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Spanning trees and orientations of graphs *

CARSTEN THOMASSEN

A conjecture of Merino and Welsh says that the number of span-
ning trees 7(G) of a loopless and bridgeless multigraph G is always
less than or equal to either the number a(G) of acyclic orienta-
tions, or the number ¢(G) of totally cyclic orientations, that is,
orientations in which every edge is in a directed cycle. We prove
that 7(G) < ¢(G) if G has at least 4n edges, and that 7(G) < a(Q)
if G has at most 16n/15 edges. We also prove that 7(G) < a(G)
for all multigraphs of maximum degree at most 3 and consequently
7(GQ) < ¢(G) for any planar triangulation.
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orientations of graphs.

1. Introduction

One of the most fundamental properties of a connected graph is the existence
of a spanning tree. Also the number 7(G) of spanning trees is an important
graph invariant. The number of spanning trees plays a crucial role in Kirch-
hoff’s classical theory of electrical networks, for example in computing driv-
ing point resistances. More recently, 7(G) is one of the values of the Tutte
polynomial which now plays a central role in statistical mechanics. So are
a(G) and ¢(G) defined in the abstract, and as a first step towards convexity
properties of the Tutte polynomial, Merino and Welsh [10] conjectured that
7(G) < max{a(G), c(G)} for every loopless and bridgeless multigraph G, see
also [6]. We shall here prove that 7(G) < ¢(G) for all loopless and bridgeless
multigraphs with n vertices and at least 4n edges and that 7(G) < a(QG)
for all graphs (with no loops or multiple edges) with n vertices and at most
16n/15 edges. We also investigate cubic graphs (which are in between these

*This work was done while the author was a Rothschild Visiting Professor at
Cambridge University in 2008, participating in the meeting “Combinatorics and
Statistical Mechanics” at the Isaac Newton Institute. Thanks are due to Peter
Cameron and Bill Jackson for stimulating discussions, and to Brendan McKay and
Gordon Royle for valuable information on the number of spanning trees.
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two bounds). McKay [9] proved that the maximum number of spanning trees

in cubic multigraphs with n vertices is at most 2%/3((16/3)"/2). For large cu-

bic graphs, McKay [9] proved a stronger result which was proved to be best

possible, within a constant multiplicative factor, by Chung and Yau [4].
We prove that

a(G) > (2/3) - 6"/ —2.3"/21

for every 3-connected cubic graph with n vertices. This inequality, combined
with McKay’s upper bound on the number of spanning trees proves the
conjecture of Merino and Welsh for all cubic graphs with at least 26 vertices.
Brendan McKay (private communication) has kindly refined his result for
n < 26 and thereby obtained an upper bound for 7(G) where G is cubic and
with fewer than 26 vertices which is smaller than our lower bound on a(G).
Hence the conjecture by Merino and Welsh holds for all cubic graphs. This
easily extends to all multigraphs of maximum degree at most 3.

The maximum number of oriented trees in oriented graphs was inves-
tigated by Lonc [8]. For diregular graphs with indegree and outdegree 2,
the maximum is attained by certain circulants. The underlying undirected
graphs do not have particularly many spanning trees.

The number of cycles in cubic graphs was investigated in [1, 2]. Intu-
itively, many spanning trees imply many cycles and vice versa. But, we have
no indication that the extremal graphs for the two problems are the same or
even similar. In fact, the prism (that is, the cartesian product of a K and
a cycle) is perhaps a cubic graph which has almost as many cycles as possi-
ble among the cubic graphs of that order, and it does not have particularly
many spanning trees.

When we say graph we mean a graph with no loops and no multiple
edges. When we say multigraph we allow multiple edges but no loops. If e
is an edge in a multigraph G, then G — e denotes the graph obtained by
deleting e, and G/e denotes the graph obtained by contracting e, that is, we
identify the ends of e and delete the loops that may arise. We shall apply
the first of the well-know formulas

7(G —e)+71(G/e)
a(G) =a(G —e) +a(G/e)

(G —e) + c(G/e).
The first of these hold for every edge. The second holds when e is not

part of a multiple edge. The third holds when e is not part of a multiple
edge, and e is not a bridge (cut-edge).
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The Tutte polynomial T(G,z,y) satisfies a similar recursion formula,
and this can be used to prove that 7(G) = T(G,1,1), ¢(G) = T(G,2,0),
a(G) = T(G,0,2) which was part of the motivation for the Merino-Welsh
conjecture.

2. Degrees and spanning trees

Kostochka [7] proved that, if G is a graph with n vertices and vertex-degrees
di,ds,...,d,, then

T(G) § d1d2 .. dn/(n — 1).
We shall here prove a similar result for multigraphs.

Theorem 1. Let G be a multigraph with n vertices and vertex-degrees
dl,dg, e ,dn. Then
T(G) < d1d2 ce dn,1

with equality if and only if either some d; is zero or the vertex of degree d,
1s incident with all edges.

Moreover, if M is any matching in G, then for each edge in M joining
the wertices of degrees d;,dj, say, (both distinct from the vertex of degree
dyn), the term d;d; may be replaced by d;d; — 1 in the above product.

Proof of Theorem 1. We prove the theorem by induction on n, the number of
vertices. The theorem is clearly true for multigraphs with one or two vertices.
If some d; is zero or if the vertex of degree d,, is incident with all edges, then
clearly 7(G) = dida...d,—1. So assume that G has an edge e such that e
is not incident with the vertex of degree d,. Assume the notation has been
chosen such that e joins the vertices vi,ve of degrees di,ds, respectively.
Then

7(G) =7(G —e) +7(G/e)
<(dy —1)(dy —1)dsdy...dp_1+ (d — 1 +do — 1)dsdy ... dp_1
= (d1d2 — 1)d3d4 e dp—1
<dids...dp—1.

This proves the first part of Theorem 1. The last part is proved by the
same argument where e is an edge of M. ]

The sum of the vertex-degrees of a multigraph G is 2m where m is the
number of edges of G. If we fix m and let d,, be the maximum degree, then
the product of the n — 1 smallest degrees is maximized when the n degrees
are nearly equal. So we get



104 Carsten Thomassen

Corollary 1. Let G be a multigraph with n vertices and m edges. Then
7(G) < (2m/n)" L.

For dense graphs, Kostochka’s inequality and its modified version in
Theorem 1 are quite good. Cayley’s formula says that the complete graph K,
has n"~2 spanning trees (see e.g. [3], page 103) whereas the first inequality in
Theorem 1 gives the upper bound (n —1)"~!, and the last inequality (using
a matching) gives an even better result. Scoin’s formula (see e.g. [3], page
108) says the complete bipartite graph K, has p?~1gP~! spanning trees
whereas the first inequality in Theorem 1 gives p9~1¢?. Perhaps for all dense
graphs, that is, graphs with Q(n?) edges, the ratio of the product of vertex-
degrees and 7(G) is bounded above by a polynomial of n. A weaker result
was proved by Kostochka [7]. He proved that, for graphs with n vertices and
minimum degree k, the above-mentioned ratio is at most k"OUeg(k)/k)

3. Spanning trees and totally cyclic orientations in
multigraphs with many edges

In this section we verify the conjecture of Merino and Welsh for dense graphs.
We begin with an observation on totally cyclic orientations.

Theorem 2. Let G be a connected, bridgeless multigraph with n vertices
and m edges. Then

C(G) > 2mfn+1.

Proof of Theorem 2. We prove the theorem by induction on m, the number
of edges. If GG is a cycle, then G has two totally cyclic orientations. So assume
that G is not a cycle. We consider a cycle in G and we extend that cycle to a
maximal connected, bridgeless proper subgraph H of G. Then G has a path
or cycle P which begins and ends in H such that each intermediate vertex
of P (if any) is outside of H. (Here we think of a cycle as a walk which
starts and ends at the same vertex.) As H U P is bridgeless, it follows that
G = HUP. We now apply the induction hypothesis to H. As ¢(G) > 2¢(H),
Theorem 2 follows. O

By combining Theorem 2 with Corollary 1 we get

Corollary 2. Let G be a bridgeless multigraph with n vertices and m edges.
If m > 4n — 4, then

7(G) < ¢(Q).
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4. Spanning trees and acyclic orientations in graphs with
few edges

Theorem 3. Let G be a graph with n vertices and m edges. If m < 16n/15,
then

7(GQ) < a(@G).

Proof of Theorem 3. For technical reasons we prove a slightly stronger state-
ment: If s is a nonnegative real number and m < 16n/15 + s/15, then

7(G) < 2°a(G).

We prove this statement by induction on m, the number of edges. We
may assume that G is connected.

If G has a vertex of degree 1, we delete that vertex and use induction.
So assume all vertices of G have degree at least 2.

If G is a cycle, it has n spanning trees and 2™ — 2 acyclic orientations,
so assume that G is not a cycle.

Now there exists a unique multigraph H such that G is a subdivision of
H and H has no vertex of degree 2 except possibly vertices incident with
double edges. As G is not a cycle, H is not a cycle of length 2. Let p,q
denote the number of vertices and edges, respectively, of H.

We claim that ¢ > 4p/3 —1/3 with an equality holding if and only if H is
obtained from a tree with vertices of degree 1, 3 by adding, for each vertex x
of degree 1 a new vertex z’ joined to x by a double edge. We prove this claim
by induction on p. It is easy to verify the statement when p < 4. So assume
that p > 4. If all vertices have degree at least 3, then ¢ > 3p/2 > 4p/3—1/3.
So assume that x has degree 2. Then x has precisely one neighbor y. We
apply induction to G — x unless y has degree 1 or 2 and has two distinct
neighbors in the latter case. In the latter case we replace the two edges
leaving y in G — x by one edge and use induction. In the former case we
apply induction to G — x — y possibly after replacing two edges by one edge
if G —x —y has a vertex of degree 2. (Only in this case we can have equality
in the inequality we are proving.)

If H is a graph with precisely 4p/3 — 1/3 edges described in the previous
paragraph, then it is easy to verify Theorem 3. So assume that ¢ > 4p/3. Let
€1, e2,...,eq, denote the edges of H. Then G is obtained from H by inserting
p; vertices, say, on edge e; for i = 1,2,...,q, where some p; may be zero.
Put r = p1 +po+--- +py = n — p. Then a spanning tree T' of H can be
chosen in less than 29 ways. Consider now any spanning tree 7' of H. We use
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T to construct a spanning tree in G by omitting, for each edge e; outside T,
one of the corresponding p; + 1 edges in G. Hence

7(G) < 29(p1+ 1) (p2+1)...(pg+ 1) <29(r/q+ 1)%.

On the other hand, we may orient all of the p; + 1 edges, except one, at
random and still extend the resulting orientation to an acyclic orientation.
Hence

a(G) > 2P12P2 | 2P = 2"

By the assumption of the theorem,

g+r=m<16n/15+s/15=16(p+r)/15+ s/15
< (16/15)((3/4)qg +r) + s/15 = (4/5)q + 16r/15 + s/15.

and hence s 4+ r > 3¢. This implies that
r(G) < 2(r/q+1)7 < 2((r +)/g + )7 < 2 < 2%(G).

The second last inequality holds because 29(z/q + 1)? < 2% for all real
r > 3q. Il

5. Acyclic orientations of graphs of maximum degree 3

We shall now describe lower bounds for the number of acyclic orientations
of a cubic graph. If G is a graph, then a suspended path in G is a path such
that the ends have degree at least 3 in GG and all intermediate vertices have
degree 2 in G.

Theorem 4. If G is a 3-connected cubic graph with n vertices, then for all
n}

a(@) > (2/3) - 6"/2 —2.37/271,

Proof of Theorem 4. We first delete an edge e from G. We claim that we
can successively delete edges of suspended paths of length at least 2 in such
a way that, at each stage, the current graph has only one component with
edges, and this component is bridgeless.

To prove this claim, suppose we have deleted a number of suspended
paths of length at least 2 such that the resulting graph has only one com-
ponent G’ containing edges, and this G’ is bridgeless. Let H be the unique
cubic multigraph such that G’ is a subdivision of H. If H is 3-connected, we
can use any suspended path of length at least 2 in G’. So assume that H
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contains two edges e1, es such that H —e; — es is disconnected. Choose €1, €2
such that the smallest component H' of H — e — ey is smallest possible. As
H is cubic, H' contains at least one edge. As G is 3-connected, some edge
e of H' must correspond to a suspended path P of length at least 2 in G’.
The minimality of H' implies that H — e is bridgeless. Hence G’ — E(P)
has only one component containing edges, and this component is bridgeless.
This proves the above claim.

Using this claim, we delete successively edges of suspended paths of
length at least 2 until the current graph is a cycle with r; edges, say. This
cycle has 2™ — 2 acyclic orientations. Then we put the suspended paths back
in reverse order. Let 79,73, ..., 7 be their numbers of edges, respectively. If
we put back a suspended path with r; edges, then, for every orientation of
the current graph, the r; edges can be oriented in 2™ ways and at most one
of these orientations create a directed cycle. Each time we add a suspended
path, the number of edges minus the number of vertices increases by 1.
Hence k = n/2. (Note that the single edge we deleted to begin with should
not be counted.) Also,

ri+ro+o+rp=3n/2-1.

The product of orientations counted above is minimized when ry = r3 =
-+ =1 =2 and consequently r; =n/2 + 1.
This proves Theorem 4. O

Theorem 5. If G is a multigraph of mazimum degree 3, then 7(G) < a(G).

Proof of Theorem 5. The proof is by induction on the number of edges. We
may assume that G is connected.

If G has a bridge, we delete it and apply induction to the components
of the remaining graph. If G has a vertex v of degree 2 incident with a
double edge, we delete v and use induction. If G has a vertex v of degree 2
incident with two edges vvy, vvg, where vy, v2 are distinct, then we delete v
and add the edge vyvy instead, and we call the resulting graph H. Clearly
7(G) < 27(H), and a(G) > 3a(H), so we complete the proof by applying
induction to H. If G has a path (or cycle) xyzu, where y, z are joined by
a double edge, then we delete y, z. If z,u are distinct we add the edge zu
instead, and we call the resulting graph H. If x, u are distinct, then clearly
7(G) < 57(H), and a(G) > 7a(H), so we complete the proof by applying
induction to H. If z = u, then 7(G) = 57(H), and a(G) = 6a(H), so we
complete the proof by applying induction to H.

So we may assume that G is a connected bridgeless cubic graph. Consider
now the case where G is not 3-connected. That is, G contains two edges
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e1 = x122 and ey = y1y2 such that G — e; — eg has two components Hy, Ho
such that H; contains z;,y; for ¢ = 1,2. Let G; be obtained from H; by
adding the edge x;y;, also if that edge is already present. If a spanning tree
in G contains e, es then that tree has a path between e; and ey. Suppose
this path is in H;. Then the part of the spanning tree which is in Hs is a
forest which becomes a spanning tree when we add the edge xoy2. Thus the
number of such spanning trees is 7(Hp)7'(G2) where 7/(G2) is the number
of spanning trees in Gy containing the edge zoy». Similarly the number of
spanning trees containing eq, eo and also containing a path in Ho connecting
these two edges is 7(H2)7'(G1). The number of spanning trees containing
precisely one of ey, e is 27(H1)7(Hz2). Thus

T(G) = (Hl)T/(GQ) + T(Hg)T’(Gl) + 2T(H1)T(H2)
(Hl)T(Gg) + T(HQ)T(Gl).

T
T

For i = 1,2, we let aj(H;) (respectively ag(H;)) denote the number
of acyclic orientations of H; which contain (respectively do not contain) a
directed path between x;,y;. Then a(H;) = ao(H;) + a1(H;), and a(G;) =
2&0(Hi) + al(HZ-), fori=1,2.

Also a(G) = 4a(Hy)a(Hz)—2(a1(H1)/2)(a1(Hz2)/2) because eq, s can be
oriented in 4 ways and we must subtract those orientations which create di-
rected cycles. So, a(G) = 4ao(H1)ag(Hz2)+4ao(H1)ar (H2)+4a1(Hy)ag(Hz2)+
(7/2)&1(H1)G1(H2).

By induction,

7(G) =7(H1)1(G2) + 7(H2)7T(G1)
<(ao(H1) + a1(Hh))(2a0(Hz2) + a1(H2))
+ (ao(Hz2) + a1(Hz))(2a0(Hi) + a1 (Hh))
:4a0(H1)a0(H2) + 3@0(H1)CL1(H2) + 3a1(H1)a0(H2)
+ 2a1(H1)ai(Hz)
<a(G).

So we may assume that G is a 3-connected cubic graph with n vertices,
say. If n > 26, then the lower bound on a(G) in Theorem 4 combined with
the upper bound on 7(G) by McKay [9] proves that 7(G) < a(G).

Gordon Royle (private communication) has found the maximum number
of spanning trees in a cubic graph with n vertices for n = 4,6,...,22 in the
first row below.

Brendan McKay (private communication) has refined the methods of
[9] to obtain upper bounds for the number of spanning trees in a cubic
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multigraph with n vertices for n = 24,26. These are the last two numbers
in the first row below.

The corresponding lower bounds on a(G) in Theorem 4 are given in the
last row below.

n 476 [8 [10 [12 |14 16 18 20 22 24 26
T(aGX) 16|81 [392]2000|9800 |50421 |248832|1265625 6422000 |32710656|<8.6-10% | <4.5-10°
;n(lé;) 18/126|810|5000|3-10%{1.8-105|1.1-10° |6.7-106 |4-107 |2.4.10% |1.4-10° |8.7-10

As the numbers in the last row are bigger than the corresponding num-
bers in the first row, the proof of Theorem 5 is complete. O

Theorem 6. If G is a planar triangulation, then
7(G) < ¢(G).

Proof of Theorem 6. Let H denote the geometric dual graph of G. Then
7(G) =7(H) < a(H) = ¢(G), by Theorem 5. O

6. Open problems

Problem 1. Let G be a bridgeless multigraph with n vertices and m edges.
Is it true that

7(G) < a(G) when m < 2n —2 and
7(G) < ¢(G) when m > 2n — 27

The multigraph obtained from a path with n vertices by replacing every
edge by a double edge is a multigraph G for which 7(G) = a(G) = ¢(G) =
27~ By adding a third edge between two consecutive vertices we obtain
multigraphs showing that the bound 2n — 2 cannot be improved in the first
inequality. Its planar dual multigraph shows that the bound 2n — 2 cannot
be improved in the second inequality either.

We now focus on acyclic orientations of cubic graphs. We construct a
nearly cubic graph by taking a sequence of k pairwise disjoint complete
graphs on 4 vertices each. In each copy we delete an edge and obtain a
diamond. We join a vertex of degree 2 in each diamond with a vertex of
degree 2 in the next diamond. The resulting graph has n = 4k vertices, and
precisely two vertices have degree 2. The number of acyclic orientations is
18k2k—1 — 6"/2/2. If we add an edge between the two vertices of degree 2,
we obtain a 2-connected cubic graph with less than 6™/2 acyclic orientations
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which is close to the lower bound in Theorem 4. This graph also shows that
a 2-connected cubic graph cannot be constructed from a cycle as we did in
Theorem 4. Instead one can show that every 2-connected cubic graph (minus
an edge) can be constructed from a cycle by adding paths of length at least 2
and lollipops, where addition of a lollipop means addition of a cycle disjoint
from the current graph together with a path connecting the new cycle with
the current graph. A modification of the proof of Theorem 4 then gives the
following which is best possible within a factor 2:

Theorem 7. Every 2-connected cubic graph has at least 6”/2/2 acyclic ori-
entations.

It is also natural to ask how much Theorem 4 can be strengthened for
3-connected graphs.

The Cartesian product of a path with n/2 vertices and a Ky is called
a ladder. It has n vertices, and it is easy to prove, by induction on n, that
it has precisely 2 - 7%/271 acyclic orientations. The Cartesian product of a
cycle with n/2 vertices and a Ky is called a prism. As it is obtained from a
ladder by adding two edges it has less than 8 - 7%/2~1 acyclic orientations.
(The precise number can be found by evaluating the chromatic polynomial
of the prism at —1.)

Problem 2. Does there exist a 3-connected cubic graph which has less than
772, 71000 gevelic orientations?
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