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Distinguishing number and adjacency properties
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The distinguishing number of countably infinite graphs and rela-
tional structures satisfying a simple adjacency property is shown
to be 2. This result generalizes both a result of Imrich et al. on the
distinguishing number of the infinite random graph, and a result
of Laflamme et al. on homogeneous relational structures whose age
satisfies the free amalgamation property.
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1. Introduction

One of the most widely studied infinite graphs is the Rado or infinite random
graph, written R. A graph satisfies the existentially closed or e.c. adjacency
property if for all finite disjoint sets of vertices A and B (one of which may
be empty), there is a vertex z /∈ A ∪ B joined to all of A and to no vertex
of B. By a back-and-forth argument, R is the unique isomorphism type
of countably infinite graphs that is e.c. Further, R is homogeneous: every
isomorphism between finite induced subgraphs extends to an automorphism.
For a survey of these and other results on R, see [3].

The distinguishing number of a graph G, written D(G), is the least pos-
itive integer n such that there exists an n-colouring of V (G) (not necessarily
proper) so that no non-trivial automorphism preserves the colours. Rigid
graphs (which possess no non-trivial automorphisms) have distinguishing
number 1, and D(G) may be viewed as the minimum number of colours
needed to make G rigid. The parameter D(G) was introduced by Albertson
and Collins [1].

The distinguishing number of graphs generalizes in a straightforward
fashion to relational structures. A relation on a set X is a set of n-tuples from
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X, where n > 0 is its arity. A signature μ is a (possibly infinite) sequence
(μi : i ∈ I) of positive integers. A relational structure S with signature μ

consists of a non-empty vertex set V (S), and a set of relations Ri on V (S) for
i ∈ I of arity μi. Isomorphisms, induced subgraphs, distinguishing number,
and many other notions from graph theory generalize naturally to relational
structures. For background on relational structures, we refer the reader to
[4]. All graphs we consider are simple.

While most research on the distinguishing number has focused on the
finite case, recent work considers infinite structures as well. Imrich, Klavz̆ar,
and Trofimov [5] recently proved (among other things) that D(R) = 2.

Laflamme, Nguyen Van Thé, and Sauer [7] generalized this fact by showing
that a homogeneous relational structure with minimal arity 2, whose age
(that is, set of isomorphism types of induced finite substructures) satisfies
the free amalgamation property has distinguishing number 2. In [8], D(T )
is determined for infinite, locally finite trees T .

In this short note, we introduce an adjacency property called weak-e.c.
for countable relational structures (generalizing the e.c. property) which is
a sufficient condition to have distinguishing number at most 2; see Theo-
rem 1.2. As a consequence of this fact, in Corollary 1.4 we show that ho-
mogeneous structures whose age has free amalgamation have distinguishing
number 2. Our results generalize the results of [5; 7] stated in the previous
paragraph. Further, they supply a large class of relational structures with
distinguishing number 2. For example, there are 2ℵ0 many non-isomorphic
countable graphs with the weak-e.c. property; see [2].

Definition 1.1. A graph G that is not a clique is weak-e.c. if for each
pair u, v of (possibly equal) non-joined vertices and a finite set T of vertices
containing neither u nor v, there is a vertex z joined to u and v but not
joined nor equal to a vertex in T.

The graph R has the weak-e.c. property, as does the universal homoge-
neous triangle-free graph, although the latter graph is not e.c. Note that the
weak-e.c. property implies that the graph has diameter 2, and has no vertex
of finite degree.

If S is a relational structure, then the (Gaifman) graph of S, written
G(S), has vertices those of S with two vertices x and y joined if x �= y and
only if they appear together in some tuple in a relation of S. Note that an
automorphism of S induces an automorphism of G(S).

A relational structure S is weak-e.c. if G(S) is weak-e.c. Our main result
is the following.
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Figure 1: Fixing x and y in Claim 1.

Theorem 1.2. If the countable relational structure S satisfies the weak-e.c.
property, then D(S) ≤ 2.

Proof. Let G = G(S). We prove first that D(G(S)) ≤ 2. We actually prove
that a weak-e.c. graph satisfies another adjacency property, which in turn
implies a distinguishing number at most 2. A graph G satisfies (♣) if there
is an induced ray Z (that is, an infinite one-way path) in G such that for all
pairs of distinct vertices x and y not in Z, there is a vertex in Z joined to
exactly one of either x or y.

Claim 1. Property (♣) implies that D(G) ≤ 2.
To see this, let B—the blue vertices—be the vertices of the induced ray

Z, and let R, the red vertices, be the vertices in V (G)\B. It is straightforward
to see that no automorphism f of G preserving the colour sets can move an
element of B. We claim that f restricted to R is the identity. To see this,
let us suppose that f(x) = y for some distinct red vertices x and y. By (♣),
there is a blue vertex z joined to (say) x but not y. See Figure 1. But this
is a contradiction as f fixes z. The proof of the Claim 1 follows.

The fact that D(G) ≤ 2 is implied by the following claim.

Claim 2. The weak-e.c. property implies (♣).
For the proof of Claim 2, enumerate all unordered pairs of distinct ver-

tices of G as

R−1 = {{xi, yi} : i ∈ N}.

We inductively process pairs of vertices from R−1. Each pair will be labeled
processed or unprocessed ; at the beginning of the base step, all pairs are
unprocessed.

By the weak-e.c. property, there is a vertex z0 joined to x0 that is neither
joined nor equal to y0 (in the notation of the definition of weak-e.c., we are
setting u = v = x0, and T = {y0}). Delete all pairs {xj , yj} from R−1
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containing z0 to form the set of pairs R0. Label {x0, y0} as processed. For
ease of notation, we relabel the remaining pairs of R−1 so that

R0 = {{xi, yi} : i ∈ N}.

For n ≥ 0 fixed, assume that we have found a finite set of distinct vertices Zn

and a set Rn of pairs from V (G) with the following properties. For simplicity,
we assume the pairs of Rn have been relabeled so that

Rn = {{xi, yi} : i ∈ N}.

For each Rn and k ≥ 0, define its k-initial segment Rn[k] to consist of the
set

{{x0, y0}, {x1, y1}, ..., {xk, yk}}.
We require that Rn+1[n] = Rn[n]. Indices of the xi and yi in (1) to (3) below
refer to the enumeration of pairs in Rn.

1. For each 0 ≤ i ≤ n, there is a vertex zi ∈ Zn that is distinct from xi

and yi, and is joined to exactly one of xi or yi. The vertex zi is not
equal to any xj nor yj , where 0 ≤ j ≤ i − 1.

2. The set Zn induces in G an n-path with terminal vertices z0 and zn.
3. For all z ∈ Zn, the vertex z is not in a pair in Rn. Each of the pairs

{xi, yi}, where 0 ≤ i ≤ n, are labeled as processed.

To complete the inductive step, we note that the vertex zn may or may
not be joined to the vertices xn+1 or yn+1. We do know for certain that zn is
not equal to either xn+1 or yn+1 by item (3) of the induction hypothesis. By
the weak-e.c. property, we may find a vertex z′ joined to zn but not joined
nor equal to any vertex in

T ′′ = (Zn \ {zn}) ∪ {x0, . . . , xn+1} ∪ {y0, . . . , yn+1}.

The vertex z′ will not be our choice for zn+1, but plays an intermediary role
in finding such a vertex. Define T ′ to be the set of vertices in {x0, . . . , xn}∪
{y0, . . . , yn} not equal to either xn+1 or yn+1. (We note that since we are
enumerating unordered pairs in Rn, either of the vertices xn+1 or yn+1 may
be equal to some xi or yi for some 1 ≤ i ≤ n.) By the weak e.c. property
with u = z′ and v = xn+1, there is a vertex zn+1 joined to z′ and xn+1, but
not joined nor equal to a vertex in

T = Zn ∪ T ′ ∪ {yn+1}.
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In particular, zn+1 is distinct from, and joined to exactly one of xn+1 or
yn+1 as required in item (1). Set Zn+1 = Zn ∪ {z′, zn+1}, and note that the
subgraph induced by Zn+1 is a path with terminal vertices z0 and zn+1. Form
Rn+1 by deleting any pairs in Rn containing z′ or zn+1, and then relabeling
the pairs so that Rn+1 = {{xi, yi} : i ∈ N}. Note that this deletion preserves
the property that Rn+1[n] = Rn[n], since {xn+1, yn+1} will not be deleted
as zn+1 and z′ were chosen to be distinct from these two vertices. Hence,
properties (1), (2), and (3) are satisfied with this choice of zn+1, Rn+1, and
Zn+1.

Set
Z =

⋃

n∈N

Zn,

and let P be the vertices in V (G)\Z. The subgraph induced by Z is a ray.
Note that each distinct pair of vertices {x, y} in P is processed in the above
induction as some pair {xi, yi}. In particular, there is a vertex in Z joined
to exactly one of x or y. Hence, Claim 2 follows.

Now, let Aut(S,B,R) be the automorphism group of the relational
structure S with two additional unary predicates, B and R, identified with
the colour sets B and R, respectively. The property that D(X) ≤ 2 is
equivalent to Aut(S,B,R) being the trivial group. The proof now follows
from Claims 1 and 2 since Aut(S,B,R) is isomorphic to a subgroup of
Aut(G(S),B,R).

Theorem 3.1 of Imrich et al. [5] follows directly from Theorem 1.2 as a
corollary, since R is weak-e.c. We point out that the property (♣) introduced
in Theorem 1.2 is a more general sufficient condition for having distinguish-
ing number at most 2 than the weak-e.c. property. For example, the infinite
random bipartite graph RB satisfies (♣) and hence, has distinguishing num-
ber 2 by Claim 1 in the proof of Theorem 1.2, but is not weak-e.c. since its
diameter is not 2. (The proof that RB satisfies (♣) is similar to the proof of
Claim 2, and so is omitted. The additional detail in the inductive step is to
consider cases of the colours of xn+1 and yn+1.)

The high degree of symmetry exhibited by R may be formalized in a
notion which applies to many other relational structures. A structure is
homogeneous if each isomorphism between finite induced substructures ex-
tends to an automorphism. Fix K a class of structures of the same signature
that is closed under isomorphisms. An amalgam is a 5-tuple (A, f,B, g, C)
such that A, B, and C are structures in K, and f : A → B, g : A → C
are embeddings (that is, isomorphisms onto their images). Then K has the
amalgamation property, written (AP), if for every amalgam (A, f,B, g, C),
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there exist both a structure D ∈ K and embeddings f ′ : B → D, g′ : C → D
such that f ′ ◦ f = g′ ◦ g. The connection between classes with (AP) and
homogeneous structures is made transparent by Fräıssé’s theorem, which
we restate as Theorem 1.3 below. A structure G is universal in K if each
member K is isomorphic to an induced substructure of G. The class K has
the joint embedding property or (JEP) if for every pair B and C in K, there
is a D ∈ K so that B and C are isomorphic to induced substructures of D.
(If we allow empty structures, then (JEP) is a special case of (AP). Since
we only consider non-empty structures, we will not use this convention.)

Theorem 1.3 (Fräıssé, [4]). Let K be a class of finite structures with the
same signature closed under isomorphisms. Then the following are equiva-
lent.

1. The class K has (AP), (JEP), and is closed under taking induced sub-
structures.

2. There is a countable universal and homogeneous structure S whose age
is K, and which is a limit of a chain of structures from K.

The structure S in Theorem 1.3 (2) is called the Fräıssé limit of K. For
example, R is the Fräıssé limit of the class finite graphs. Note that S has
the following useful property. Suppose that A,B are structures in the age
of S, with A an induced substructure of both B and S. Then there is an
isomorphism β from B to an induced substructure of S so that β is the
identity on A. We say that B amalgamates into S over A.

Given relational structures S1 and S2 of the same signature their union
(or free amalgam) S1∪S2 has vertices the union of the vertex sets of S1 and
S2, and whose relations are the union of the relations of S1 and S2. Note
that S1 and S2 may not in general have disjoint vertex sets; in which case
we say that the union S1 ∪ S2 is formed with intersection V (S1)∩ V (S2). If
V (S1)∩ V (S2) is empty, then S1 ∪ S2 is simply their disjoint union. A class
of finite relational structures with fixed signature so that K closed under
isomorphism has free amalgamation if it is closed under taking unions of
structures; that is, if S1 and S2 are in K, then S1 ∪ S2 ∈ K.

The following corollary gives a short and elementary proof of Theo-
rem 3.1 of LaFlamme et al. [7]. To avoid degenerate cases in the following
theorem, we only consider non-null structures; that is, structures S where
G(S) contains edges.

Corollary 1.4. Let S be a countable, homogeneous, non-null structure with
minimal arity of at least two whose age has free amalgamation. Then
D(S) = 2.
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Figure 2: Amalgamating B′ into S over A.

Proof. We first show that S satisfies the weak-e.c. property. We may then
apply Theorem 1.2 to prove that D(S) ≤ 2. By homogeneity, S is not rigid
so D(S) = 2.

Now fix u, v and a finite set T in V (S) so that u, v are not joined in G(S),
and u, v /∈ T. Fix a k-tuple x = (x1, . . . , xk) in some relation of S, where
k > 1, and at least two vertices in x are distinct; say these two vertices are
xi and xj (this is possible as S is non-null). Consider the substructure X of
S induced by the vertices in x. As the age of S contains X, is closed under
isomorphism, and has free amalgamation, the age of S contains the structure
B′ formed by the union of two isomorphic copies of X with intersection {xi}.
Label the two distinct copies of xj in B′ as xj1 and xj2. As the minimum
arity of a relation is at least 2, there is exactly one isomorphism type of
structure in the age of S with one vertex. Hence, we identify xj1 and xj2

with u and v, respectively. See Figure 2.
Let A1 be the substructure of S induced by {u, v}, and let A be the

substructure of S induced by {u, v} ∪ T. Let B be the union of B′ and A
over A1. As S is homogeneous, we may amalgamate B into S over A. Hence,
there is a vertex z ∈ V (S) (corresponding to the isomorphic image of xi)
joined in G(S) to both u and v but not T .

Not all relational structures with distinguishing number 2 are weak-
e.c. (for example, consider the infinite binary tree). An open problem is
to determine a necessary and sufficient condition for a countably infinite
relational structure to have distinguishing number 2.
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[4] R. Fräıssé, Theory of relations, Revised edition, with an appendix
by Norbert Sauer, North-Holland Publishing Co., Amsterdam, 2000.
MR1808172

[5] W. Imrich, S. Klavz̆ar, V. Trofimov, Distinguishing infinite graphs, The
Electronic Journal of Combinatorics 14 (2007) #R36. MR2302543

[6] A. H. Lachlan, R. E. Woodrow, Countable ultrahomogeneous undirected
graphs, Trans. Amer. Math. Soc. 262 (1980) no. 1, 51–94. MR0583847
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