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The Erdds-Faber-Lovasz conjecture — the uniform
regular case

VANCE FABER

We consider the Erdés-Faber-Lovész (EFL) conjecture for hyper-
graphs that are both regular and uniform. This paper proves that
for fixed degree, there can be only finitely many counterexamples
to EFL on this class of hypergraphs. The theorem is a direct ap-
plication of a graph theoretic result of Alon, Krivelevich and Su-
dakov from 1999. This result combined with the known results for
dense hypergraphs shows that any counterexample to EFFL must
be somewhere in the range between sparse and dense values.

1. Introduction

Definition 1.1. A hypergraph D is linear if any pair of vertices is contained
in at most one hyperedge. We say a linear hypergraph D is a (n,d,r) linear
set system if the vertex set X has size n, each hyperedge (called a “block”)
contains exactly d vertices, and each element z € X is contained in exactly
r blocks. We say that D is well-colorable if the blocks can be colored with
n colors so that no two intersecting blocks have the same color.

In the case that every pair is contained in some block, D is a (n,d, 1)
block design.
We shall prove the following theorem.

Theorem 1.1. Let D be a (n,d,r) linear set system. Then

(1) if r <d+1, D is well-colorable;
(2) there is a universal constant C so that for all d > C, if n > Cd?, D
is well-colorable.

2. Remarks

In 1972, Paul Erdos, Lészl6 Lovasz and I got together at a tea party in
my apartment in Boulder, Colorado. This was a continuation of the discus-
sions we had had a few weeks before in Columbus, Ohio, at a conference
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on hypergraphs. We talked about various conjectures for linear hypergraphs
analogous to Vizing’s theorem for graphs (see [7]). Finding tight bounds
in general seemed difficult so we created an elementary conjecture that we
thought would be easy to prove. We called this the n sets problem: given n
sets, no two of which meet more than once and each with n elements, color
the elements with n colors so that each set contains all the colors. In fact, we
agreed to meet the next day to write down the solution. Thirty-eight years
later, this problem is still unsolved in general. (See [8] for a survey of what
is known.)

To see that Theorem 1.1 is an instance of the n sets problem, consider
the hypergraph H which is the dual of D. The dual is formed by taking the
blocks of D as a vertex set. For every vertex x in D, a hyperedge in H is
formed consisting of all those blocks containing x. Then H is a collection of
n sets each with r elements, each element is in exactly d sets, and any two
sets meet at most once. The instance of the n sets problem is created by
padding each of the sets with n — r isolated elements. A well-coloring of the
blocks of D corresponds to a coloring of the vertices of H so that all vertices
within an edge have distinct colors.

We know that if n < d? (the dense case) then coloring is possible by
a greedy algorithm (Sdnchez-Arroyo [9]). What we deal with here is the
sparse case, n > C'd?. We show that if d is large enough, we have to look for
counterexamples in a middle ground of n not too small and not too large.
Note that for fixed d there are infinitely many (n,d,r) linear set systems
(for example, the (n,d, 1) block designs) and only finitely many of them fail
to satisfy the hypothesis of Theorem 1.1.

3. Proof of Theorem 1.1

The proof relies on the following theorem of Alon, Krivelevich and Sudakov
[2], which extends a previous result of Ajtai, Komlds, and Szemerédi [1].

Theorem 3.1 (AKS). The chromatic number of any graph with maximum
degree A in which the number of edges in the mduced subgraph on the set of
all neighbors of any vertex does not exceed 2 7 is at most (o7 gf) for some
fixed constant c.

Let us assume that D is not well-colorable. We work with the clique
graph G of the hypergraph H. The clique graph uses the v vertices of H, so
that two vertices form an edge if they are in the same r-element set in H.
Any proper coloring of the vertices of G is a coloring of the vertices H so
vertices within an edge have distinct colors, and vice versa. Note that the
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sets of H become cliques of size r in G, so the degree of a vertex in G is
exactly A = d(r — 1). By Brooks’ Theorem, G can be colored in no more
than A colors, so we only have to deal with cases where A > n. Let us call
this the Brooks consequence:

(1) n<A-1=dr—-1)—-1
Now we state some facts about (n,d,r) linear set systems:

(2) n—1>r(d-1)

(3) nr = vd

Note that the Brooks consequence and inequality (2) imply the first
statement in the theorem, and so we can assume that » > d+ 1. We proceed
by bounding the number N, of edges in the neighborhood of the vertex z in
G. This number is made of up two types of edges. First, there are the edges
which do not contain x in each of the d cliques of size r at x. The second
type of edges are the edges which are formed by the at most n — d blocks in
H which do not contain z. Each of these sets can intersect each of the sets
containing x at most once. Thus each of these sets can contribute at most a
clique of edges of size d. This gives

(4) Nx§d<T;1>+(n—d)<§>.

We write this quantity in terms of A. We have these rearrangements of
inequalities (1) and (2) and equation (3):

A

= — 1
r d—i—
n<A-1

1
n > A(l — —) +d
d
We substitute these into the inequality (4) to get

d /A A dd-1)

< 2= _ — bk Sl

Nm_z(d 1)d+A .
A2 A A A2 Ad

= — — — —(d — < — —(a —1).
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Let
1 1 d
e L@
7= 2a Al
which gives
1 (d-1)2% 1 1 dd-1)
il << — 4
2d  2(n—d) — f ~ 2d 2n
Then N, < A72, so x(G) < Clo@f < c% by AKS. We need
d(n — d)
XE) = T T loa 7

so we rearrange this equation to get the condition we desire as

d(n —d) 1—d/n

> = .
log f = e =1y = “T=1/a

Since the case when d = 1 is uninteresting, we assume d > 2 to get

1—d/n 1
< <
1-1/d —1-1/d —

2.

Thus we need log f > 2¢, meaning f > e* = C > 1.
Now we need to solve
1 d(d—1) 1

2dJr 2n - C

Thus we definitely need d > %, which gives us

d(d—1)
(5) nZCQ—C’/d'

LetdzC’.Then2—%zlsowehave

d(d—1)
2—CJd

Cd?>>Cdd—-1)>C

Thus equation (5) is satisfied and therefore n > Cd? implies that x(G) < n.
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4. Matchings and block designs

A (n,d,1) block design is a (n,d,r) linear set system where inequality (2)
is an equality (equivalently, each pair of points is contained in exactly one
block). In this section, we explore a relationship between colorings of certain
(n,d, 1) block designs and matchings. Again, we work with the clique graph
G of the dual hypergraph H of the block design D. We restrict our attention
to the special case where r = kd for some integer k£ (which implies that
v = kn). We let G’ denote the complement of G and R be the representative
graph of the k-element cliques in G’. This means that the vertices of R are
the k-element cliques of G’, which are the k-element independent sets of G.
Two vertices of R are connected if they intersect.

For each vertex x in G’, let ¢, be the number of k-cliques containing x.
This number is a constant which can be computed from the parameters of
the design. Let ¢ be the total number of k-cliques in G’, that is, the number
of vertices in R. Then t = Y= = nt,. In addition, the largest clique in R has
size t; (see, for example, Proposition 3 in section 1.8 of [3]). Thus we can
prove the following theorem.

Theorem 4.1. If the graph R has chromatic number equal to the size of its
largest clique, then G can be colored in n colors.

Proof. Note that if the chromatic number of R is ¢, then each color class
has n vertices. These n vertices correspond to n vertex-disjoint k-cliques in
G’ and the vertices of each of these k-cliques are independent sets in G' and
so we have colored G in n colors. O

In the case d = 2, the graphs involved are dual to the complete graph
and R is associated with the intersection graph of the maximum matchings.
It can be correctly colored. We will prove that G is n chromatic when k = 2.
The result follows from a theorem of Faudree, Gould, Jacobsen and Schelp
(see [4]).

Theorem 4.2 (FGJS). If G is a 2-connected graph of order v such that for
all distinct nonadjacent vertices x and y
2v—1

3

[N(x) UN(y)| =
then G contains a hamiltonian circuit.
Corollary 4.3. If G is a connected graph of order v such that for all distinct
nonadjacent vertices x and y

2v—2

IN@UNG)| 2 2

then G contains a hamiltonian path.
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Proof. Add a vertex x to G which connects to every vertex, and note that
the conditions of Theorem 4.2 are satisfied. Take the hamiltonian circuit and
remove = to get a hamiltonian path in G. O

Theorem 4.4. Let D be a (n,d,1) block design with r = 2d. The blocks
can be colored with n colors so that no two intersecting blocks have the same
color.

Proof. We use the corollary to FGJS on G’ to construct a hamiltonian path.
Note that |[V(G)| = |V(G)| = v = 2n = 4d*> — 4d + 2. To compute the size
of the union of the neighborhoods of two nonadjacent vertices of G’, we see

[Nev(z) U Ner(y)| = [(V(G)\Na(z) U (V(G)\Na(y))] -2

V(G)| = [Na(z) 0 Na(y)| - 2

where we subtract 2 to discount x and y. Note that x and y are nonadja-
cent in G’ when they are adjacent in G. We want to bound their common
neighborhoods. Each vertex in G is in exactly d cliques of size 2d. The ver-
tices « and y must be in one common clique . They share 2d — 2 common
neighbors within E. Each is contained in d — 1 cliques other than E. Since
each clique can have at most 1 vertex in common, this gives at most (d—1)?
common neighbors outside of F/, meaning

INg(z) N Na(y)| <2d =2+ (d—1)> =d*> - 1.
This gives
|Ne(z) U Nov (y)| > (4d* — 4d 4 2) — (d® — 1) — 2 = 3d* — 4d + 1.

In order to apply the corollary, we have to compare three times this number
with 2v — 2 = 4d? — 4d, that is, we need

9d%2 —12d +3 > 4d® — 4d

which yields
5d2 —8d+3 > 0.

This inequality holds for all d.

We now must show G’ is connected. Suppose V(G') = V1 UV, is a
disconnection. This means that G contains all edges between Vi and V5.
Since |V (G)| = 2n, without loss of generality we may assume |[Vo| > n =
2d? —2d+1. Since the degree of each vertex in G is d(r—1) = 2d?>—d < 2n—1,
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no vertex is connected to all others. Thus any vertex x € V; has a non-
neighbor y, which must also be in V4. Any nonadjacent pair in GG has exactly
d?> common neighbors. Since z and y are both adjacent to all of V5, we must
have that d?> > 2d? — 2d + 1, which is a contradiction except when d = 1,
the uninteresting case.

Thus G’ is connected, so it has a hamiltonian path. To complete the
proof, we use every second edge of a hamiltonian path in G’ as a color class
in G. This colors the vertices of G in n colors. O

5. Designs and sufficient coverings

If we can break the blocks of D into disjoint set systems
D=TiuUTloU...UT

and the blocks of T; can be colored with ¢; colors so that > ¢; < n, then D
can be well-colored. In particular, if each T; is regular with degree r; > 1,
then Brooks’ Theorem says that ¢; < d(r; — 1). This partition then gives a
coloring of D with no more than

k

> d(ri —1) =d(r — k)

i=1

colors. So if k > r— 2 =r— =, D can be well-colored. We call any partition
of this type a sufficient covering.

For a design, n — 1 = r(d — 1) so a sufficient covering has at least %
parts. For triple systems either n = 6k + 1 or n = 6k + 3. In both cases,
the minimum number of parts is k. For the former case, a sufficient covering
could have all parts of degree 3. For the latter case, a sufficient covering
might have k — 1 parts of degree 3 and the remaining one of degree 4. A
covering of this type has been conjectured for triple systems in [6] and a
computer search [5] of STS(19) shows that all 11 billion of them have a
sufficient covering of this type.

More generally, suppose r = dk + t with 0 <t < d. If r is divisible by d
then covering by parts of degree d would be a sufficient covering. If r is not
divisible by d then r — 1 = dk 4+t — 1. If the remainder ¢t = 1, then k£ — 1
parts of degree d and one of degree d + 1 is sufficient. Otherwise, k + 1 parts
are required, say k of degree d and one of degree t.

This leads us to pose the following question:

Does every (n,d, 1) block design have a sufficient covering with all but
one part of degree d?
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