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Abstract. This is an introduction to a particular class of auxiliary
complex Monge-Ampère equations which have been instrumental in L∞

estimates for fully non-linear equations and various questions in
complex geometry. The essential comparison inequalities are reviewed
and shown to apply in many contexts. Adapted to symplectic geometry,
with the auxiliary equation given now by a real Monge-Ampère
equation, the method gives an improvement of an earlier theorem
of Tosatti-Weinkove-Yau, reducing Donaldson’s conjecture on the
Calabi-Yau equation with a taming symplectic form from an
exponential bound to an L1 bound.

1. Introduction
It is well-known that comparisons with an auxiliary equation can be of pow-

erful assistance in the study of partial differential equations. Comparisons with
harmonic functions were used early on by De Giorgi [16], and have been applied
since in many contexts, including e.g. in the book of L. Simon [58], and in X.J.
Wang’s method for Schauder estimates for the Poisson equation [70]. Since then,
comparisons with many other equations have proved to be effective. Complex
Monge-Ampère equations are particularly suitable as auxiliary equations, since
the existence and smoothness of their solutions for given right hand sides have
been established by Yau [72] in the case of compact Kähler manifolds, and by
Caffarelli, Kohn, Nirenberg, and Spruck [6] in the case of the Dirichlet problem.
Notable successes of Monge-Ampère equations as auxiliary equation include the
estimates of Dinew and Kolodziej [19] relating volume and capacity, the bounds of
Song and Tian [60] for the Kähler-Ricci flow, and the entropy estimates of Chen
and Cheng [8] for the constant scalar curvature equation.
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Very recently, a specific class of auxiliary Monge-Ampère equations has been
instrumental in many significant advances in complex geometry. This class was
first introduced by the authors in joint work with F. Tong in [31], and already
led to a pure PDE proof of the L∞ estimates of Kolodziej [45], a goal which had
eluded researchers in the field for close to a quarter of a century. As a PDE proof,
the method immediately extends Kolodziej’s estimates to a general class of non-
linear equations satisfying a structural condition. Remarkably, this class has been
shown by Harvey and Lawson [43] to be quite large, and include in particular all
invariant Garding-Dirichlet operators. In fact the method turns out to be even
more flexible and powerful than naively anticipated, and it has had since many
unexpected applications. These include stability estimates for Monge-Ampère and
Hessian equations [33]; L∞ estimates for Monge-Ampère equations on nef classes
rather than just Kähler classes [34]; sharp modulus of continuity for non-Hölder
solutions [35]; extensions to parabolic equations [9]; extensions to equations on
Hermitian manifolds [37]; extensions to form-type equations [37]; lower bounds for
the Green’s function [36]; uniform entropy estimates [38]; and diameter estimates
and convergence theorems in Kähler geometry not requiring bounds on the Ricci
curvature [40, 39].

The main purpose of this paper is to provide a survey of these developments.
We shall describe in some detail the essential features of the particular class of
auxiliary complex Monge-Ampère equations of interest. The main applications
are sketched, with explanations of how the auxiliary Monge-Ampère equations
are used. The precise statements of the results obtained are then given. In all
but one case, the full treatment is left to references to the original papers in the
literature. The one exceptional case is the application to taming symplectic forms
on almost-Kähler manifolds. It is a conjecture of Donaldson [21], motivated by
symplectic geometry, that on a compact 4-manifold equipped with an almost-
complex structure J and a taming symplectic form Ω, the Calabi-Yau equation
would admit a priori bounds to all orders. This conjecture had been reduced by
Weinkove [71] to an L∞ bound for the potential, and subsequently by Tosatti,
Weinkove, and Yau [68] to a single exponential estimate. Using an auxiliary real
Monge-Ampère equation, we can reduce it further to a single L1 estimate. This
result is treated in detail because it is new and does not appear anywhere else. It
may also be noteworthy as evidence that the methods here can extend to the real
or symplectic context as well.

2. The Auxiliary Monge-Ampère Equation
We begin by describing the class of Monge-Ampère equations which will serve

later as comparison equations. Some key inequalities needed for the maximum
principle are broadly described, which can be adapted later for different applica-
tions.

Let (X ,ωX ) be a compact n-dimensional Hermitian manifold. For any Hermitian
form ω on X and any smooth function ϕ with supX ϕ = 0, set ωϕ = ω + i∂ ∂̄ϕ, and
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consider the relative endomorphism

hϕ = ω
−1
X ωϕ .(2.1)

We denote by λ [hϕ ] the (un)-ordered vector of its eigenvalues. Let f (λ ) be a
function on a convex cone Γ ⊂ Rn invariant under permutations, and consider the
family of equations parametrized by ω,

f
(
λ [hϕ ]

)
= kω(z), λ [hϕ ] ∈ Γ,(2.2)

where kω(z) is a given positive function. For some estimates, it is convenient to
introduce the constant cω > 0 defined by the following normalization

kω(z) = cω eFω ,
∫

X
enFω ω

n
X =

∫
X

ω
n
X .(2.3)

We remark that for certain equations such as complex Monge-Ampère equations,
it is necessary to add the normalizing constant cω > 0 in view of the constraint
for enFω in (2.3).

As in [31], we require that f : Γ → R+ satisfies the structural conditions:

(1) Γ ⊂ Rn is a symmetric cone with

(2.4) Γn ⊂ Γ ⊂ Γ1.

Here Γk is the cone of vectors λ with σ j(λ )> 0 for 1 ≤ j ≤ k, where σ j(λ )

is the j-th symmetric polynomial in λ . In particular, Γ1 is the half-space
defined by λ1 + · · ·+λn > 0, and Γn is the first octant, defined by λ j > 0 for
1 ≤ j ≤ n.

(2) f (λ ) is symmetric in λ = (λ1, . . . ,λn) ∈ Γ and it is homogeneous of degree
one;

(3) ∂ f
∂λ j

> 0 for each j = 1, . . . ,n and λ ∈ Γ;
(4) There is a γ > 0 such that

(2.5)
n

∏
j=1

∂ f
∂λ j

≥ γ ∀λ ∈ Γ.

It is well-known that equations such as the Monge-Ampère equation, with
f (λ ) = (∏n

j=1 λ j)
1
n , or the Hessian equation with f (λ ) = σk(λ )

1
k where σk is the

k-th order symmetric polynomial, or the p-Monge-Ampère equation of Harvey and
Lawson [41, 42] with

f (λ ) =

(
∏

I
λI

) n!
(n−p)!p!

where I runs over all distinct multi-indices 1 ≤ i1 < · · ·< ip ≤ n, λI = λi1 + · · ·+λip ,
and Γ is the cone defined by λI > 0 for all p-indices I, all satisfy the structural
condition (4). A remarkable recent result of Harvey and Lawson [43] is that the
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condition (4) actually holds for very large classes of non-linear operators, including
all invariant Garding-Dirichlet operators. As noted in [43], the condition (4) also
arose independently in [1] in the study of W 2,p interior regularity.

We would like to compare the solution ϕ of the equation (2.2) with the solution
ψ of the following complex Monge-Ampère equation

(ω + i∂ ∂̄ψ)n =
τ(−ϕ +q(z)− s)

A
kn

ω(z)ω
n
X , supX ψ = 0(2.6)

where s ≥ 0 is a nonnegative constant, τ(t) is a smooth strictly positive function,
q(z) is a given function, and A is a normalizing constant so that the integrals of
both sides of (2.6) coincide. Explicitly, A can be written as in (3.5) below.

Let G jk̄ be the linearized operator of log f (λ ), defined by

G jk̄ =
∂

∂hk̄ j
log f

(
λ [h]

)
.(2.7)

Here we denote by λ [h] the unordered n-tuple of eigenvalues of the endomor-
phism h. Fix a point z0 ∈ X . Since ωX is positive definite, and hϕ is a self-adjoint
endomorphism with respect to ωX , we can choose a holomorphic coordinate sys-
tem centered at z0 where (ωX ) j̄k = δ jk and hϕ(z0) is diagonal, (hϕ) j̄k(z0) = λ jδ jk.
In particular (ωϕ)k̄ j(z0) = λ jδ jk.

Lemma 1. The linearized endomorphism G jk̄ then satisfies the following: for
λ ∈ Γ

(a) G jk̄(z0) =
1

f (λ )
∂ f
∂λ j

δ jk, and G jk̄ is positive definite;
(b) G jk̄(ωϕ)k̄ j(z0) = 1 and G jk̄ωk̄ j(z0)≥ 0,
(c) and, taking into account the equations satisfied by ϕ and ψ,

1
n

G jk̄(ωψ)k̄ j ≥
(

γτ(−ϕ +q− s)
A

) 1
n

.(2.8)

Proof. The formula in (a) is a classical formula for the linearization of a fully non-
linear operator log f (λ [h]) at a diagonal matrix h from the theory of non-linear
equations [61]. The positive-definiteness of G jk̄ is an immediate consequence of the
ellipticity condition ∂ j f (λ )> 0 of the function f . Next, we can write at z0,

G jk̄(ωϕ)k̄ j =
n

∑
j=1

1
f (λ )

∂ f
∂λ j

λ j = 1(2.9)

by Euler’s relation for homogeneous functions f (λ ) of degree 1. This proves the
first equation in (b). To establish the second equation in (b), we observe that
since (ωX )k̄ j = δ jk at z0, ω can be identified with the relative endomorphism
h0 = (ωX )

−1ω, which is hermitian and positive with respect to ωX . The expres-
sion G jk̄ωk̄ j can then be identified with the trace Tr(Gh0), which is then the inner
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product of two positive matrices. As such, it is positive, as can be seen for ex-
ample by writing it in a basis where both corresponding quadratic forms are
diagonal.

Finally, to establish (c), we apply the arithmetic-geometric inequality to write

1
n

G jk̄(ωψ)k̄ j ≥
(
det
(
G jk̄(ωψ)k̄m

)) 1
n =

(
detG jk̄ ·det(ωψ)k̄m

)
)

1
n

=

(
1

f (λ )n

(
n

∏
j=1

∂ f
∂λ j

)
· τ(−ϕ +q− s)

A
kω(z)

n det(ωX )

) 1
n

.(2.10)

Applying the equation for ϕ, this inequality simplifies to

1
n

G jk̄(ωψ)k̄ j ≥

(
n

∏
j=1

∂ f
∂λ j

· τ(−ϕ +q− s)
A

det(ωX )

) 1
n

(2.11)

Applying now the structural condition on f (λ ), we obtain the desired inequal-
ity (c).

Next, we need a “comparison function Φ”, relating the solution ϕ of the equa-
tion (2.2) to the solution ψ of the auxiliary Monge-Ampère equation (2.6). For
the applications considered in this survey, the comparison function Φ is usually of
the form

Φ =−ε
(
−ψ +q(z)+Λ

)b −ϕ + q̃(z)− s(2.12)

with 0 < b < 1 a fixed constant, ε,Λ non-negative constants to be chosen later,
and q̃(z) a smooth function. We obtain the key inequality relating ϕ and ψ if we
can choose all the data in Φ so as to guarantee that Φ ≤ 0 everywhere. To do so,
we typically apply the maximum principle, and make use of the following general
calculations:

Lemma 2. Fix a point z0 and a holomorphic coordinate system centered at z0 as
above. Then we have the following inequality at z0

G jk̄
Φk̄ j ≥ εnb

(
−ψ +q(z)+Λ

)b−1
(

γτ(−ϕ +q− s)
A

) 1
n

−1

+G jk̄{
ωk̄ j +

(
1− εb(−ψ +q+Λ)b−1)(ωq)k̄ j + q̃k̄ j

}
.(2.13)

Proof. A direct calculation gives

Φk̄ j = εb
(
−ψ +q(z)+Λ

)b−1
(ψ −q)k̄ j −ϕk̄ j + q̃k̄ j

− εb(b−1)
(
−ψ +q(z)+Λ

)b−2
(ψ −q) j(ψ −q)k̄(2.14)

Rewriting this expression using (ψ −q)k̄ j = (ωψ)k̄ j − (ωq)k̄ j and ϕk̄ j = (ωϕ)k̄ j −ωk̄ j,
we obtain

G jk̄
Φk̄ j = εb(−ψ +q+Λ)b−1G jk̄(ωψ)k̄ j − εb(−ψ +q+Λ)b−1G jk̄(ωq)k̄ j
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−G jk̄(ωϕ)k̄ j +G jk̄
ωk̄ j +G jk̄q̃k̄ j

− εb(b−1)(−ψ +q+Λ)b−2G jk̄(ψ −q) j(ψ −q)k̄(2.15)

Since G jk̄ > 0 and 0 < b < 1, we can drop the expression involving G jk̄(ψ −q) j(ψ −
q)k̄ from the right hand side. The desired inequality then follows from those in
Lemma 1.

The lemma is particularly useful when the last term on the right hand side
of (2.13) happens to be positive and can be dropped. We obtain then an upper
bound for the solution ϕ of the given equation (2.2) in terms of the solution ψ of
the auxiliary Monge-Ampère equation. The following is the simplest illustration,
which will be shown later to apply to L∞ estimates on Kähler manifolds:

Lemma 3. Let ϕ and ψ satisfy the equations (2.2) and (2.6), under the preced-
ing hypotheses on the operator f (λ ). Assume that the function τ(t) satisfies the
condition

τ(t)≥ ta, t ∈ [0,∞)(2.16)

for some fixed power a > 0. Then for any s ≥ 0, we have

−ϕ − s ≤ cn,a,γ A
1

a+n (−ψ +Λ)
n

n+a(2.17)

for all z ∈ X and all s ≥ 0, if the constants b, ε and Λ are chosen to be

b =
n

n+a
, ε =

(
nbγ

1
n
)− n

a+n A
1

a+n , Λ
1−b = εb.(2.18)

Here cn,a,γ is a constant depending only on n,a,γ.

Proof. Let Φ be defined as in (2.12), with q(z) = q̃(z) = 0. We apply Lemma 2.
Since q = q̃ = 0, we have ωq = ω and the last expression on the right hand side of
(2.13) reduces to

G jk̄{
ωk̄ j +

(
1− εb

(
−ψ +q+Λ

b−1))(ωq)k̄ j + q̃k̄ j

}
= G jk̄{1− εb(−ψ +Λ)b−1}

ωk̄ j ≥
(
1− εbΛ

b−1)G jk̄
ωk̄ j ≥ 0(2.19)

since −ψ ≥ 0, 0 < b < 1, and G jk̄ωk̄ j ≥ 0 by (b) of Lemma 1.
Let z0 be a point where Φ attains its maximum on X . We shall show that

Φ(z0)≤ 0. If −ϕ(z0)− s ≤ 0, the function Φ is manifestly ≤ 0 at its maximum z0,
and we are done. Otherwise, we note that 0 ≥ G jk̄Φk̄ j(z0) and apply Lemma 2. As
just noted, we can drop the last term on the right hand side of (2.13), and bound
τ(−ϕ − s) from below by (−ϕ − s)a. We find

1 ≥ nεb(−ψ +Λ)b−1
(

γ(−ϕ − s)a

A

) 1
n

(2.20)
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at z0, which can be rewritten as

−
(
nbγ

1
n
)− n

a+n A
1

a+n (−ψ +Λ)
n

n+a −ϕ − s ≤ 0.(2.21)

With the choice of b, ε, and Λ indicated in the lemma, we can recognize the left
hand side as Φ(z0). Since z0 is a maximum for Φ, it follows that Φ(z)≤ 0 for any
z ∈ X . This last statement can be recast as in the form stated in the Lemma.

3. Application to the Compact Kähler Case
The first application that we discuss is the one where the above class of auxiliary

equations was originally introduced [31], in order to provide a PDE proof of the
L∞ estimates for the complex Monge-Ampère equation originally established by
Kolodziej [45]. We discuss this case in some detail, since it also serves as a template
for other subsequent applications.

Assume in this section that X is a compact Kähler manifold, and both ωX and
ω are Kähler forms. We would like to derive L∞ estimates for the solutions ϕ of
the equation (2.2). Our goal is to find in the present case of non-linear equations
an adaptation of the strategy going back to De Giorgi for L∞ bounds for linear
equations in divergence form. In this strategy, a lower bound for ϕ is obtained by
showing that the set

Ωs = {ϕ <−s}(3.1)

is empty starting from some S0 which can be estimated. We shall deduce this from
suitable growth conditions on the function

φ(s) =
1

Vω

∫
Ωs

kn
ω(z)ω

n
X , Vω =

∫
X

ω
n,(3.2)

which will follow themselves from a reverse Hölder inequality for the key function
As defined for s > 0 by

As =
1

Vω

∫
Ωs

(−ϕ − s)kn
ω(z)ω

n
X .(3.3)

For this we need an auxiliary Monge-Ampère equation. Let τ`(t) be a sequence
of smooth strictly positive functions on R which decreases monotonically to the
function R 3 t → tχR+(t) as `→ ∞, and which are uniformly bounded from above
by 1+ tχR+(t). Here χR+ is the characteristic function of R+. For each s ∈ R, let
ψ`(z) be the solution of the following auxiliary Monge-Ampère equation

(ω + i∂ ∂̄ψ`)
n =

τ`(−ϕ − s)
A`,s

kn
ω(z)ω

n
X ,(3.4)

where the constant A`,s is defined by

A`,s =
1

Vω

∫
X

τ`(−ϕ − s)kn
ω(z)ω

n
X .(3.5)
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By Yau’s theorem [72], the above equation admits a unique smooth and ω-pluri-
subharmonic (PSH) solution ψ` normalized by supX ψ` = 0.

We can now apply Lemma 3, with a = 1, b = n/(n+1), q ≡ 0. Since ψ` ≤ 0, the
condition −ψ`+q ≥ 0 is satisfied, and we obtain an estimate of the form

−ϕ − s

A1/(n+1)
`,s

≤ cn,γ(−ψ`+ cn,γ A`,s)
n

n+1(3.6)

where cn,γ denote generically positive constants depending only on n and γ. Re-
stricting to the set Ωs = {−ϕ − s > 0}, we can take the n/(n+ 1)-root of both
sides, multiply the resulting inequality by a constant β0, take the exponential,
and integrate over Ωs. We obtain

(3.7) ∫
Ωs

expβ0

(
−ϕ − s

A1/(n+1)
`,s

) n+1
n

ω
n
X ≤ exp(cn,γ β0A`,s)

∫
Ωs

exp(−cn,γ β0ψ`)ω
n
X .

We can now invoke the well-known inequality for α-invariants, which states that
for all ω Kähler forms with ω ≤ κωX for some fixed κ > 0, there exists a constant
α so that, ∫

X
exp(−α0ψ)ωn

X ≤C(α0,n,ωX ,κ)(3.8)

for any α0 < α and any ω-plurisubharmonic function ψ with supX ψ = 0 [44, 64].
Thus we have∫

Ωs

exp

{
β0

(
−ϕ − s

A1/(n+1)
`,s

) n+1
n
}

ω
n
X ≤ cα0,n,ωX ,κ,γ exp(cn,γ,β0

A`,s).(3.9)

We can now let `→ ∞ and obtain∫
Ωs

exp

{
β0

(
−ϕ − s

A1/(n+1)
s

) n+1
n
}

ω
n
X ≤ cα0,n,ωX ,κ,γ exp(cn,γ,β0

As),(3.10)

where As = lim`→∞A`,s with As defined as in (3.3).
Let E be the energy of ϕ defined by

E =
1

Vω

∫
X
(−ϕ)kn

ω(z)ω
n
X .(3.11)

Then As ≤ E for any s ≥ 0, and the preceding inequality implies the following,

∫
Ωs

exp

{
β0

(
−ϕ − s

A1/(n+1)
s

) n+1
n
}

ω
n
X ≤ cexp(cE)(3.12)

which suffices for our purposes.
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The inequality (3.10) is the key inequality in our method. It is not difficult to
show that it implies a reverse Hölder inequality. For this, we apply the Young’s
inequality in the following form

UV ≤Uη(U)+V η
−1(V )(3.13)

for any monotone strictly increasing function η : R+ → R+ with limu→0η(u) = 0.
Here η−1 is the inverse of the function η . We make the choice η(u) = (log(1+u))p,
η−1(v) = exp(V

1
p )−1, and U = enFω , V = v(z)p, where we have rewritten kω(z) as

kω(z) = cω eFω as in (2.3). This gives

enFω v(z)p ≤ enFω logp(1+ enFω
)
+ v(z)p(ev(z)−1

)
≤ cp{enFω

(
1+ |nFω |p

)
+ e2v(z)).

Next, take

v(z) =
1
2

β0

(
−ϕ − s

A1/(n+1)
s

) n+1
n

(3.14)

and integrate both sides over Ωs. In view of (3.10), we find

Lemma 4. The following inequality holds

1
Vω

∫
Ωs

(−ϕ − s)p n+1
n kn

ω(z)ω
n
X ≤ c

cn
ω

Vω

A
p
n
s
(
‖enFω‖L1(logL)p + cecE)(3.15)

where c =C(X ,ωX ,β0, p) is a constant, and ‖enFω‖L1(logL)p =
∫

X |Fω |penFω ωn
X .

We observe that As is essentially the L1 norm of −ϕ−s, so the inequality we just
obtained can be interpreted as a reverse Hölder inequality. It implies immediately
the following growth rate for the function φ(s) as in (3.2),

Lemma 5. Fix p > n. Then we have the inequalities

(a) As ≤ B0 φ(s)1+δ0 , for δ0 = (p−n)/np > 0,
(b) For any r > 0, As ≥ rφ(r+ s),
(c) rφ(s+r)≤B0 φ(s)1+δ0 , where the constant B0 is given by [c cn

ω

Vω
(‖enFω‖L1(logL)p+

cecE)]
1
p .

Proof. We begin with the proof of (a). By Hölder’s inequality, we have

As ≤
{

1
Vω

∫
Ωs

(−ϕ − s)p n+1
n kn

ω(z)ω
n
X

} n
(n+1)p

(
1

Vω

∫
Ωs

kn
ω(z)ω

n
X

) 1
q

(3.16)

where q is defined by n
p(n+1) +

1
q = 1. The first factor on the right hand side has

been shown to be bounded by a multiple of A1/(n+1)
s . Putting this factor on the
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left hand side yields

As ≤ B0

(
1

Vω

∫
Ωs

enFω ω
n
X

) 1+n
qn

= B0φ(s)
1+n
qn .(3.17)

The exponent 1+ n/(qn) is readily worked out to be 1+ δ0, establishing (a). To
see (b), we observe that, trivially, Ωr+s = {ϕ <−s− r} ⊂ Ωs, and hence

As =
1

Vω

∫
Ωs

(−ϕ − s)enFω ω
n
X ≥ r

1
Vω

∫
Ωs+r

enFω ω
n
X = rφ(s+ r)(3.18)

establishing (b). The last statement (c) is a trivial consequence of (a) and (b).

We can now invoke a classic lemma of De Giorgi, which says that positive
monotone decreasing functions φ(s) which tend to 0 as s → ∞, and satisfy the
growth rate condition stated as (c) in Lemma 5, must vanish for some s ≥ S0,
where S0 > 0 can be estimated in terms of B0 and δ0. But this implies that Ωs

must be empty for s≥ S0, and hence ϕ ≥−S0. Thus we have obtained the following
bound for ϕ [31]:

Theorem 1. Let ϕ be a solution to the equation where the operator f (λ ) satisfies
the structural conditions listed in (1–4). Assume that the Kähler form ω satisfies
the condition ω ≤ κ ωX for some positive constant κ. Fix p > n. Then we have the
L∞ bound

ϕ ≥−C(3.19)

where C is a constant depending only on X ,ωX ,n, p,γ,κ and the following three
quantities

cn
ω

Vω

, E, Entp(ω) = ‖enFω‖L1(logL)p .(3.20)

In the case of the Monge-Ampère equation f (λ ) = (∏ j=1)
nλ j)

1
n , it is easy to

see that cn
ω

Vω
= 1

[ωn
X ]

and that the energy E can be bounded by a constant depending
only on X ,ωX ,n,γ,κ and Ent{p=1}(ω). Thus Theorem 1 gives L∞ estimates for ϕ

depending only on the entropy Entp(ω) for p > n, recovering in this way the L∞

estimates of Kolodziej [45], even in the more general version allowing degenerations
of the background metric established by Demailly-Pali [17], and Eyssidieux-Guedj-
Zeriahi [22]. We stress however that it holds for the general class of operators f (λ )
satisfying the structural conditions (1–4), which is quite large, as shown by Harvey
and Lawson [43].

4. Application to Energy Estimates from Entropy
The previous Theorem 1 had, for a fixed background metric ω, reduced L∞

bounds for general non-linear equations of the form (2.2) to the three quantities
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cn
ω/[ω

n], E, and Entp(ω) for p > n. Actually, it has been known for some time that
bounds for the energy E can be derived from bounds for the entropy [2, 8]. This
was even one of the key steps in the work of X.X. Chen and J.R. Cheng [8] on
the equation for Kähler metrics of constant scalar curvature. As shown in [31], the
arguments of [8] can be adapted to provide bounds for the energy, assuming that
the entropy is bounded. However, all of these bounds depend on the background
metric ω, and are only useful for fixed ω.

This problem of bounding uniformly the energy by the entropy is addressed by
the following theorem [37]:

Theorem 2. Let (X ,ωX ) be a compact n-dimensional Kähler manifold without
boundary. Let ω be any Kähler form on X with

ω ≤ κ ωX(4.1)

for some constant κ > 0. Consider the equation (2.2) with the operator f (λ )
satisfying the conditions (1–4). Then for any p > 0, any C2 solution ϕ to (2.2)
satisfies the following

(i) Trudinger-like inequalities

(4.2)
∫

X
eα(−ϕ)q

ω
n
X ≤CT ,

(ii) and energy-like estimates

(4.3)
∫

X
(−ϕ)pqenFω ω

n
X ≤Ce.

Here the exponent q is given by q = n
n−p if p < n, and can be any strictly positive

exponent if p ≥ n. The constants CT and Ce are computable constants depending
only on n, p,q,ωX ,κ,γ, and upper bounds for the following two quantities

cn
ω

Vω

, Entp(ω) =
∫

X
enFω |Fω |pω

n
X ,(4.4)

and the term α > 0 is a constant that depends only on n, p,γ, cn
ω

Vω
and κ.

We observe that, in the case of a fixed background Kähler metric ω, this
theorem was proved as Theorem 3 in [31]. As stressed above, the point of the new
theorem is to have uniform estimates, even when the background metric ω may
degenerate to the boundary of the Kähler cone. For the same reason, we consider
the case p > n. When p > n and the background Kähler form ω is fixed, it follows
from [31], Theorem 1, that the solution ϕ of the equation is actually bounded,
and the above Trudinger-like and energy-like estimates follow at once. But here
again, the existing results do not give the estimates uniform in ω that we seek.

We only describe the version of the auxiliary complex Monge-Ampère equation
that we need, together with the comparison inequality, referring to [38] for full
details.
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Thus let a= pq= np
n−p (a is any positive number if p= n). We solve the following

complex Monge-Ampère equation

(4.5) (ω + i∂ ∂̄ψs,`)
n =

τ`(−ϕ − s)a

As,`
cn

ω enFω ω
n
X , supX ψs,` = 0.

Here the constant As,` is defined by

(4.6) As,` =
cn

Vω

∫
X

τ`(−ϕ − s)aenFω ω
n
X

to make the equation (4.5) compatible. By assumption [ω] is a Kähler class, so by
Yau’s theorem [72], (4.5) admits a unique smooth solution ψs,`. We observe that
as `→ ∞

(4.7) As,` → As :=
cn

ω

Vω

∫
Ωs

(−ϕ − s)aenFω ω
n
X .

Next we consider comparison functions of the form

Φ :=−ε(−ψs,`+Λ)b −ϕ − s,

where ε and Λ are constants, and b is a suitable power. Using the identities in
Section 2 and the maximum principle, we then show that

Φ ≤ 0(4.8)

if the constants are given by

(4.9) b =
n

n+a
∈ (0,1), and ε =

1

γ1/(n+a)(nb)n/(n+a)
A

1
n+a
s,` ,

and Λ is chosen so that εbΛ−(1−b) = 1, that is,

(4.10) Λ =
b1/(1−b)

(γ1/(n+a)(nb)n/(n+a))1/(1−b)
A

1
a
s,`.

The inequality Φ ≤ 0 on X implies that −ϕ − s can be controlled by
ca,n,γ A

1
n+a
s,` (−ψs,`+A

1
a
s,`)

b, after which the theorem can be established following the
strategy of Section 3.

5. Application to Stability Estimates
It is not difficult to adapt the same method of L∞ estimates to stability es-

timates. As in Section 3, let (X ,ωX ) be a compact Kähler manifold, and ω be
a Kähler metric such that ω ≤ κωX for some κ > 0. We consider the following
complex Monge-Ampère equations

(5.1) (ω + i∂ ∂̄u)n = cω e f
ω

n
X , and (ω + i∂ ∂̄v)n = cω eh

ω
n
X ,
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with the constant cω =
∫

X ωn and
∫

X e f ωn
X =

∫
X ehωn

X = 1. The functions u,v are
normalized such that

maxX (u− v) = maxX (v−u).

Assume that for some K > 0 and p > n,

max
(
‖e f ‖L1(logL)p(X ,ωX )

,‖eh‖L1(logL)p(X ,ωX )

)
≤ K.

Theorem 3. Under these assumptions, there is a constant C > 0 depending on
n, p,ωX ,κ, and K such that

supX |u− v| ≤C‖e f − eh‖β

L1 ,

where β = β (n, p) = (n+3+ p−n
pn )−1 > 0.

We outline the main idea of the proof, and refer to [33] for the details. Fix
a small r > 0. First we may assume

∫
{v≤u}(e

f + eh)ωn
X ≤ 1. We then consider the

auxiliary equation

(ω + i∂ ∂̄ψ)n = cω

τ`(−ϕ +q(z)− s)
A`,s

eh
ω

n
X , supX ψ = 0,(5.2)

with ϕ = v− (1− r)u, q(z) = −3β0r, where β0 is an upper bound of ‖u‖L∞ and
‖v‖L∞ . β0 exists from Section 3. Take the comparison function

Φ =−ε(−ψ +Λ)
n

n+1 −ϕ +q(z)− s(5.3)

with ε = c1(n)A
1/(n+1)
`,s and Λ = c2(n)(ε/r)n+1 for appropriate constants c1(n) and

c2(n). Arguing as in Section 3, we arrive at v− u ≥ −Cr for a constant C > 0
depending only on n, p,κ,ωX and K > 0.

We remark that analogous stability estimates as in Theorem 3 hold for complex
Hessian equations as well [33, 20].

6. Application to the Nef Case

So far, we have considered equations whose background form ω is Kähler (al-
though it may degenerate to the boundary of the Kähler cone). In this section,
following [34], we show how it can be adapted to nef classes, which are those in
the closure of the Kähler cone.

As above, (X ,ωX ) is a Kähler manifold. We assume only the class [ω] is Kähler
and ω ≤ κωX , but the (1,1)-form ω may not be positive.

We consider both the Monge-Ampère and Hessian equations. While L∞ esti-
mates do not hold in the usual form, the following estimates can be established
[34]:
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Theorem 4. Assume that (X ,ωX ) is an n-dimensional compact Kähler manifold,
and let ω be a closed (1,1)-form which may not be positive, but [ω] is a Kähler
class with ω ≤ κ ωX .

(a) Let f (λ ) = (∏n
j=1 λ j)

1
n , corresponding to the Monge-Ampère equation. Recall

that the envelope associated to ω is the ω-PSH function defined by

Vω = sup
{

u| u ∈ PSH(X ,ω), u ≤ 0
}
.(6.1)

Then for any fixed p > n, there is a constant C depending only on ωX , n, p, κ,
Entp(ω), so that the solution ϕ of the equation (2.2) satisfies

0 ≤−ϕ +Vω ≤C.(6.2)

(b) Let f (λ ) = σk(λ )
1
k , corresponding to the k-th Hessian equation. Define the

envelope Vω,k corresponding to the Γk cone by

Vω,k = sup{v ≤ 0}(6.3)

where v runs over non-negative C2 functions with the vector of eigenvalues of the
relative endomorphism ω

−1
X (ω + i∂ ∂̄v) lying in the Γk cone. Define the energy Ek

by

Ek =
∫

X
(−ϕ +Vω,k)e

kFω ω
n
X .(6.4)

Recall also the constant cω as defined for the equation (2.2). Then for any p > n,
there is a constant C depending only on ωX ,n,o,κ, Ek, and ‖ekFω‖L1(logL)p , cn

ω

[ω]k[ωX ]n−k

so that

0 ≤−ϕ +Vω,k ≤C.(6.5)

We note that Part (a) on the Monge-Ampère equation had been proved with
different methods by Boucksom et al. [5] and Fu-Guo-Song [23]. Part (b) on Hes-
sian equations is new and due to [34].

As in earlier applications, we indicate only the auxiliary Monge-Ampère equa-
tion to be used, and the comparison function Φ. We only discuss the proof of Part
(a), the one of Part (b) being similar.

A first technical difficulty is that Vω is only C1,1. However, it has been shown
by Berman [2] that there exists a sequence of smooth and strictly ω-PSH functions
{uβ}∞

β=1 which converge uniformly to Vω . In the following we can use uβ in place
of Vω , and then take limit β → ∞.

The auxiliary Monge-Ampère equation is then

(ω + i∂ ∂̄ψ)n =
τ`(−ϕ +uβ − s)

A`,β
kn

ω(z)ω
n
X , supX ψ =−1(6.6)

and the comparison function Φ is defined by

Φ =−ε(−ψ +uβ +1+Λ)
n

n+1 −ϕ +uβ − s.(6.7)
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In the general setting of Section 2, this corresponds to our general ansatz with
q = q̃ = uβ and the simple shift in the normalization of ψ, with supX ψ =−1. We
note that an analogue of (2.19) still holds by the fact that ωuβ

> 0 although ω may
not be positive. We can then show that Φ ≤ 0, and establish the desired bounds
following our general template.

7. Application to the Modulus of Continuity
It has been shown by Kolodziej [45] that the solution of the complex Monge-

Ampère equation on a compact Kähler manifold is Hölder continuous if the right
hand side is of class Lq for some q > 1. He has also shown that if the right-hand
side is in some Orlicz space (see (2.1.3) in [45]), then it must be continuous. But
even so, his arguments are not direct, and we don’t have any information on the
modulus of continuity of the solution. The modulus of continuity is typically a
delicate question. However, it turns out that it can also be addressed using the
class of auxiliary Monge-Ampère equations discussed in the present paper.

More specifically, let (X ,ωX ) be again a compact Kähler manifold of complex
dimension n. We consider the complex Monge-Ampère equation with

∫
X eF ωn

X =∫
X ωn

X

(7.1) (ωX + i∂ ∂̄ϕ)n = eF
ω

n
X , ωϕ = ωX + i∂ ∂̄ϕ > 0.

Then the following estimate is established in [35]:

Theorem 5. Fix p > n. Then we have

|ϕ(x)−ϕ(y)| ≤ C
| logd(x,y)|α

, ∀x,y ∈ X

for some constant C > 0 depending on n, p,ωX and ‖eF‖L1(logL)p . Here d(x,y)
denotes the geodesic distance of x,y in the Riemannian manifold (X ,ωX ), and
α = min{ p

n+1 ,
p−n

n }> 0.

The proof of Theorem 5 relies on the following auxiliary complex Monge-
Ampère equation:

(ωX + i∂ ∂̄ψ)n =
τ`(−ϕ +q(z)− s)

A`,s
eF

ω
n
X(7.2)

with q = (1−| logδ |−p/(n+1))ϕδ − 2δ and ϕδ is the (rescaled) Kiselman-Legendre
transform of ϕ at level δ > 0. With the comparison function

Φ =−ε(−ψ +Λ)
n

n+1 −ϕ +q(z)− s,(7.3)

we can argue as in Section 3 to conclude that ϕδ −ϕ ≤ 2δ + | logδ |−p/(n+1)ϕδ +S∞

for S∞ =C| logδ |−(p−n)/n. The proof of Theorem 5 then follows from the fact that
ϕδ (z) is equal to maxϕ over the ball B(z,δ ) up to a controlled error term.
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8. Application to the Hermitian Case
A striking feature of the above method of auxiliary Monge-Ampère equations

is the ease with which it can be adapted to the case of Hermitian manifolds. Thus
we let (X ,ωX ) be a compact Hermitian manifold with ωX a fixed Hermitian metric,
ωϕ = ωX + i∂ ∂̄ϕ, hϕ = ω

−1
X ωϕ , and consider the equation

f
(
λ [hϕ ]

)
= eF , λ [hϕ ] ∈ Γ, supX ϕ = 0,(8.1)

where the operator f (λ ) defined on a cone Γ satisfies the structural conditions
(1–4) spelled out in Section 2. We have the following result from [37]

Theorem 6. For any p > n, a C2 solution ϕ of the equation (8.1) must satisfy
the L∞ bound

supX |ϕ| ≤C(8.2)

where C is a constant depending only on X ,ωX ,n, p,γ and ‖enF‖L1(logL)p .

In the case of the Monge-Ampère equation, L∞ estimates were first obtained in
the Hermitian setting by Cherrier [13] and Tosatti and Weinkove [65], assuming
a pointwise bound for eF . The sharper version with entropy bounds ‖enF‖L1(logL)p

was obtained by Dinew and Kolodziej [19], and required a highly non-trivial ex-
tension of pluripotential theory to the Hermitian setting. An approach based on
envelopes has been recently proposed by Guedj and Lu [30]. Our theorem applies
to much more general classes of equations, and its proof is arguably the simplest,
as it bypasses the complicated integration by parts with torsion terms which arise
in Hermitian geometry. We provide a brief sketch. The original and complete ar-
gument can be found in [37].

A first observation is that the previous auxiliary complex Monge-Ampère equa-
tion cannot be applied as it is. The reason is that, on a compact Hermitian man-
ifold, unlike on Kähler manifolds, solutions exist only up to an undetermined
constant. Because of this, we shall use instead as auxiliary equation the Dirich-
let problem for a complex Monge-Ampère equation on a Euclidean ball, which
has been shown by Caffarelli, Kohn, Nirenberg, and Spruck [6] to always admit a
smooth solution.

Thus, fix r0 small enough, but depending only on (X ,ωX ) so that, for any z0 ∈X ,
there is a coordinate system z centered at z0 so that

1
2

i∂ ∂̄ |z|2 ≤ ωX ≤ 2i∂ ∂̄ |z|2 in B(z0,2r0) = {|z|< 2r0}.(8.3)

Let x0 ∈ X be a point where ϕ attains its minimum. We shall show that

ϕ(x0)≥−C(8.4)

where C is a constant depending only on X ,ωX , p,γ,‖enF‖L1(logL)p , and ‖ϕ‖L1(X ,ωX )
.

It is not difficult to show by a separate argument that ‖ϕ‖L1(X ,ωX )
is bounded by
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a constant depending only n,ωX , for all functions with supX ϕ = 0 with

λ [hϕ ] ∈ Γ ⊂ Γ1 = {λ ;λ1 + · · ·+λn > 0}.

The desired theorem (i.e. Theorem 6) would follow.
We introduce now the auxiliary equation. Let Ω = B(x0,2r0), and for each s

with 0 < s < 2r2
0, set

us(z) = ϕ(z)−ϕ(x0)+
1
2
|z|2 − s(8.5)

and Ωs = {z ∈ Ω;us(z) < 0}. Let ψs,` be the solution of the following Dirichlet
problem,

(i∂ ∂̄ψs,`)
n =

τ`(us)

As,`
enF(z)

ω
n
X on Ω, ψs,` = 0 on ∂Ω,(8.6)

where the coefficients As,` are defined by

As,` =
∫

Ω

τ`(−us)e
nF

ω
n
X → As =

∫
Ωs

(−us)e
nF

ω
n
X , as `→ ∞.(8.7)

By [6], the solution ψs,` of this Dirichlet problem exists and is unique.
We can now state the key comparison inequality between us and ψs,`

−us ≤C(n,γ)A
1

n+1
s,` (−ψs,`)

n
n+1(8.8)

on Ω̄, where C(n,γ) depends only on n and γ. Note that the auxiliary Monge-
Ampère equation is of the general form considered in (2.6), with ω = 0, q̃(z) = 0,
Λ = 0, and q(z) = ϕ(z0)− 1

2 |z|
2, (and s →−s). In particular qk̄ j =− 1

2 δk j. It is then
easy to apply the maximum principle to the function

Φ =−ε(−ψs,`)
n

n+1 −us(8.9)

with the preliminary computations as in Lemma 2, and the desired inequality
follows with εn+1 = As,`γ

−1(n+1)nn−2n.
We can now follow the template provided by the compact Kähler case. First

we establish the inequality

∫
Ωs

exp

{
β
(−us)

n+1
n

A1/n
s

}
ω

n
X ≤C(8.10)

where β and C are strictly positive constants depending only on n,γ,r0. This is
the analogue in the Hermitian case of the inequality (3.12). For this, we apply
Young’s inequality as in the compact Kähler case, with the α-invariant replaced
by the following inequality of Kolodziej [45] for plurisubharmonic functions ψ∫

D
e−αψ dV ≤C(8.11)
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on bounded pseudoconvex domains D ⊂ Cn with ψ = 0 on ∂D, and Monge-Ampère
measure

∫
D(i∂ ∂̄ψ)n = 1. Here α is a strictly positive constant1.

Next, we can apply Young’s inequality to the exponential inequality (8.10) and
obtain for any p > n the following reverse Hölder inequality

As ≤C0

(∫
Ωs

enF
ω

n
X

)1+δ0

(8.12)

with δ0 =
1
n −

1
p , and C is a constant depending only on ωX ,n, p,γ and ‖enF‖L1(logL)p .

Setting

φ(s) =
∫

Ωs

enF
ω

n
X(8.13)

we can rewrite the reverse inequality as As ≤ C0(φ(s))1+δ0 . Since it is easily seen
that As ≥ t

∫
Ωs−t

enF ωn
X , we conclude that for any t ∈ (0,s)

tφ(s− t)≤C0
(
φ(s)

)1+δ0 .(8.14)

We can now apply a version of De Giorgi’s lemma for monotone increasing and
positive functions φ(s) on (0,s0) satisfying lims→0+φ(s) = 0 and the growth rate
(8.14), which says that under these conditions, there must exist a constant c0 > 0
depending only on s0,C0 and δ0 so that

φ(s0)≥ c0.(8.15)

Finally, we note the elementary inequality

φ(s0) log
(
−ϕ(x0)− s0

) 1
2 ≤

∫
Ωs0

log
−ϕ −2−1|z|2

(−ϕ(x0)− s0)
1
2

enF
ω

n
X(8.16)

which results itself from the elementary inequality −ϕ − 1
2 |z|

2 > −ϕ(x0)− s0 on
Ω0 since we may assume without loss of generality that s0 <

1
2 and ϕ(x0) < −2.

Applying the Young’s inequality to the integrand on the right hand side, we find

φ(s0) log
(
−ϕ(x0)− s0

) 1
2 ≤ 1

2
max

{
‖enF‖L1(logL)p +C′

pC1(ωX ),C
′′
p
‖ϕ‖L1 +C2(ω)

(−ϕ(x0)− s0)
1
2

}
.

Since φ(s0) is bounded from below by a constant, it follows that −ϕ(x0)− s0 must
be bounded from above. The theorem is proved.

9. Application to (n−1)-Form Monge-Ampère Equations
A new generation of problems in complex geometry, notably from non-Kähler

geometry and mathematical physics, has led to non-linear equations of the form

1 Kolodziej’s inequality is a generalization to all dimensions of a classic inequality in one complex
dimension due to Brezis and Merle [4]. Kolodziej’s original proof used pluripotential theory.
A PDE proof has been provided recently by Wang, Wang, and Zhou [69].
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f (λ ) = eF , but where λ are not the eigenvalues of a hessian matrix hϕ = ω
−1
X (ω +

i∂ ∂̄ϕ), but of a more general matrix involving the derivatives of ϕ to second
order. One basic example of such an equation is the so-called (n−1)-form Monge-
Ampère equation, solved by G. Székelyhidi, V. Tosatti, and B. Weinkove [63] in
their solution of the Gauduchon conjecture. Central to the study of this equation
is the L∞ estimate. In this section, we show how our method of auxiliary Monge-
Ampère equations can be used to establish this estimate, with in fact slightly
weaker and more general hypotheses than in [63].

Let (X ,ωX ) be a compact Hermitian manifold. If ω is any other Hermitian
metric, we consider the smooth functions ϕ for which the form

ω̃ϕ = ω +
1

n−1
(∆ωX ϕωX − i∂ ∂̄ϕ)(9.1)

is positive, where ∆ωX ϕ = n
i∂ ∂̄ϕ∧ω

n−1
X

ωn
X

is the rough Laplacian with respect to the
metric ωX . Then

Theorem 7. Let h̃ϕ = ω
−1
X ω̃ϕ , and λ [h̃ϕ ] be its eigenvalues. Fix any p > n. Then

any smooth solution ϕ of the equation

n

∏
j=1

(λ̃ϕ) j = enF(9.2)

with ω̃ϕ > 0 and supX ϕ = 0 satisfies

supX |ϕ| ≤C(9.3)

where C is a constant depending only on ωX ,n, p,ω and ‖enF‖L1(logL)p(X ,ωX )
.

We observe that this result is more precise than in [67, 66] in the sense that
only the norm ‖enF‖L1(logL)p(X ,ωX )

is needed, and not pointwise norms. In [62],
G. Székelyhidi obtains an estimate which depends on ‖enF‖Lq for q > 2, using
Blocki’s approach [2] based on the Alexandrov-Bakelman-Pucci (ABP) maximum
principle.

We sketch the proof. A first observation is that the tensor Θi j̄, as defined in
[67] by

Θ
k j̄ =

1
n−1

(
(Trω̃ϕ

ωX )ω
k j̄
X − ω̃

k j̄
ϕ

)
(9.4)

is positive definite. In fact, in coordinates where (ωX ) jk̄ = δ jk, (ω̃ϕ) jk̄ = λ jδ jk at a
given point, then Θk j̄ = 1

n−1(∑ 6̀= j
1
λ`
)δ jk.

Next, fix r0 small enough so that, at any point z0 ∈ X , there is a holomorphic
coordinate system z with

1
2

i∂ ∂̄ |z|2 ≤ ωX ≤ 2i∂ ∂̄ |z|2, z ∈ B(z0,2r0) = {|z|< 2r0}.(9.5)
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Let x0 be a minimum point for ϕ, Ω = B(x0,2r0), and fix a small constant ε ′ > 0
depending only on X ,ωX ,ω so that

ω ≥ 2ε ′

n−1
(TrωX ω)ωX .(9.6)

Define now for s ∈ (0,s0), s0 = 4ε ′r2
0,

us(z) = ϕ(z)−ϕ(x0)+ ε
′|z|2 − s, z ∈ Ω.(9.7)

Then us(z) > 0 for z ∈ ∂Ω, and hence the sublevel set Ωs = {z|us(z) < 0}∩Ω is
relatively compact in Ω and also an open set. We can now consider the solution
ψs,` of the following auxiliary Dirichlet problem on Ω for the complex Monge-
Ampère equation,

(i∂ ∂̄ψs,`)
n =

τ`(−us)

As,`
enF

ω
n
X on Ω, ψs,` = 0 on ∂Ω(9.8)

with As,` defined by

As,` =
∫

Ω

τ`(−us)e
nF

ω
n
X → As =

∫
Ωs

(−us)e
nF

ω
n
X .(9.9)

By [6], this Dirichlet problem admits a unique solution ψs,`. From the very equa-
tion, the solution ψs,` satisfies

∫
Ω
(i∂ ∂̄ψs,`)

n = 1.
The key comparison estimate is now

−us ≤
(

n+1
n

) n
n+1

A
1

n+1
s,` (−ψs,`)

n
n+1(9.10)

which follows from the non-positivity on Ω of the test function

Φ =−ε(−ψs,`)
n

n+1 −us, ε = A
1

n+1
s,`

(
n+1

n

) n
n+1

.(9.11)

To show that Φ ≤ 0, we apply the maximum principle at a maximum point x0

for Ψ, but with the operator Lv = Θ jk̄vk̄ j, so that LΦ(x0) ≤ 0. The desired in-
equality follows using the arithmetic-geometric inequality, along the same lines as
Lemmas 1–3.

Once we have the key comparison estimate (9.10), the proof follows the same
template as in the compact Kähler case, or more precisely the compact Hermitian
case. Thus we apply the exponential estimate of Kolodziej to arrive at a reverse
Hölder inequality, which allows an application of De Giorgi’s lemma, and the proof
is completed using a general L1 bound for −ϕ.

Finally, we note that there has been considerable interest recently in more
general equations involving f (λ [h̃ϕ ]), motivated in part by non-Kähler geometry,
mirror symmetry, and equations from string theories (see e.g. [26, 15, 56, 50]). In
particular, subsolutions and general C2 estimates have been obtained in [28, 62].
A frequent feature of these new equations is the appearance of gradient terms. For
related developments, see [25, 29, 14, 51, 52, 53] and references therein.
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10. Application to Green’s Functions
Perhaps surprisingly, the auxiliary Monge-Ampère equations which we have

been discussing turn out to very effective in many seemingly unrelated problems in
geometric analysis. In this section, we show how they can be applied to derive lower
bounds for the Green’s function. The Green’s function is the solution of a linear
partial differential equation, so this would be a case of a linear problem solved
by a non-linear method. Such methods had been instrumental in the study of
Schrödinger equations [12, 57, 49, 59], and in the celebrated work of M. Kuranishi
[46, 47, 48] on the embeddability of strongly pseudo-convex manifolds, as pointed
out by C. Fefferman. However, it does not appear that comparisons with the
Monge-Ampère equation had been used before in linear problems. In our case,
this non-linear method is needed because it gives bounds which are uniform in the
underlying geometry.

In this section, we describe some of the results obtained in [36]. The setting is
then a compact Kähler manifold (X ,ωX ) of dimension n, and a closed nonnegative
(1,1)-form χ whose cohomology class [χ] is nef and big. That is, [χ] lies in the
closure of the Kähler cone and

∫
X χn > 0. Then [χ + tωX ] is a Kähler class for any

t ∈ (0,1]. For any ε > 0, N > 0, γ ≥ 1, and any fixed t ∈ (0,1], we introduce the
following class of Kähler metrics,

(10.1)

M′
t(N,ε,γ) =

{
ω ∈ [χ + tωX ];

1
V

∫
X

e(1+ε)Fω ω
n
X ≤ N, supX e−Fω ≤ γ

−1
}
,

where Fω denotes the relative volume form of ω,

Fω = log

(
ωn/[ωn]

ωn
X/[ω

n
X ]

)
.(10.2)

We are interested in bounds which hold uniformly for ω ∈ M′
t(N,ε,γ). The fol-

lowing is a basic example of an estimate which would be well-known and readily
established for a fixed Kähler form ω, but requires a non-linear method in order
to have uniform bounds with respect to ω ∈M′

t(N,ε,γ):

Theorem 8. Let ω be any Kähler form in the class M′
t(N,ε,γ).

(a) Let v ∈ L1(X ,ωn) be any function satisfying
∫

X vωn = 0. Let Ωs = {v > s} be
the super-level sets of v. Assume that

v ∈C2(Ω̄0), ∆ωt v ≥−a in Ω0(10.3)

for some a > 0. Then

supX v ≤C(a+‖v‖L1(X ,ωn))(10.4)

where C is a constant depending only on n,ωX ,χ,ε,N, and γ.
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(b) Assume now that v ∈C2(X) and that

|∆ω v| ≤ 1, and
∫

X
vω

n = 0.(10.5)

Then there is a constant C depending only on n,ωX ,χ,ε,N,γ such that

‖v‖L1(X ,ωn) ≤C.

The proof relies again on an auxiliary complex Monge-Ampère equation. Re-
placing v by v/a we may assume a = 1. Thus let as before u → τ`(u) be again
a sequence of smooth strictly positive functions which decrease to the function
u → uχR+(u) as `→ ∞, and consider the solution ψs,` of the following equation

(ω + i∂ ∂̄ψs,`)
n =

τ`(v− s)
As,`

ω
n, supX ψs,` = 0,(10.6)

where As,` is again a normalizing constant

As,` =
1

[ωn]

∫
X

τ`(v− s)ωn → 1
[ωn]

∫
Ωs

(v− s)ωn = As(10.7)

as `→ ∞. Yau’s theorem insures then the existence of a unique solution ψs,`.
We need to compare v to ψs,`. For this, we express ω by the ∂ ∂̄ -lemma as

ω = χ + tωX + i∂ ∂̄ϕ, supX ϕ = 0(10.8)

for a unique function ϕ. Then the key estimate is the following: there exists a
constant Λ depending only on n, p,χ,ωX ,Entp(ω) so that

−ψ +ϕ +Λ ≥ 1, and Φ ≤ 0(10.9)

where the test function Φ is defined by

Φ =−ε(−ψ +ϕ +Λ)
n

n+1 + v− s(10.10)

with εn+1 = ( n+1
n2 )n(a+εn)nAs,`. The proof of this is analogous to the ones we have

used for the previous auxiliary complex Monge-Ampère equations.
Once we know that Φ ≤ 0, we can apply an α-invariant inequality, uniform for

all Kähler classes bounded by a fixed multiple of ωX to obtain an inequality of the
form ∫

Ωs

exp

(
α
(v− s)

n+1
n

A1/n
s,`

)
ω

n
X ≤C(10.11)

and hence, using Young’s inequality, the following reverse Hölder inequality for
p > n, ∫

Ωs

(v− s)
(n+1)p

n eF
ω

n
X ≤C A

p
n
s,` →C A

p
n
s .(10.12)
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This readily implies As ≤ (
∫

Ωs
eF ωn

X )
1+n
np′ , with p′ the dual exponent of p(n+1)/n.

An easy consequence is the growth inequality

rφ(s+ r)≤Cφ(s)1+δ0 , s ≥ 0, r > 0(10.13)

for the monotone decreasing function φ(s) =
∫

Ωs
eF ωn

X . Again by a De Giorgi
lemma, it follows that φ(s) must vanish for s > S0, where S0 can be estimated
by the constants in the growth condition. Thus v ≤ S0, and part (a) of Theorem 8
is proved.

Next, we sketch the proof of Part (b) of Theorem 8. We observe that the proof
of Part (a) did not require a uniform lower bound γ for the volume form in the
definition of the class M′

t(N,ε,γ), but the proof of Part (b) will.
We argue by contradiction. Thus assume that there exists a sequence of met-

rics ω j ∈ M′
t j
(N,ε,γ) with {t j} j ⊂ (0,1) and a sequence of functions v̂ j ∈ C2(X)

satisfying ‖v̂ j‖L1(X ,ωn
j )
= 1 and

∆ω j v̂ j = ĥ j,
∫

X
v̂ jω

n
j = 0, supX |ĥ j| → 0(10.14)

as j → ∞. Multiplying the above equation by v̂ j and integrating by parts gives∫
X
|∇v̂ j|2ω j

ω
n
j =

∣∣∣∣∫
X

ĥ jv̂ jω
n
j

∣∣∣∣≤V
1
2

ω j supX |ĥ j| → 0.(10.15)

On the other hand, we can write∫
X
|∇v̂ j|ωX ω

n
X ≤

∫
X

(
|∇v̂ j|2ω j

trωX ω j
) 1

2 ω
n
X

≤
(∫

X
|∇v̂ j|2ω j

eFj ω
n
X

) 1
2
(∫

X
(trωX ω j)e

−Fj ω
n
X

) 1
2

.(10.16)

The first factor in the right hand side tends to 0 as j → ∞, since∫
X
|∇v̂ j|2ω j

eFj ω
n
X =

VX

Vω j

∫
X
|∇v̂ j|2ω j

ω
n
j → 0(10.17)

and Vω j ≥ [χn] for all ω j. In view of the lower bound for the volume form of metrics
ω j ∈M′

t j
(N,ε,γ), we have∫

X
(trωX ω j)e

−Fj ω
n
X ≤ 1

nγ

∫
X

ω j ∧ω
n−1
X ≤C(10.18)

where C is a constant independent of j. This implies that∫
X
|∇v̂ j|ωX ω

n
X → 0 as j → ∞.(10.19)

From this, it is not difficult to deduce that v̂ j is uniformly bounded in the Sobolev
space W 1,1(X ,ωX ), and that, after passing to subsequences, it must converge to a
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constant v̂∞ in L1(X ,ωn
X ). This constant can on one hand be verified to be nonzero

in view of the normalization ‖v̂ j‖L1(X ,ωn
j )
= 1, and on the other hand to be 0, in view

of the condition
∫

X v̂ jω
n
j = 0 satisfied by v̂ j. This is a contradiction and Theorem 8

is proved.
We can now establish uniform estimates for the Green’s function. Recall now

that the Green’s function with respect to the Kähler metric ω is defined by the
equations

∆ω G(x,y) =−δx(y)+
1

Vω

,
∫

X
G(x,y)ωn = 0.(10.20)

Theorem 9. Fix ε > 0,N > 0 and γ ∈ (0,1). Then for any Kähler metric ω ∈
M′

t(ε,N,γ), the corresponding Green’s function G(x,y) satisfies the following esti-
mates, with constants C which depend only on n,ωX ,χ,ε,N and γ:

(a)
∫

X |G(x, ·)|ωn ≤C;
(b) infy∈X G(x,y)≥−C;
(c) For any δ > 0, there is a constant Cδ depending additionally on δ so that,

for all x ∈ X , ∫
X
|G(x, ·)|

n
n−1−δ

ω
n +

∫
X
|∇G(x, ·)|

2n
2n−1−δ

ω
n ≤Cδ .(10.21)

Parts (a) and (b) of Theorem 9 are direct consequences of Theorem 8. For
example, for any fixed x, the function v = −G(x,y) is in C∞(X \{x}) and satisfies
the conditions in Part (a) of Theorem 8 with ∆ω v(y) =− 1

Vω
≥− 1

[χn] for y ∈ {v ≥ 0}.
Thus Theorem 8 applies, giving the lower bound

infy∈X G(x,y)≥−C
(
1+‖G(x, ·)‖L1(X ,ωn)

)
(10.22)

for some constant depending only on n, p,ωX ,χ,N. With a bit more work, we can
deduce from Part (b) of Theorem 8 that ‖G(x, ·)‖L1(X ,ωn) ≤C. Combined with the
preceding inequality, we obtain Parts (a) and (b) of Theorem 9.

The proof of Part (c) is harder and requires a new idea, involving comparisons
with another auxiliary complex Monge-Ampère equation. The key inequality to
be established is a uniform bound for the Lq norm of G(x, ·),∫

X
|G(x,y)|qω

n(y)≤Cq,(10.23)

first for q ∈ 1+ 1
r0

for some r0 > n, and then iteratively for any q < n
n−1 . By Part

(b), we can add a uniform constant to G(x, ·) to obtain a function G(x, ·)≥ 1. Fix
r0 > n and a large k � 1 and set

Hk(y) = min
{
G(x,y),k

}
(10.24)
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which we assume is smooth, by smoothing it out if necessary. The above integral
is closely related to the following integral∫

X
G(x,y)Hk(y)

1
r0 ω

n(y)(10.25)

which is itself closely related (via the Green’s formula) to the solution uk of the
following Laplace equation

∆ω uk =−H
1
r0

k +
1

Vω

∫
X

H
1
r0

k ω
n,

1
Vω

∫
X

ukω
n = 0.(10.26)

To estimate uk, we introduce another auxiliary complex Monge-Ampère equa-
tion,

(ω + i∂ ∂̄ψk)
n =

H
n
r0

k +1

V−1
ω

∫
X (H

n
r0

k +1)ωn
ω

n, supX ψk = 0.(10.27)

It can then be shown that

supX |ψk| ≤C(10.28)

and that

ε
′uk +(ψk −ϕ)− 1

Vω

∫
X
(ψk −ϕ)ωn ≤C(10.29)

where C and ε ′ are uniform constants, and ϕ is the potential for the Kähler metric
ω ∈ [χ+tωX ] introduced earlier in (10.8). From here, the desired inequality follows.

Finally, we establish integral bounds for ∇G(x,y). First we note the elementary
inequality

∫
X

|∇yG(x,y)|2ω(y)

G(x,y)1+β
ω

n(y)≤ 1
β

(10.30)

which holds for all β > 0, and follows from applying Green’s formula to u(y) =
G(x,y)−β . Next, setting

Hk(y) = min

{ |∇yG(x,y)|2ω(y)

G(x,y)1+β
,k

}
(10.31)

and arguing as in the estimate of ‖G(x, ·)‖
L

1+ 1
r0 (X ,ωn)

, we can show that

∫
X
G(x,y)Hk(y)

1
r0 ω

n(y)≤C.(10.32)

The desired Ls(X ,ωn) bound for ∇G(x, ·) ultimately follows.
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It is instructive to compare the preceding theorem with the classic result of
Cheng and Li [11] on lower bounds for the Green’s function in Riemannian ge-
ometry. This result asserts the existence of a uniform lower bound depending on
only the dimension, the diameter, the volume, and a lower bound on the Ricci
curvature. In our Kähler setting, Theorem 9 is easily seen to imply the following
theorem, where only a lower bound on the scalar curvature, combined with an
integral estimate for the volume form, suffice to give lower bounds for the Green’s
function which are uniform in ω:

Theorem 10. Let ω be any Kähler metric in [ωX ]. Then if ‖eFω‖L1+ε (X ,ωX )
≤ N

for some ε > 0,N > 0, and the scalar curvature R(ω) satisfies R(ω)≥−κ for some
κ ≥ 0, then the Green’s function of (X ,ω) satisfies

infy∈X G(x,y)≥−C, x ∈ X ,(10.33)

for a constant C depending only on n,ωX ,ε,N, and κ.

We note that the class M′
t(ε,N,γ) of Hermitian metrics which we have used so

far is not the only class to which the methods of this section apply. Other classes
are described in [36] as well, with a key difference being the replacement of a
pointwise lower bound on eFω by an integral bound. In fact, for applications to
diameter bounds to be described in the next section, it will be important to relax
further the constant lower bound γ to a non-negative function which may vanish
along a closed set of Hausdorff dimension strictly less than 2n−1.

In the remaining part of this section, we describe some applications of the
above bounds for the Green’s function to a priori estimates for the complex Monge-
Ampère equation. A priori estimates are often obtained by applying the maximum
principle to elliptic differential inequalities satisfied by the quantity under consid-
eration. Sharp lower bounds for the Green’s function can provide a more effective
tool, especially if we consider conditions involving integrals. The following is a
sample of sharp estimates which can be obtained in this manner.

Recall that we have assumed that the (1,1)-form χ is non-negative, and the
Kähler class [χ] is big. By Kodaira’s lemma, there is an effective divisor D in X
such that

χ − ε0 Ric(hD)≥ δ0 ωX(10.34)

for some positive constants ε0,δ0, and a Hermitian metric hD on the line bundle [D]

associated with D. Let sD be a holomorphic section defining D with supX |sD|2hD
= 1.

Let ω be any metric in [χ + tωX ]. Let ϕ be its potential, i.e. ω = χ + tωX + i∂ ∂̄ϕ

and supX ϕ = 0. Thus, in the notation (10.2) for the relative volume form Fω , ϕ

satisfies the complex Monge-Ampère equation

(χ + tωX + i∂ ∂̄ϕ)n = ceFω ω
n
X , c =

Vω

VX
, supX ϕ = 0.(10.35)
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Theorem 11. Fix ε,N,γ ∈ (0,1) and p > n. Then for any t ∈ (0,1] and ω ∈M′
t ,

we have the estimate

|∇ϕ|2ωX
≤ C

|sD|2A
hD

(10.36)

where C depends only on n,ε,χ,ωX ,N,γ, p, and A > 0 depends only on n, ε, χ, ωX ,
N, γ.

Note that gradient bounds had been obtained before, but under pointwise
assumptions on |∇F | [3, 55]. An earlier result requiring an Lp bound for |∇F | with
p ≥ 2n is in [10, 32]. The range p > n in the above theorem is sharp.

Theorem 12. Under the same assumptions as in Theorem 11, but with p > 2n,
we have the estimate

|i∂ ∂̄ϕ |2ωX
≤ C

|sD|2B
hD

(10.37)

where C depends only on n,ε,χ,ωX ,N,γ, p and
∫

X |∇Fω |pωX eFω ωn
X , and B> 0 depends

only on n,ε,χ,ωX ,N,γ.

We have formulated the above estimates for families of degenerating metrics.
But even in the case of a fixed background Kähler form ω, the above estimates
improve on the known ones. For example, we have

Theorem 13. Consider the complex Monge-Ampère equation

(ωX + i∂ ∂̄ϕ)n = eF
ω

n
X , supX ϕ = 0(10.38)

on an n-dimensional compact Kähler manifold (X ,ωX ). Assume that F satisfies
the condition

‖eF‖L1+ε (X ,ωX )
≤ N

supX e−F ≤ γ
−1.(10.39)

Then for any p > 2n, we have

(a) supX |i∂ ∂̄ϕ|2ωX
≤ C, where C > 0 is a constant depending only on n, p, ωX ,

ε, N, γ and
∫

X |∇F |pωX eF ωn
X .

(b) supX |∇i∂ ∂̄ϕ|2ωX
≤C, where C > 0 is a constant depending only on n, p, ωX ,

ε, N, γ,

γ,
∫

X
|∇F |pωX eF

ω
n
X ,

∫
X
|i∂ ∂̄F |pωX eF

ω
n
X ,(10.40)

and upper and lower bounds for the endomorphism ω
−1
X (ωX + i∂ ∂̄ϕ).
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For the estimate in (a) to hold in general, we do need p ≥ 2n. We also note
that previous C3 bounds had required a C3 bound for F , and that the proof of
(b) also relied on the approach of [54], which relied on estimating the connection
forms instead of the potentials.

11. Application to Diameter Bounds
In general, estimates for the Green’s function can imply estimates for the di-

ameter of the underlying metric. This can be seen as follows [39].
Let x0,y0 be points with dω(x0,y0) = diam(X ,ω), and define the function d on

X by d(y) = dω(x0,y). Then d is a Lipschitz function with Lipschitz constant 1.
The Green’s formula applied to d(y) gives

d(x) =
1

[ωn]

∫
X

d(y)ω(y)n +
∫

X

〈
∇yG(x,y),∇d(y)

〉
ω(y)ω(y)n.(11.1)

The fact that d(x0) = 0 gives

1
[ωn]

∫
X

d(y)ω(y)n =−
∫

X

〈
∇yG(x0,y),∇d(y)

〉
ω(y)ω(y)n

≤
∫

X
|∇yG(x0,y)|ω(y)ω(y)n.

We can then write

diam(X ,ω) = d(y0) =
1

[ωn]

∫
X

d(y)ω(y)n +
∫

X

〈
∇yG(y0,y),∇d(y)

〉
ω(y)ω(y)n

≤
∫

X
|∇yG(x0,y)|ω(y)ω(y)n +

∫
X
|∇yG(y0,y)|ω(y)ω(y)n

which shows that the diameter can be estimated by an integral bound for the
gradient of the Green’s function.

Thus the bounds obtained in the previous section already imply some diame-
ter bounds. However, for many geometric applications, such as diameters in the
Kähler-Ricci flow, it is important to relax the conditions on the lower bound γ for
the volume form. It turns out that this is possible, albeit quite non-trivial. Thus
the following theorems were established in [39]:

Theorem 14. Let (X ,ωX ) be an n-dimensional connected compact Kähler man-
ifold. For given parameters A > 0,K > 0, p > n and γ a continuous non-negative
function on X , let V(X ,ωX ,n, A, p,K,γ) be the following space of Kähler metrics

V(X ,ωX ,n,A, p,K,γ) =

{
ω; [ω] · [ωX ]

n−1 ≤ A,NX ,ωX ,p(ω)≤ K,
ωn

ωn
X
≥ γVω

}
where NX ,ωX ,p(ω) is the p-Nash entropy, defined by

NX ,ωX ,p(ω) =
∫

X
|F |peF

ω
n
X = ‖eF‖L1(logL)p(ωX )

, F =
1

Vω

ωn

ωn
X
.(11.2)
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Assume that

dimH{γ = 0}< 2n−1(11.3)

where dimH denotes the Hausdorff dimension. Then for any A,K > 0 and p > n,
there exist constants C,c > 0 depending only on X ,ωX ,n,A, p,K,γ and α depending
only on n and p so that

(a)
∫

X |G(x, ·)|ωn +
∫

X |∇G(x, ·)|ωn +(−infy∈X G(x,y))Vω ≤C;
(b) diam(X ,ω)≤C;
(c) Volω (Bω (x,R))

Volω (X) ≥ cRα for any x ∈ X , R ∈ (0,1).

We stress that the above theorem can give bounds on the diameter even when
no lower bound on the Ricci curvature is available. This is of particular importance
for the Kähler-Ricci flow. More generally, we obtain the following Kähler analogue
of Gromov’s precompactness theorem for metric spaces:

Theorem 15. Let (X ,ωX ) be a connected n-dimensional Kähler manifold, and let
γ be a non-negative function with

dimH{γ = 0}< 2n−1.(11.4)

Then for any A,K > 0, p > n, any sequence {ω j} in V(X ,ωX ,n,A, p,K,γ) admits a
subsequence converging in Gromov-Hausdorff topology to a compact metric space
(X∞,d∞).

Several applications of these theorems to the Kähler-Ricci flow and to the
asymptotic behavior of fibrations near the singular fibre can be found in [39].

12. Application to the Taming of Symplectic Forms

let (X ,J) be a compact almost complex manifold with J the almost complex
structure. Suppose m = 2n is the real dimension of X . A Riemannian metric g̃ on X
is called almost Kähler, if g̃ is J-compatible, i.e. g̃(JY,JZ) = g̃(Y,Z) for any vector
fields Y,Z and the associated 2-form ωg̃ defined by ωg̃(Y,Z) = g̃(JY,Z) is closed.

Let Ω be a taming symplectic form, that is, Ω(Y,JY ) > 0 for Y 6= 0, and g be
the associated almost Hermitian metric of Ω, i.e.

g(Y,Z) =
1
2

Ω(Y,JZ)+
1
2

Ω(Z,JY ), ∀ vector fields Y,Z.

Write dVg for the volume form of the Riemannian metric g. For a smooth function
F ∈C∞(X) normalized by

∫
X eF dVg =

∫
X Ωn, we consider the following Calabi-Yau

equation on X

(12.1) det g̃ = e2F detg,
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where we require that ωg̃ is an almost Kähler form with [ωg̃] = [Ω]. As shown by
Donaldson [21], the existence of solutions to this equation would have important
consequences in symplectic geometry (see also Conjecture 1.2 in [68]).

It has been proved by Tosatti, Weinkove, and Yau in [68] that the C2-a priori
estimates of g̃ satisfying the equation (12.1) can be derived by the L∞ estimates
of ϕ ∈C∞(X), which satisfies the linear equation

(12.2) ∆g̃ϕ = 2n−2n
ω

n−1
g̃ ∧Ω

ωn
g̃

= 2n− trg̃ g, supX ϕ = 0.

Here ∆g̃ is the usual Riemannian Laplacian operator of the metric g̃. Note that the
equation (12.2) admits a unique solution since the function on the right-hand-side
has integral zero against the volume form dVg̃.

We assume

‖eF‖2
L2(X ,dVg)

=
∫

X
e2F dVg ≤ K

for some constant K > 0. Our main result is the following L∞ estimate of ϕ in
(12.2):

Theorem 16. Suppose g̃ is an almost Kähler metric solving the equation (12.1)
and ϕ solves (12.2). Then there exists a constant C > 0 depending on n,g and K
such that

supX |ϕ| ≤C(1+‖ϕ‖L1(X ,e2F dVg)
).

In the following, we denote {x1, . . . ,xm} local real coordinates on some open
subset of X . Let g̃ be an almost Kähler metric, and ω̃(Y,Z) = g̃(JY,Z) be the
associated symplectic 2-form. Locally we have

(12.3) g̃ = g̃i jdxi ⊗dx j, ω̃ =
1
2

ω̃i jdxi ∧dx j, J = J j
i dxi ⊗ ∂

∂x j ,

where the summations are taken over i, j ∈ {1,2, . . . ,m}. It follows from straight-
forward calculations that

(12.4) ω̃i j = g̃ikJk
j , ω̃i j =−ω̃ ji.

The form ω̃ being almost Kähler means

0 = dω̃ =
1
2

∂ω̃i j

∂xl dxl ∧dxi ∧dx j =
1
6

(
∂ω̃i j

∂xl +
∂ω̃li

∂x j +
∂ω̃ jl

∂xi

)
dxl ∧dxi ∧dx j

in other words,

(12.5)
∂ω̃i j

∂xl +
∂ω̃li

∂x j +
∂ω̃ jl

∂xi = 0, ∀i, j, l.
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Multiplying both sides of (12.5) by ω̃ i j := g̃ikJ j
k which is skew-symmetric in i, j,

and taking summation over i, j, we get

(12.6) g̃ikJ j
k

∂ω̃i j

∂xl +2g̃ikJ j
k

∂ω̃ jl

∂xi = 0.

Substituting (12.4) to (12.6), we obtain

0 = g̃ikJ j
k

∂ g̃ip

∂xl Jp
j + g̃ikJ j

k g̃ip
∂Jp

j

∂xl +2g̃ikJ j
k

∂ g̃ jp

∂xi Jp
l +2g̃ikJ j

k g̃ jp
∂Jp

l

∂xi

=−g̃ik ∂ g̃ik

∂xl + J j
k

∂Jk
j

∂xl +2g̃ikJ j
k g̃ jp

∂Jp
l

∂xi +2g̃ik ∂ g̃kl

∂xi −2g̃ikg̃ jpJp
l

∂J j
k

∂xi −2g̃ikg̃ jpJ j
k

∂Jp
l

∂xi

=−g̃ik ∂ g̃ik

∂xl +2g̃ik ∂ g̃kl

∂xi + J j
k

∂Jk
j

∂xl −2Ji
p

∂Jp
l

∂xi +2g̃ikg̃l pJp
j

∂J j
k

∂xi +2Ji
p

∂Jp
l

∂xi ,

=−g̃ik ∂ g̃ik

∂xl +2g̃ik ∂ g̃kl

∂xi + J j
k

∂Jk
j

∂xl +2g̃ikg̃l pJp
j

∂J j
k

∂xi ,

from which we derive that

(12.7) g̃ik ∂ g̃kl

∂xi − 1
2

g̃ik ∂ g̃ik

∂xl =−1
2

J j
k

∂Jk
j

∂xl − g̃ikg̃l pJp
j

∂J j
k

∂xi .

It then follows that

(12.8) g̃ik
Γ̃

q
ik = g̃ql

(
g̃ik ∂ g̃kl

∂xi − 1
2

g̃ik ∂ g̃ik

∂xl

)
=−1

2
g̃qlJ j

k

∂Jk
j

∂xl − g̃ikJq
j

∂J j
k

∂xi .

From (12.8), we see that the second term in the Laplacian of a function u,
∆g̃u = g̃i j ∂ 2u

∂xi∂x j − g̃ikΓ̃
q
ik

∂u
∂xq is independent of the first order derivatives of the metric

coefficients g̃i j.
Let x0 ∈ X be a minimum point of ϕ, i.e. ϕ(x0) = infX ϕ. Choose a fixed num-

ber r0 > 0 such that 2r0 ≤ the injectivity radius of the fixed Riemannian manifold
(X ,g). Take the normal coordinates of (X ,g) centered at x0, (U,{x1, . . . ,xm}). With-
out loss of generality we may assume that on U the following holds

(12.9) 1
2

δi j ≤ gi j ≤ 2δi j,

and the Euclidean ball

B(x0,2r0) = {x ∈U : |x|< 2r0} ⊂⊂U

where |x| =
√

∑
m
j=1(x

j)2 is the usual Euclidean norm of the coordinates x =

(x1, . . . ,xm). We also have a constant C′
J > 0 depending on J,g such that

(12.10) supU

(∣∣∣∣∑
j,k

J j
k

∂Jk
j

∂xl

∣∣∣∣
g
+

∣∣∣∣∑
j

Jq
j

∂J j
k

∂xi

∣∣∣∣
g

)
≤C′

J.
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From the equation (12.8), we have for any smooth function ψ on U , there exists
a uniform constant CJ > 0 such that on U

(12.11) |g̃ik
Γ̃

q
ikψq| ≤CJ|∇ψ|g · trg̃ g,

where ψq =
∂ψ

∂xq and |∇ψ|2g = gi jψiψ j is the gradient of ψ with respect to the fixed
metric g. We emphasize that the constant CJ in (12.11) depends only on g,J and
can be made to be independent of the choice of coordinates, though the LHS of
(12.11) is only locally defined. Indeed, we can see from (12.10) that C′

J depends
on |J|g and |∇gJ|g, both of which are globally defined.

Let η ∈ (0,1) be a small positive constant to be determined. For any 0 < s ≤
s0 = ηr2

0, we consider the function defined on B(x0,2r0)

(12.12) us(x) := ϕ(x)−ϕ(x0)+η |x|2 − s.

By the choice of the point x0, it is clear that us ≥−s. Define the sublevel set of us

by

(12.13) Ωs :=
{

x ∈ B(x0,2r0)| us(x)< 0
}
.

Note that x0 ∈ Ωs so Ωs is a nonempty open subset of B(x0,2r0). Moreover, by the
choice of s ≤ ηr2

0, we see that on B(x0,2r0)\B(x0,r0)

us ≥ ηr2
0 − s ≥ 0,

hence we have Ωs ⊂ B(x0,r0). We solve the following real Monge-Ampère equation
on the Euclidean ball B(x0,2r0)

(12.14) det

(
∂ 2ψs,`

∂xi∂x j

)
=

τ`(−us)

As,`
e2F detg, in B(x0,2r0),

and ψs,` = 0 on ∂B(x0,2r0). Here ψs,` is strictly convex in the ball B(x0,2r0) and

As,` =
∫

B(x0,2r0)
τ`(−us)e

2F(detg)dx > 0

is chosen so that
∫

B(x0,2r0)
det(

∂ 2ψs,`

∂xi∂x j )dx = 1. Note that as `→ ∞

As,` → As :=
∫

Ωs

(−us)e
2F detg

and As ≤C(n,g)K ≤ 1
2C1, where C1 > 0 depends only on n,g and K. Hence for all

` sufficiently large which we always assume, we have

(12.15) As,` ≤C1.

Let βn be the volume of the unit ball in R2n.
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Lemma 6. There exist a constant C2 =C2(n)> 0 such that

− inf
B(x0,2r0)

ψs,` ≤C2r0, supB(x0,r0)
|∇ψs,`| ≤C2.

Proof. Since by the definition of ψs,`,
∫

B(x0,2r0)
det(

∂ 2ψs,`

∂xi∂x j )dx = 1, so it follows from
the standard ABP maximum principle (e.g. [24])

− inf
B(x0,2r0)

ψs,` ≤− inf
∂B(x0,2r0)

ψs,`+
4r0

βn

[∫
B(x0,2r0)

det

(
∂ 2ψs,`

∂xi∂x j

)
dx

]1/m

=
4
βn

r0.

To see the second inequality, for any fixed point x∈B(x0,r0), denote V =
Dψs,`(x)
|Dψs,`(x)|

to be the unit vector in the direction of Dψs,`(x) (if Dψs,`(x) = 0, there is nothing
to prove, so here we assume Dψs,`(x) 6= 0). Then clearly |Dψs,`(x)| = Dψs,`(x) ·V .
Consider the half line L: 0 ≤ t 7→ x+ tV which intersects ∂B(x0,r0) and ∂B(x0,2r0)

at L(t1), L(t2), respectively. We have t2 − t1 ≥ r0 and 0 > ψs,`(L(t1)) ≥ − 4
βn

r0 and
ψs,`(L(t2)) = 0. Then by the convexity of the function t 7→ ψs,`(L(t)), we have

∣∣Dψs,`(x)
∣∣= ψs,`

(
L(t)

)′∣∣
t=0 ≤

ψs,`(L(t2))−ψs,`(L(t1))

t2 − t1
≤ 4

βn
.

Taking supremum over all x ∈ B(x0,r0) finishes the proof of the lemma.

Take positive constants

(12.16) Λ =
2n

1+2n
(10CJC2)

2n+1As,`, ε =

(
2n+1

2n

) 2n
2n+1

A
1

2n+1
s,`

where C2 > 0 is the constant in Lemma 6 and CJ > 0 as in (12.11). We ob-
serve that by (12.15), it holds that Λ is bounded above by the uniform constant

2n
1+2n(10CJC2)

2n+1C1.
Define a function Φ on B(x0,2r0) by

(12.17) Φ(x) =−ε
(
−ψs,`(x)+Λ

) 2n
2n+1 −us(x), ∀x ∈ B(x0,2r0).

We claim that Φ ≤ 0 on this ball. As a continuous function, Φ achieves its max-
imum at some point xmax ∈ B(x0,2r0). If xmax 6∈ Ωs, then by the definition of Ωs,
clearly we have Φ(xmax)< 0. So we assume xmax ∈ Ωs ⊂ B(x0,r0). By the maximum
principle, it follows that ∂Φ

∂xq |xmax = 0 and ∂ 2Φ

∂xi∂x j |xmax ≤ 0. Hence at xmax

∆g̃Φ = g̃i j ∂ 2Φ

∂xi∂x j − g̃i j
Γ̃

q
i j

∂Φ

∂xq = g̃i j ∂ 2Φ

∂xi∂x j ≤ 0.

We then calculate at xmax.

0 ≥ ∆g̃Φ =
2nε

2n+1
(−ψs,`+Λ)−

1
2n+1 ∆g̃ψs,`−∆g̃ϕ −η∆g̃|x|2
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+
2nε

(2n+1)2 (−ψs,`+Λ)−
2n+2
2n+1 |∇ψs,`|2g̃

≥ 2nε

2n+1
(−ψs,`+Λ)−

1
2n+1 ∆g̃ψs,`−2n+ trg̃ g−η∆g̃|x|2.(12.18)

We first look at the term −η∆g̃|x|2 in (12.18). It satisfies

(12.19) −η∆g̃|x|2 =−2η g̃i j
δi j +2η g̃i j

Γ̃
q
i jx

q ≥−4η trg̃ g−2ηCJr0 trg̃ g ≥− 1
10

trg̃ g,

where CJ > 0 is the uniform constant in (12.11) and we have chosen η > 0 such
that

η(4+2CJr0) = 1/10

and this fixes the uniform constant η . We will denote D2
i jψs,` =

∂ 2ψs,`

∂xi∂x j to be (Eu-
clidean) Hessian of the function ψs,`. For the first term in (12.18), we have

2nε

2n+1
(−ψs,`+Λ)−

1
2n+1 ∆g̃ψs,`

(12.20)

=
2nε

2n+1
(−ψs,`+Λ)−

1
2n+1 g̃i j

(
∂ 2ψs,`

∂xi∂x j

)
+

2nε

2n+1
(−ψs,`+Λ)−

1
2n+1 g̃i j

Γ̃
q
i j

∂ψs,`

∂xq

≥ 4n2ε

2n+1
(−ψs,`+Λ)−

1
2n+1

(
detD2ψs,`

det g̃

)1/2n

− 2nεΛ
− 1

2n+1

2n+1
CJ

∣∣∣∣∂ψs,`

∂xq

∣∣∣∣ · trg̃ g

≥ 4n2ε

2n+1
(−ψs,`+Λ)−

1
2n+1

(
−us

As,`

)1/2n

− 2nεΛ
− 1

2n+1

2n+1
CJC2 · trg̃ g

≥ 4n2ε
1+ 1

2n

(2n+1)A1/2n
s,`

(
−us

ε(−ψs,`+Λ)2n/(2n+1)

)1/2n

− 1
10

trg̃ g

= 2n

(
−us

ε(−ψs,`+Λ)2n/(2n+1)

)1/2n

− 1
10

trg̃ g.

Combining the equations (12.20), (12.19), (12.18), we see that at xmax

0 ≥ 2n

(
−us

ε(−ψs,`+Λ)2n/(2n+1)

)1/2n

−2n+
4
5

trg̃ g

from which we easily derive that (−us)

ε(−ψs,`+Λ)2n/(2n+1) < 1, that is, Φ|xmax < 0. Hence
we finish the proof of the claim that Φ ≤ 0. In particular on Ωs it holds that

(12.21) −us ≤C(n)A
1

2n+1
s,` (−ψs,`+Λ)

2n
2n+1 ≤C3A

1
2n+1
s,` ,

for some C3 > 0 that depends on n,g,J,K. Here we have applied Lemma 6 to see
that |ψs,`| ≤ C2r0 and the fact that Λ is a uniformly bounded constant. Letting
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`→ ∞ we conclude from (12.21) that

(12.22) −us ≤C3A
1

2n+1
s .

Integrating both sides of (12.22) against the measure e2F(detg)dx over Ωs, we get

(12.23) As =
∫

Ωs

(−us)e
2F(detg)dx ≤C3A

1
2n+1
s

∫
Ωs

e2F(detg)dx.

So we have

(12.24) As ≤C
2n+1

2n
3

(∫
Ωs

e2F(detg)dx

)1+ 1
2n

=C4φ(s)1+ 1
2n ,

where we denote φ(s) = (
∫

Ωs
e2F(detg)dx)1+ 1

2n . On the other hand, for any 0< t < s,
on the open set Ωs−t we have

us(x) = us−t(x)− t <−t, i.e. −us(x)> t

It is elementary that

As ≥
∫

Ωs−t

(−us)e
2F(detg)dx ≥ tφ(s− t).

Combining the above, we see that

(12.25) tφ(s− t)≤C4φ(s)1+ 1
2n , ∀0 < t < s ≤ s0.

It is not hard to see that φ(s) is an increasing and continuous function in s ∈ (0,s0]

and φ(s) > 0 for any s ∈ (0,s0] and lims→0+ φ(s) = 0. We can apply a version of
De Giorgi’s lemma to show that 2C4

1−2−1/2n φ(s0)
1/2n ≥ s0. Hence there is a uniform

constant c0 > 0 such that

(12.26) φ(s0)≥ c0 > 0.

Applying (12.24) with s = s0, we obtain As0 ≤ C5 for a constant 0 < C5 =

C4(22nβnK)1+ 1
2n . From the definition of As0 , we derive that

(12.27)
(
−ϕ(x0)

)
·φ(s0)≤ s0φ(s0)+

∫
Ωs0

(−ϕ)e2F(detg)dx+C5.

The equation (12.5) then implies that

(12.28) −infX ϕ =−ϕ(x0)≤C6 +C7

∫
X
(−ϕ)e2F dVg,

for some constant C7 > 0. So we have proved the inequality for the solution ϕ to
the equation (12.2)

(12.29) supX |ϕ| ≤C8(1+‖ϕ‖L1(X ,e2F dVg)
).

This finishes the proof of Theorem 16.
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