible

=
1
2

(
2−d−1

)2
+ negligible.(4.35)

Similarly, the contribution of the triple intersections in (4.29) with A1∪A2∪
A3 equals

Triple intersections =

(
N

3

)⎛⎝ ∑
j1≥n+d

2−j1−2

⎞⎠⎛⎝ ∑
j2≥n+d

2−j2−2

⎞⎠⎛⎝ ∑
j3≥n+d

2−j3−2

⎞⎠
+ negligible

=

(
N

3

)(
2−n−d−1

)3
+ negligible

=
1
3!

(
2−d−1

)3
+ negligible,(4.36)

and so on.
Summarizing, by (4.29), (4.34)–(4.36),

Pr[L = L(N) ≥ log2 N + d] = λ − λ2

2!
+

λ3

3!
∓ · · · + negligible

= 1 − e−λ + negligible,(4.37)

where λ = 2−d−1. Here the error term indicated by the vague term “negli-
gible” tends to zero as d remains fixed and N → ∞; I challenge the reader
to double-check this fact. Thus (4.37) proves (4.25), completing the proof of
Lemma 4.1.

The goal of Lemma 4.1 was to justify the main term log2 N . But what
we are really interested in is the behavior of the long runs in an infinite
sequence of independent trials (Heads-and-Tails). Let L∞(N) denote the
length of the longest run of Heads among the first N trials (coin-tossings),
N = 1, 2, 3, . . .. Lemma 4.1 describes the typical behavior for a fixed N : the
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longest run is log2 N + O(1) with probability close to one. We are going
to prove that, with probability one, there are infinitely many values of N
such that the surplus L∞(N)− log2 N tends to infinity with the rate of the
iterated logarithm.

More precisely, we prove

Lemma 4.2. With probability one, there are infinitely many values of N
such that

(4.38) L∞(N) > log2 N + log2 log N.

On the other hand, with probability one, for any ε > 0 we have the upper
bound

(4.39) L∞(N) < log2 N + (1 + ε) log2 log N

for all sufficiently large N .

Remarks. The intuitive reason behind (4.38)–(4.39) is divergence-conver-
gence:

(4.40)
∑
N≥2

2− log2 N−log2 log N =
∑
N≥2

1
N log N

= ∞,

but

(4.41)
∑
N≥2

2− log2 N−(1+ε) log2 log N =
∑
N≥2

1
N(log N)1+ε

< ∞.

Proof. The proof of Lemma 4.2 is similar to that of Lemma 4.1; the minor
difference is that the Inclusion-Exclusion formula is replaced by Chebyshev’s
well-known inequality. Again the non-overlapping property of the T -closed
H-blocks plays a crucial technical role to simplify the calculations in the
proof (see Cases 1-2-3 after (4.46)).

Let Fn denote the event that the (n − k)th outcome is Tails, the rth
outcome is Heads with n−k +1 ≤ r ≤ n, and the (n+1)st outcome is Tails
again, where k = k(n) = log2 n + log2 log n (take the lower integral part,
and assume that n > 10). Event Fn means a particular T -closed H-block
TH · · ·HT ; the probability is 2−k−2. Then by (4.40)

(4.42)
∑

n>10

Pr [Fn] = ∞.
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Let χn denote the characteristic function of event Fn: χn = 1 or 0 depending
on whether Fn holds or fails. The sum

(4.43) XM =
∑

10<n≤M

χn

counts the number of times inequality (4.38) holds for some 10 < n ≤ M .
The expectation of XM is

EXM =
∑

10<n≤M

Pr [Fn] =
∑

10<n≤M

2− log2 n−log2 log n−2

=
∑

10<n≤M

1
4n log n

=
1
4

log log M + O(1).(4.44)

We want to show that the random variable XM is typically “close” to its
expected value (4.44). The standard way to do this is to apply the Chebyshev
inequality. We need to compute the variance:

V ar(XM ) = E

⎛⎝ ∑
10<n≤M

(χn − En)

⎞⎠2

=
∑

10<n≤M

E(χn − En)2

+ 2
∑

10<n1<n2≤M

E(χn1 − En1)(χn2 − En2),(4.45)

where
En = Eχn = Pr [Fn]

is the expectation of χn. Clearly (n1 �= n2)

(4.46) E(χn1 − En1)(χn2 − En2) = E(χn1χn2 − En1En2),

so we have to study Eχn1χn2 . There are three cases.

Case 1: If the corresponding T -closed H-blocks are disjoint, then Eχn1χn2 =
En1En2 , which has zero contribution in (4.46).

Case 2: If the corresponding T -closed H-blocks are “touching”, i.e., they
share a common T , then Eχn1χn2 = 2En1En2 .

Case 3: If the corresponding T -closed H-blocks are overlapping (more than
just touching), then Pr[Fn1Fn2 ] = 0 (i.e., this case is impossible), which
implies E(χn1χn2) = 0. Therefore this case has negative(!) contribution
in (4.46).
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Let’s return to (4.45). The contribution of the diagonal part∑
10<n≤M

E(χn − En)2

in (4.45) is less than EXM , since

E(χn − En)2 = Pr[Fn](1 − Pr[Fn]) < Pr[Fn].

Also, the contribution of Case 2 in the off-diagonal part of (4.45) is less than

2
∑

10<n≤M

Pr [Fn] = 2EXM .

Thus we have the upper bound

(4.47) V ar(XM ) = E

⎛⎝ ∑
10<n≤M

(χn − En)

⎞⎠2

< 3EXM .

We apply Chebyshev’s inequality

(4.48) Pr [|X − EX| ≥ λ] ≤ V ar(X)
λ2

,

which holds for any random variable X (with finite variance) and any posi-
tive real λ: let

X = XM and λ =
1
2
EXM .

Then by (4.47)

(4.49) Pr
[
XM ≥ 1

2
EXM

]
≥ 1 − 12

EXM
.

In view of (4.44) we have EXM → ∞ as M → ∞. Combining this with (4.49)
we conclude that, with probability one, inequality (4.38) has infinitely many
solutions. This proves the first part of Lemma 4.2.

The second part is almost trivial. Indeed, let Gn denote the event that
the (n − �)th outcome is Tails, the rth outcome is Heads with n − � + 1 ≤
r ≤ n, and the (n + 1)st outcome is Tails again, where � = �(n) = log2 n +
(1 + ε) log2 log n with some fixed ε > 0 (again we take the lower integral
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part, and assume that n > 10). This means a particular T -closed H-block
TH · · ·HT that has probability 2−�−2. Then by (4.41)

(4.50)
∑

n>10

Pr [Gn] < ∞.

Consider the event

(4.51) H =
⋂

n>10

⋃
m≥n

Gm;

by (4.50) the probability of H is zero. This proves the second part of
Lemma 4.2.

A detour: the two Borel–Cantelli Lemmas The last argument is often
called the “easy part of the Borel–Cantelli Lemma”. The “harder part of the
Borel–Cantelli Lemma” is some kind of a converse: it states that, if Gn is
an infinite sequence of independent events with

(4.52)
∑
n

Pr [Gn] = ∞,

then the probability of event H (see (4.51)) is one. Notice that with Gn = Fn

we cannot apply this criterion, since the events Fn are not independent if
the corresponding T -closed H-blocks are touching or overlapping. This is
why we couldn’t apply the “harder part of the Borel–Cantelli Lemma”, and
had to turn to the Chebyshev inequality instead. It is important to notice
that the correct proof with the Chebyshev inequality gives exactly the same
divergence condition as the incorrect argument applying the “harder part of
the Borel–Cantelli Lemma”.

Repeating the proof of Lemma 4.2 one can easily prove the following
more general convergence-divergence type result.

Lemma 4.3. If ϕ(N) is any increasing function of N for which

∑
N

d

ϕ(N)
= ∞,

then with probability one, the longest run of Heads up to N satisfies the
lower bound

(4.53) L∞(N) > log2 ϕ(N)
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for infinitely many values of N .
On the other hand, if ∑

N

d

ϕ(N)
< ∞,

then with probability one, the longest run of Heads up to N satisfies the
upper bound

L∞(N) < log2 ϕ(N)

for all sufficiently large values of N .

Notice that in the special cases

ϕ(N) = N log N and ϕ(N) = N(log N)1+ε

we get back Lemma 4.2.

Proof. Now we are ready to prove Theorem 2 (i.e., the Area Principle for
slope

√
2). Let’s return to (4.15) and (4.21)–(4.23). In view of (4.23) we have

to replace the fair coin with an asymmetric discrete probability distribution:
B1, B2, B3, . . . are independent and identically distributed random variables
having values 0, 1 and “20” with the distribution

(4.54)
Pr[Bi = 0] = Pr[Bi = 1] =

√
2− 1 and Pr[Bi = 20] = (

√
2− 1)2 = 3− 2

√
2,

and we are interested in the long runs of 0s. Let L∗
∞(N) denote the length of

the longest run of 0s among B1, B2, . . . , BN ; of course, L∗
∞(N) is a random

variable. Lemma 4.3 is about the longest run of Heads in tossing a fair coin
repeatedly, and for a fair coin Pr[Heads] = 1/2. Since in our case

Pr[Bi = 0] =
√

2 − 1 =
1

1 +
√

2
,

it is perfectly reasonable to expect the following analog of (4.53): with prob-
ability one

(4.55) L∗
∞(N) > logb ϕ(N)

for infinitely many values of N , where logb denotes the base b = 1 +
√

2
logarithm and ϕ(N) is any positive increasing function of N for which

(4.56)
∑
N

d

ϕ(N)
= ∞.
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The proof of (4.55)–(4.56) is the same as that of Lemma 4.3; I leave it to
the reader.

If condition (4.56) applies, then by (4.55) there are infinitely many zero-
blocks

(4.57) Bk �= 0, Bk+1 = Bk+2 = · · · = Bk+� = 0

where � = �(k) satisfies the equation � = logb ϕ(k + �); the base of the
logarithm is b = 1 +

√
2. Because of independence, we have

(4.58) Pr[Bk+1 = Bk+2 = · · · = Bk+� = 0] = b−� =
1

ϕ(k + �)
.

There is a technical nuisance due to the slight difference between the B-
indexing and the b-indexing in (4.21): this is the effect of the pairs “20”.
More precisely, if Bi = 0 then Bi = bj where j = i + i2 and i2 denotes the
number of pairs Bk = 20 with k < i. By the strong law of large numbers,
with probability one, i2/i → 3 − 2

√
2 as i → ∞ (see (4.54)). It follows that

0 = Bi = bj = bj(i) implies

(4.59) j = j(i) = (1 + (3 − 2
√

2) + o(1))i as i → ∞.

Thus we can rewrite (4.57):

(4.60) bj+1 = bj+2 = · · · = bj+� = 0 where j ≤ (1 + (3 − 2
√

2) + o(1))k.

Then by (4.9)–(4.11) there is an integer n in qj ≤ n < qj+1 such that

(4.61) ‖n
√

2 − β‖ ≤ 1
nϕ(k + l)

≤ 1
nϕ(logc n)

;

here c > 1, the base of the logarithm, is some appropriate constant.
Note that, by using the substitution y = log x, we have the equidiver-

gence property:

∞∑
n=2

1
nϕ(log n)

= ∞ ⇐⇒
∫ ∞

2

dx

xϕ(log x)
= ∞

⇐⇒
∫ ∞

1

dy

ϕ(y)
= ∞ ⇐⇒

∞∑
n=1

1
ϕ(n)

= ∞;(4.62)
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and here the base of the logarithm is irrelevant. In view of this, the technical
nuisance due to the discrepancy between the B-indexing and b-indexing
(see (4.59)) is also irrelevant. Therefore, (4.61)–(4.62) complete the proof of
Theorem 2.

5. The Area Principle in general: Proof of Theorem 3

We heavily use the theory of continued fractions. (Of course, this is not very
surprising, since the complete solution of the homogeneous inequality (2.18),
or (1.15), was determined by Euler and Lagrange exactly by using the very
same tool: the theory of continued fractions.) Also, at the end of the proof,
we will apply the Chebyshev inequality.

I begin with the so-called Ostrowski representation of integers with
respect to any fixed irrational 0 < α < 1, given by the continued frac-
tion

α =
d

a1 +
1

a2+···

= [a1, a2, a3, . . . ],

[a1, a2, . . . , ak−1] = pk/qk with q1 = 1, q2 = a1, qn = an−1qn−1 + qn−2 for all
n ≥ 3. Since qn = an−1qn−1 + qn−2, every positive integer n can be written
in the form

(5.1) n =
k∑

i=1

diqi, di are integers

where 0 ≤ di ≤ ai (see [Os22]).
An analog of the Ostrowski representation of integers can be developed

for the representation of the real number β. Write

(5.2) θn = qnα − pn, then θn = an−1θn−1 + θn−2.

Note that

(5.3) θn = (−1)n−1|θn|, and |θn−2| = an−1|θn−1| + |θn|.

In the theorem we can assume without loss of generality that 0 < α < 1; so
θ1 = α > 0 and θ2 = a1α − 1 < 0.
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Now every real number β in the interval −α ≤ β < 1 − α of length one
(any interval of length one is fine, since the theorem is about modulo one)
can be written in the form

(5.4) β =
∞∑
i=1

biθi, bi are integers,

where 0 ≤ b1 ≤ a1−1 and 0 ≤ bi ≤ ai for i ≥ 2. We can make representation
(5.4) unique by enforcing the Extra Rule

(5.5) bi = ai implies bi−1 = 0 for all i ≥ 2,

and we also require that

(5.6) b2i+1 �= a2i+1 for infinitely many i.

Note that the minimum value of representation (5.4)–(5.6) is attained at

a2θ2 + a4θ4 + a6θ6 + · · ·
= (−θ1 + θ3) + (−θ3 + θ5) + (−θ5 + θ7) + · · · = −θ1 = −α,(5.7)

and similarly, the maximum value of representation (5.4)–(5.6) is attained
at

(a1 − 1)θ1 + a3θ3 + a5θ5 + · · ·
= (a1 − 1)θ1 + (−θ2 + θ4) + (−θ4 + θ6) + · · ·
= (a1 − 1)θ1 − θ2 = (a1 − 1)α − (1 − a1α) = (1 − α),(5.8)

but because of (5.6), equality in (5.8) cannot occur. This explains the interval
−α ≤ β < 1 − α.

Inserted Remark

Note that representation (5.4)–(5.6) was independently introduced by Cas-
sels [Ca54], Descombes [De56] and V.T. Sós [S58], and it was constantly used
by V.T. Sós in her research of studying the irregularities of the irrational
rotation (see e.g. [S74] and [S83]).
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By (5.1) and (5.4) (we use ≡ to indicate equality modulo one)

nα − β =
k∑

i=1

diqiα −
∞∑
i=1

biθi

≡
k∑

i=1

di(qiα − pi) −
∞∑
i=1

bi(qiα − pi)

≡
k∑

i=1

(di − bi)θi −
∞∑

j>k

bjθj (mod 1).(5.9)

The term ‖nα − β‖ is particularly small if

(5.10) di = bi for 1 ≤ i ≤ k

and also

(5.11) 0 = bk+1 = bk+2 = · · · = bk+�,

meaning a relatively long zero-block of � consecutive coefficients bj—the
same idea as in Section 4. By (5.9)–(5.11)

(5.12) ‖nα − β‖ ≤

∣∣∣∣∣∣
∞∑

j>k+�

bjθj

∣∣∣∣∣∣ ;
the larger �, the better inequality (5.12).

First we need the technical

Lemma 5.1. If bm �= 0 then

(5.13)

∣∣∣∣∣
∞∑

j=m

bjθj

∣∣∣∣∣ ≤ bm|θm| + |θm+1|.

Proof. We have

(−1)m−1

⎛⎝ ∞∑
j=m

bjθj

⎞⎠
= bm|θm| − bm+1|θm+1| + bm+2|θm+2| − bm+3|θm+3| ± · · ·
≥ bm|θm| − bm+1|θm+1| − bm+3|θm+3| − bm+5|θm+5| − · · ·(5.14)
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Since bm �= 0 we have bm+1 ≤ am+1 − 1, and using the recurrence formula
(5.3): |θn−2| = an−1|θn−1| + |θn| repeatedly, we obtain

bm|θm| − bm+1|θm+1| ≥ |θm+1| + |θm+2|,
|θm+2| − bm+3|θm+3| ≥ |θm+4|,
|θm+4| − bm+5|θm+5| ≥ |θm+6|,

and so on. Applying these inequalities in (5.14), we have

(5.15) (−1)m−1

⎛⎝ ∞∑
j=m

bjθj

⎞⎠ ≥ (bm − 1)|θm| + |θm+1|.

On the other hand, by a telescoping sum argument:

(−1)m−1

⎛⎝ ∞∑
j=m

bjθj

⎞⎠ ≤ bm|θm| + bm+2|θm+2| + bm+4|θm+4| + · · ·

≤ bm|θm| + (|θm+1| − |θm+3|)
+ (|θm+3| − |θm+5|) + (|θm+5| − |θm+7|) + · · ·

= bm|θm| + |θm+1|.(5.16)

(5.15)–(5.16) prove Lemma 5.1.

I recall the following well-known fact from the theory of continued frac-
tion:

(5.17)
∣∣∣∣α − pm

qm

∣∣∣∣ < 1
qmqm+1

⇐⇒ |θm| = |qmα − pm| <
d

qm+1
.

By Lemma 5.1 and (5.17) we have the following upper bound in (5.12):

(5.18) ‖nα − β‖ <
1 + bk+�+1

qk+�+2
,

assuming bk+�+1 �= 0 and (5.11) holds. Condition (5.11) defines an integer n

such that

(5.19) bkqk ≤ n =
k∑

i=1

biqi ≤ (bk + 2)qk.
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Now assume that the Area Principle fails for the homogeneous inequality
(2.18); then by (5.17)

(5.20) ψ(qm) <
1

qm+1
for all m ≥ m0.

Let B1 ∈ {1, . . . , ak} be fixed with k ≥ m0, and, motivated by (5.19), we
find a j = j(B1) such that

(5.21) qj <
d

ψ((B1 + 2)qk)
< qj+1.

By (5.20)
d

ψ((B1 + 2)qk)
>

d

ψ(qk)
> qk+1,

implying j = j(B1) ≥ k + 1. We choose a B2 ∈ {1, . . . , aj} such that

(5.22)
1/10

ψ((B1 + 2)qk)
≤ qj+1

B2
≤ d

ψ((B1 + 2)qk)
.

Since j = j(B1) ≥ k + 1, with some appropriate integer � ≥ 0 we can write
j = k + 1 + �, and define the set S(bk = B1, bk+�+1 = B2) as the following
subset of [−α, 1 − α) (see expansion (5.4)):

S(bk = B1, bk+�+1 = B2) = {β ∈ [−α, 1 − α) : bk = B1,

0 = bk+1 = · · · = bk+�, bk+�+1 = B2}.(5.23)

If β ∈ S(bk = B1, bk+�+1 = B2) (see (5.21)–(5.23)) then by (5.18), (5.19),
(5.22) the inhomogeneous inequality

(5.24) ‖nα − β‖ = O(ψ(n)), where the implicit constant is absolute,

has an integral solution n with

(5.25) B1qk ≤ n ≤ (B1 + 2)qk.

Next we compute the Lebesgue measure Meas(S) of the sets S = S(bk =
B1, bk+�+1 = B2) defined by (5.21)–(5.23).

Lemma 5.2. With any B2 ∈ {1, . . . , ak+�+1} we have

Meas (S(bk = B1, bk+�+1 = B2)) =

{
qk|θk+�+1|, if B1 �= ak;
qk−1|θk+�+1|, if B1 = ak.
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Proof. Let �(b1, . . . , bk−1) denote the number of permissible sequences (b1,

. . . , bk−1) satisfying (5.4)–(5.6). Clearly �(b1) = a1 = q2, �(b1, b2) = a1a2 +
1 = q3, and �(b1, . . . , bk−1) satisfies the same recurrence as qi: qi = ai−1qi−1+
qi−2, and so we have

(5.26) �(b1, . . . , bk−1) =

{
qk, if bk = B1 �= ak;
qk−1, if bk = B1 = ak.

Next we study the tail series

(5.27)
∞∑

i=k+�+2

biθi = τ.

Since bk+�+1 = B2 �= 0, we have 0 ≤ bk+�+2 ≤ ak+�+2 − 1. Repeating the
argument (5.7)–(5.8) we have

(5.28) (−1)k+�τ ≤ (ak+�+2 − 1)|θk+�+2| + |θk+�+3|,

and also

(5.29) (−1)k+�τ ≥ −|θk+�+2|

(note that (5.29) is an analog of (5.7) and (5.28) is an analog of (5.8)). It
follows that the tail series (5.27) covers an interval of length

(5.30) ak+�+2|θk+�+2| + |θk+�+3| = |θk+�+1|.

Equations (5.26) and (5.30) prove Lemma 5.2.

Next we estimate the total sum of the measures:∑
(5.21)−(5.23):

k≥m0

Meas (S(bk = B1, bk+�+1 = B2))

≥ const
∑

k≥m0

ak∑
B1=1

∑
B2

qk or qk−1

qk+�+2

≥ const
∑

k≥m0

ak∑
B1=1

qk or qk−1

qk+�+2
ψ((B1 + 2)qk)qk+�+2
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= const
∑

k≥m0

⎛⎝ak−1∑
B1=1

qkψ((B1 + 2)qk) + qk−1ψ((B1 + 2)qk)

⎞⎠
≥ const

∑
n≥qm0

ψ(n) = ∞,(5.31)

where we used Lemma 5.2, (5.22), m0 is defined by (5.20), and as usual,
const stands for a positive absolute constant factor.

In view of (5.24)–(5.25) it suffices to show that almost all β ∈ [−α, 1−α)
are contained by infinitely many sets S(bk = B1, bk+�+1 = B2) defined by
(5.21)–(5.23). Equation (5.31) was the first step in this direction. But we also
need information about the Lebesgue measure of the pairwise intersections

(5.32) S(bk1 = B1, bk1+�1+1 = B2) ∩ S(bk2 = B3, bk2+�2+1 = B4).

We can assume k1 < k2; then intersection (5.32) is the empty set, unless
k1+�1+1 < k2, or possibly k1+�1+1 = k2, B2 = B3. Let d = k2−k1−�1−1
denote the “distance”; we prove that (5.32) is exponentially close to the
product rule in terms of the distance d. This means “exponentially weak
dependence”, a phenomenon well-known among the experts of continued
fraction. For example, this fact has been constantly used by V.T. Sós in her
research concerning the “strong irregularities” of the irrational rotation; see
[S83]. The following useful counting lemma is taken from Sós’s paper.

Lemma 5.3. For every r ≤ t, let Ar,t(B) denote the number of sequences
(br, br+1, . . . , bt) such that

br = B ∈ {1, . . . , ar}, 0 ≤ bi ≤ ai

and bi = ai implies bi−1 = 0 for every i in r < i ≤ t. Then

(5.33) Ar,t(B) = qt+1|θr| + (−1)t−rqr|θt+1|.

Proof. By definition Ar,r(B) = 1. We double-check (5.33) in the special case
t = r by computing the right-hand side of (5.33):

qr+1|qrα − pr| + qr|qr+1α − pr+1|
= qr+1(−1)r(qrα − pr) + qr(−1)r+1(qr+1α − pr+1)
= (−1)r(pr+1qr − qr+1pr) = 1,

proving (5.33) in the simplest case t = r.
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We also have Ar,r+1(B) = ar+1, and

qr+2(−1)r(qrα − pr) + (−1)(r+1)−rqr(−1)r+2(qr+2α − pr+2)
= (−1)r(pr+2qr − qr+2pr)
= (−1)r((ar+1pr+1 + pr)qr − (ar+1qr+1 + qr)pr)
= (−1)rar+1(pr+1qr − qr+1pr) = ar+1,

proving (5.33) for t = r + 1.
Since bi = ai implies bi−1 = 0, we have the recurrence relation

(5.34) Ar,t(B) = atAr,t−1(B) + Ar,t−2(B) for all t > r + 1.

Now we are ready to prove (5.33) by induction on (t − r). We have

Ar,t−j(B) = qt−j+1|θr| + (−1)t−j−rqr|θt−j+1|

for both j = 1, 2, and returning to (5.34), we conclude

Ar,t(B) = at(qt|θr| + (−1)t−1−rqr|θt|) + qt−1|θr| + (−1)t−2−rqr|θt−1|
= |θr|(atqt + qt−1) + (−1)t−rqr(−at|θt| + |θt−1|)
= qt+1|θr| + (−1)t−rqr|θt+1|,

proving (5.33), and this completes the proof of Lemma 5.3.

Now it is easy to compute the measure of the intersection (5.32). First
assume that the distance d = k2−k1−�1−1 is ≥ 1. We know from the proof
of Lemma 5.2 that the number of permissible sequences (b1, b2, . . . , bk1−1)
satisfying (5.4)–(5.6) is qk1 if bk1 = B1 �= ak1 and qk1−1 if bk1 = B1 = ak1 .
By Lemma 5.3 the number of permissible sequences

(bk1+�1+1 = B2 �= 0, bk1+�1+2, . . . , bk2−1)

of length d is

qk2 |θk1+�1+1| + (−1)d+1qk1+�1+1|θk2 | if bk2 = B3 �= ak2

and
qk2−1|θk1+�1+1| + (−1)dqk1+�1+1|θk2−1| if bk2 = B3 = ak2 .

Finally, note that, just like in Lemma 5.2, the tail series

∞∑
i=k2+�2+2

biθi
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completely fills out an interval of length |θk2+�2+1|.
Write

(5.35a) X = S(bk1 = B1, bk1+�1+1 = B2)

and

(5.35b) Y = S(bk2 = B3, bk2+�2+1 = B4).

Lemma 5.4. We have

|Meas(X ∩ Y ) − Meas(X) Meas(Y )|
Meas(X) Meas(Y )

≤ 22−d,

where d = k2 − (k1 + �1 + 1) ≥ 1 is the “distance”.

Proof. We distinguish four cases. We begin with

Case 1: Assume that d = k2 − k1 − �1 − 1 is ≥ 1, B1 �= ak1 , B3 �= ak2

Then we have

Meas(X ∩ Y ) = qk1

(
qk2 |θk1+�1+1| + (−1)d+1qk1+�1+1|θk2 |

)
|θk2+�2+1|.

On the other hand, by Lemma 5.2,

Meas(X) = qk1 |θk1+�1+1| and Meas(Y ) = qk2 |θk2+�2+1|.

It follows that

(5.36)
|Meas(X ∩ Y ) − Meas(X) Meas(Y )|

Meas(X) Meas(Y )
=

qk1+�1+1|θk2 |
qk2 |θk1+�1+1|

.

We need the almost trivial inequality

(5.37a)
qi+d

qi
≥ 2
d/2�,

which follows from the successive application of the recurrence

qi = ai−1qi−1 + qi−2 ≥ qi−1 + qi−2 ≥ 2qi−2;

and we also need the following analog of (5.37a):

(5.37b)
|θi|

|θi+d|
≥ 2
d/2�.
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By (5.36)–(5.37), we have

(5.38)
|Meas(X ∩ Y ) − Meas(X) Meas(Y )|

Meas(X) Meas(Y )
≤ 21−d,

where d = k2 − (k1 + �1 + 1) ≥ 1 is the “distance”.
Inequality (5.38) justifies the term exponentially weak dependence, which

is the reason behind the Area Principle (a “zero-one law”).

Case 2: Assume that d = k2 − (k1 + �1 + 1) ≥ 1, B1 = ak1 , B3 = ak2

Then (see (5.35))

Meas(X ∩ Y ) = qk1−1

(
qk2−1|θk1+�1+1| + (−1)dqk1+�1+1|θk2−1|

)
|θk2+�2+1|,

and by Lemma 5.2,

Meas(X) = qk1−1|θk1+�1+1| and Meas(Y ) = qk2−1|θk2+�2+1|.

Combining these facts with (5.37), we obtain

(5.39)
|Meas(X ∩ Y ) − Meas(X) Meas(Y )|

Meas(X) Meas(Y )
=

qk1+�1+1|θk2−1|
qk2−1|θk1+�1+1|

≤ 22−d,

which is basically the same as (5.38) (we lost an irrelevant factor of 2).
It is easy to check that (5.39) remains true for the remaing two cases

with d ≥ 1: Case 3: B1 �= ak1 , B3 = ak2 , and Case 4: B1 = ak1 , B3 �= ak2 .
In all four cases we have exponentially weak dependence. This completes the
proof of Lemma 5.4.

Now we are ready to complete the proof of Theorem 3: we simply use
the exponentially weak dependence in a Chebyshev’s inequality as follows.
(The most difficult part is to find a good notation.) Let χk,�,B1,B2 denote
the characteristic function of the set S(bk = B1, bk+�+1 = B2) defined by
(5.21)–(5.23):

χk,�,B1,B2(β) =

{
1, if β ∈ S(bk = B1, bk+�+1 = B2);
0, if β �∈ S(bk = B1, bk+�+1 = B2).

We have a probabilistic viewpoint: the interval −α ≤ β < 1 − α of length
one is considered the whole probability space, and the usual “length” (one-
dimensional Lebesgue measure), denoted by Meas(. . .), is the probability. So
the expectation
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Eχk,�,B1,B2 = Meas (S(bk = B1, bk+�+1 = B2)) ,

and the sum (see (5.20))

(5.40)
∑

m0≤k≤M−2

χk,�,B1,B2(β)

counts the number of integral solutions of the diophantine inequality

(5.41) ‖nα − β‖ = O(ψ(n))

(the implicit constant in (5.41) is absolute) in the range 1 ≤ n ≤ qM , since
by (5.25)

B1qk ≤ n ≤ (B1 + 2)qk ≤ qM .

Here M is a parameter; we choose M → ∞ at the end of the proof.
To apply Chebyshev’s inequality, we need to compute the variance

E
( ∑

m0≤k≤M−2

(χk,�,B1,B2 − Eχk,�,B1,B2)
)2

=
∑

m0≤k≤M−2

(χk,�,B1,B2 − Eχk,�,B1,B2)
2

+ 2
∑

m0≤k1<k2≤M−2:
(k1,�1,B1,B2) �=(k2,�2,B3,B4)

E(χk1,�1,B1,B2 − E1)(χk2,�2,B3,B4 − E2),(5.42)

where, for notational convenience, we use the brief notation

E1 = Eχk1,�1,B1,B2 and E2 = Eχk2,�2,B3,B4 .

Write

(5.43)
A1 = S(bk1 = B1, bk1+�1+1 = B2) and A2 = S(bk2 = B3, bk2+�2+1 = B4).

Note that with k1 ≤ k2 we have

EχA1χA2 = Meas(A1 ∩ A2) =

⎧⎪⎪⎨⎪⎪⎩
0, if k2 ≤ k1 + �1;
�= 0, if k2 > k1 + �1 + 1

or k2 = k1 + �1 + 1, B2 = B3.
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By (5.38)–(5.39)

(5.44) |EχA1χA2 − Pr(A1) Pr(A2)| ≤ 22−d Pr(A1) Pr(A2),

where d = k2 − (k1 + �1 + 1) ≥ 1.
Using these facts in (5.42), we have

(5.45) Variance in (5.42) ≤
∑

m0≤k1≤M−2

Pr(A1) +
∑

1
+
∑

2
,

where

(5.46)
∑

1
=

∑
A1: m0≤k1≤M−2

∑
A2: k1+�1+1=k2≤M−2

B2=B3

Pr(A1 ∩ A2)

and (5.44)

(5.47)∑
2

=
∑

A1: m0≤k1≤M−2

Pr(A1)

⎛⎝∑
d≥1

∑
A2: k1+�1+1=k2≤M−2

Pr(A2) · 22−d

⎞⎠ .

Since the sets A2 with fixed k2 are pairwise disjoint, we have

(5.48)
∑

1
≤

∑
m0≤k1≤M−2

Pr(A1),

and similarly,

(5.49)
∑

2
≤

∑
m0≤k1≤M−2

Pr(A1)

⎛⎝∑
d≥1

22−d

⎞⎠ = 4
∑

m0≤k1≤M−2

Pr(A1).

Combining (5.45)–(5.49) we obtain

(5.50) Variance in (5.42) ≤ 6
∑

m0≤k1≤M−2

Pr(A1).

By Chebyshev’s inequality and (5.50), for any λ

Pr

⎡⎣ ∑
m0≤k1≤M−2

χA1 ≥
∑

m0≤k1≤M−2

Pr(A1) − λ

⎤⎦



Lattice point counting and the probabilistic method 231

≥ 1 − λ−2

⎛⎝6
∑

m0≤k1≤M−2

Pr(A1)

⎞⎠ .(5.51)

Write

T = T (M) =
∑

m0≤k1≤M−2

Pr(A1),

then by (5.31) and (5.43),

(5.52) T = T (M) → ∞ as M → ∞.

We choose

λ = λ(M) =
1
2
T (M),

then by (5.51),

(5.53) Pr

⎡⎣ ∑
m0≤k1≤M−2

χA1 ≥ 1
2
T (M)

⎤⎦ ≥ 1 − 24
T (M)

.

Taking M → ∞, by (5.52)–(5.53) we obtain∑
k≥m0

χk,�,B1,B2(β) =
∑

k≥m0

χA1 = ∞

for almost all β ∈ [−α, 1−α), and by (5.40)–(5.41) this gives infinitely many
integral solutions of the diophantine inequality

(5.54) ‖nα − β‖ = O(ψ(n)).

Since the implicit constant in (5.54) is absolute, the proof of Theorem 3 is
complete.
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