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Abstract. The nonlinear filtering (NLF) aims to yield

a good estimation of the signal/state corrupted with

noise, based on the noisy observations. In 2014’s

survey paper [31], the NLF methods are classified

into two categories, the local and global approaches,

by examining whether it approximates the posterior

distribution of the states or only a finite number of

the statistical quantities. Compared with the global

approaches, the local ones are more computational

friendly. In this survey, we shall discuss two recently

developed suboptimal local methods for solving NLF

problems, with emphasis on their reasonableness

from a mathematical point of view.

Introduction

The study of nonlinear filtering (NLF) problems

has a long history, tracing back to the work of Wiener

[43] and Kolmogorov [26] in 1940s. The ultimate

goal of filtering is to obtain “good” estimation of

the states, a hidden stochastic process, based on the

noisy observations. The states can be various quanti-

ties interested in different fields, e.g. the position and

velocity of the moving targets in the tracking problem
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[28], the volatility process in finance [15], the loca-

tions of the hurrican in the atmospheric data assimi-

lation problem [12], etc.

To be more specific, let us take the reentry prob-

lem, section 8.B, [21], as an example to illustrate the

potential application of the filtering techniques. This

model describes the dynamics of the vehicle from the

space back to the earth. The reentry vehicle state of

three-dimension is

(1) xT = [v,γ,ψ,h,ϕ,θ ],

where the first three components in x are the vehi-

cle’s velocity and angles, while the last three ones are

the spherical coordinates of the vehicle. To be more

specific, v is velocity (magnitude), γ is the flight path

angle measured from the local horizontal, ψ is the

heading angle measured from east toward north in

the horizon plane, h is the altitude, ϕ the latitude,

and θ the longitude. In this coordinate system, the

motion of the vehicle is described by the differential

equations

(2)



v̇ =
Fxv

mv
− µ

r2 sinγ +4v̇rot ,

γ̇ =
Fzv

mv
+

vcosγ

r
− µ

vr2 cosγ +4γ̇rot ,

ψ̇ =
Fyv

mv
− v

r
cosγ cosψ tanϕ +4ψ̇rot ,

ḣ =vsinγ,

ϕ̇ =
v
r

cosγ sinψ,

θ̇ =
v

r cosϕ
cosγ cosψ,
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where µ is the earth’s gravitational constant, m is the

vehicle mass, r = RE +h, RE is the radius of the earth,

Fxv, Fyv, Fzv are the aerodynamic forces, and4v̇rot ,4γ̇rot ,

4ψ̇rot are due to the earth’s rotation. Intuitively, the

first three equations in (2) describes the dynamics of

the vehicle according to the Newton’s law, while the

last three equations give the change of the spheri-

cal coordinates during the vehicle’s flight. The uncer-

tainty in the states’ evolution above comes from our

relatively poor knowledge of the atmosphere (den-

sity, temperature, winds, etc.). Thus, the aerodynamic

forces are not well known. The observations normally

consist of ground-based radar tracking data (range,

azimuth, and elevation) and telemetered onboard ac-

celeration measurements. Taking the ground-based

radar as an example, the range ρ is observed and

given by

ρ =
[
(x− xs)

2 +(y− ys)
2 +(z− zs)

2]1/2
,(3)

where (x,y,z) is the vehicle’s position and (xs,ys,zs) is

the position of the radar station. Thus, ρ is a nonlin-

ear function of h, ϕ and θ . We refer the readers inter-

ested in the modelling of the reentry problem to [41].

Certainly, these observation data contain some infor-

mation of the state we want, but inevitably polluted

by instrumental noises. Therefore, the filtering tech-

niques are needed to “filter” the state x in (1) out from

the noisy observation data. In general, the expecta-

tion conditioned on the observation history is ob-

tained by filtering. Sometimes, even the conditional

covariance or the conditional distribution of the state

are obtained depending on what filtering method one

used.

In the literature, the filtering problems are classi-

fied as discrete, continuous and continuous-discrete

ones [21, Chapter 5]. If both state and observation

in the filtering problem are stochastic processes, i.e.,

continuous in time, like (2) and (3) in the reentry prob-

lem, then it is called continuous filtering problem.

Similarly, if both state and observation are discrete

in time, it is called discrete filtering problem. Analo-

gously, the continuous-discrete filtering problems re-

fer to those with continuous state and discrete ob-

servation. In mathematical modelling, the stochastic

process is usually modelled by an Itô stochastic dif-

ferential equation (SDE), while the discrete one is by

a stochastic difference equation.

Let us take the continuous filtering problem as an

example, it is modelled by the Itô SDE:

(4)

{
dxt = f (xt , t)dt +g(xt , t)dvt ,

dyt =h(xt , t)dt +dwt ,

where xt ∈ Rd is the state process, yt ∈ Rm is the ob-

servation process, f , g and h are drift, diffusion and

observation function, respectively. The noises in the

state and observation processes are modelled by two

independent Brownian motions vt and wt . Notice that

without the vt and wt terms, the equation of xt in (4) be-

comes an ordinary differential equation (ODE), so that

the trajectory of the state is deterministic, and the ob-

servation of the state is yt . Without noises, it is not a

filtering problem any more. Furthermore, the uncer-

tainty of a Brownian motion is described by its co-

variance matrix. In the filtering literature, one usually

assumes that E[dwtdwT
t ] = Qdt and E[dvtdvT

t ] = R(t)dt,
R(t)> 0, for all t ∈ [0,T ], respectively. The positive def-
inite of R(t) is a standard assumption, which asserts

that the noise in the observation process won’t van-

ish at any time which is called non-degenerate obser-

vation noise in the literature. The NLF problem with

degenerate observation noise is another more diffi-

cult story, which has only been recently investigated

under very special assumptions in [14]. In this sur-

vey, we shall make the standard non-degeneracy as-

sumption. In the reentry problem above, the state to

be estimated is x in (1). The nonlinear function of x on
the right-hand side of (2) is denoted as f in (4). Mean-

while, the observation data yt = ρ is the range from

the radar station in (3). In the linear case, i.e. f and h
are both linear functions of xt , and g is independent of
xt , the resulting ODE that the conditional expectation

and the conditional covariance satisfy was derived by

Kalman and Bucy [25]. This leads to an efficient algo-

rithm for the continuous linear filtering problem. In

fact, the discrete filtering problem appeared earlier

than the continuous one. Already Gauss was inter-

ested in determining the orbital elements of a celes-

tial body from observations. The influential Kalman

filter (KF) [24] is the discrete version of Kalman-Bucy

filter, which achieves the optimal estimation of the

state in linear filtering problem in various sense, say

minimum variance, maximum likelihood. Though KF

was published one year earlier than the Kalman-Bucy

filter, it was actually developed a little later.

In the nonlinear case, such efficient algorithms,

as KF and Kalman-Bucy filter, has not been discovered

so far due to its infinite-dimensional nature. Here, the

dimension refers to the smallest number of statis-

tical quantities needed to completely determine the

conditional distribution of the state. For example, the

dimension of normal distribution is two, since the

distribution is completely determined by the expec-

tation and the covariance. In fact, Hazewinkel et al.

[19] took the cubic sensor problem as an example

and pointed out that there exist no finite statistical

quantities that can completely determine the state. At

the International Congress of Mathematics in 1983,

Brockett proposed to classify all finite-dimensional

NLF problems, for which one may come up with an
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efficient recursive algorithm similarly as the KF. It ap-

pears that only particularly structured classes of NLF

problems bear computationally efficient recursive al-

gorithms, e.g. Beneš filter [4] and Yau filter [8]. Start-

ing from the Yau filter, a series of works conducted

by Stephen S.-T. Yau and his co-workers character-

ize the structures of these classes from the viewpoint

of Lie algebra, such as [44], [10], [47], [45], [48], [40],

[22]. However, these structures are too special to yield

an efficient recursive algorithm for general NLF prob-

lems.

Since it is known that the general NLF problems

are essentially infinite dimensional, it is better to ap-

proximate the conditional distribution of the state

(5) P(A|Yt) =
∫

x∈A
p(xt |Yt)dx,

with A ∈ Rd being a Borel set, and Yt = σ{ys : s ≤
t}, the filtration generated by the observations, in-

stead of its finite-dimensional statistical quantities,

e.g. the conditional expectation, the conditional co-

variance, etc. Already in the 1960s, Kushner [27] de-

rived the Itô stochastic partial differential equation

(SPDE), nowadays called Kushner equation, that the

distribution of the states conditioned on the obser-

vation history satisfies. However, the Kushner equa-

tion is not computationally friendly, due to the non-

local term involved. Duncan [11], Mortensen [38] and

Zakai [52] independently came up an idea of view-

ing the conditional distribution under a new prob-

ability measure using the Girsanov transformation,

just like the change of coordinates we always do in

the Calculus. Under this new probability measure, the

conditional distribution in Kushner equation become

the so-called unnormalized conditional distribution,

which satisfies a more favorable linear Itô SPDE, the

DMZ equation. In [31], the algorithms that directly ap-

proximate the posterior density function are called

global approaches, while those that only approximate

some statistical quantities are local approaches. Once

Kushner or DMZ equation has been derived, great ef-

forts have been devoted to solve them numerically

or analytically, for example the splitting-up method

[5], the S3 algorithm [29], and the direct method [46],

[49], [9], [39], etc. We refer the interested readers

to the survey [18] and references therein. But, these

algorithms are not computationally efficient. Espe-

cially, the splitting-up algorithm proposed for the

DMZ equation by Bensoussan et al. [5] behaves like

the Trotter product formula from semigroup theory,

which requires the boundedness of the drift and dif-

fusion terms up to the second order to obtain the

theoretical convergence analysis. Besides its theoret-

ical limitations, there is no implementable scheme

proposed. Until 2008 where Yau and Yau [50] pub-

lished a pioneering work on the first feasible algo-

rithm based on solving the robust piecewise DMZ

equation. The original idea is that the heavy compu-

tation of solving the DMZ equation can be decom-

posed into two parts: the one is to solve Kolmogorov

forward equation (KFE) off-line, and the other one

is to synchronize the newly-coming observations on-

line. Here, off-line refers to the computations made

without any realization-dependent data. In the filter-

ing, the observation data are realization-dependent

and only available in each run of the simulation. Af-

ter the decomposition, the heavy computational bur-

den has been moved to the off-line part, which can

be pre-computed and stored for later use. Since the

on-line computation affects the computational effi-

ciency. The real-time performance of the algorithm

is foreseeable. It is inaccurate that the great con-

tribution of the Yau-Yau method has been ignored

and the credit was given to the splitting-up method

in [34]. Later, the Yau-Yau algorithm has been val-

idated by Luo et al. [34] for the time-varying sys-

tem, and numerically verified the real-time perfor-

mance when the state is one dimensional [35]. For

the high-dimensional NLF problems, the numerical

scheme solving the DMZ equation has been investi-

gated in [36], [51] and [42].

Although the solutions to the Kushner or DMZ

equations provide complete statistical information,

they are highly computationally demanding, espe-

cially when the state is of high dimension. Efforts

have been devoted in these global approaches to al-

leviate the “curse of dimensionality”, for example by

the sparse grid algorithm [36] or the proper decom-

position method [42]. Compared to these global ap-

proaches, the local ones are much cheaper at the ex-

pense of obtaining only partial information of the

states. To deal with the NLF problem, many variants

of KF have been developed, including the extended

Kalman filter (EKF) [16], the Gaussian sum filter (GSF)

[1], the unscented Kalman filter (UKF) [23], the ensem-

ble Kalman filter (EnKF) [13], the Gaussian quadra-

ture Kalman filter (GKF) [20] and the cubature Kalman

filter (CKF) [3, 2]. Unlike the KF in the linear filter-

ing, all the variants of KF in the NLF problems are in

general not optimal in any statistical sense, e.g. mini-

mum variance or maximum likelihood. We thus refer

to them as “suboptimal”. In 2007, Germani et al. [17]

used the Carleman approximation to form a bilinear

system, for which the suboptimal estimation has been

developed in [7]. To form a closed system, one has to

ignore all higher moments. However, it may be inap-

propriate to do so for most NLF problems. Recently,

the first author together with Jiao, Chiou and Yau de-

veloped two suboptimal methods for certain specific

continuous nonlinear system [33, 37], based on the

suboptimal filter for the bilinear system [7]. Under

certain conditions, one can show that the higher or-

der terms do converge to zero, as the order goes to

infinity.
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Of more practical use is the continuous-discrete

NLF problems, where the measurements are sampled

at discrete times. The first author together with Yau

introduced a suboptimal linear estimation (see Defi-

nition 2) for the bilinear continuous-discrete system

[32]. We first formulate the algorithm and then ex-

plain its “suboptimality”.

In this survey, we shall summarize these subopti-

mal methods for the bilinear continuous/continuous-

discrete system with emphasis on the reasonableness

of these methods from a mathematical viewpoint.

Augmented States by Probabilists’
Hermite Polynomials

In this section, we shall briefly introduce the im-

provement of the Carleman approach [17]. Its basic

idea is very straightforward. Since the state satisfies a

nonlinear system and is in general of infinite dimen-

sion, then one may believe that the more statistical

quantities can be approximated recursively, the more

accurate the estimation of the state is. Consequently,

in the Carleman approximation [17], the SDE of the

state’s conditional moments was derived. To form a

closed system, one has to truncate the infinite many

moments at some order ν > 2. However, this trunca-

tion is only justifiable if all the higher order condi-

tional moments of the states in [17] are neglectable

in some sense.

The first author together with Stephen S.-T. Yau

proposed an alternative augmentation of the original

state by its generalized Hermite polynomials (gHPs){
Heα,β

j (x)
}∞

j=0
(6) in [37]. With this alternation, one can

show that E
[
Heα,β

j (ξ )
]
tends to zero, as j → ∞, if α,β

are chosen appropriately and when the density func-

tion of the random variable ξ belongs to a particular

class of functions. Thus, in contrast to the original

Carleman approach, setting Heα,β
j (ξ )≡ 0, for all j ≥ ν ,

in the degree-ν approximation is better justified. Ad-

justing the two remaining parameters, the scaling fac-

tor α and the translating factor β , can lead to even

better results.

For the clarity of the statements, we only write

this method in the scalar case, i.e. xt ∈ R. The aug-

mented state to the degree ν > 2 is defined as

Heα,β
1:ν (xt) =

[
Heα,β

1 (xt) Heα,β
2 (xt) · · · Heα,β

ν (xt)
]T

.

For the high-dimensional state, the augmented states

by the gHPs can be written using the Kronecker prod-

uct:

Heα,β
1:ν =⊗d

i=1Heαi,βi
1:ν ,i ,

where Heαi,βi
1:ν ,i =

[
Heαi,βi

1 (xi) Heαi,βi
2 (xi) · · · Heαi,βi

νi (xi)
]T
, i =

1,2, · · · ,d. However, the numerical implementations of

this suboptimal method may be inefficient compared

to those in [17], due to the fact that the product of two

Hermite polynomials (HPs) is no longer a HP, see (7).

Notations

1. The conditional expectation of ◦ is denoted by

◦̂ := E[◦ | Ft ], where Ft := σ{ys : 0 ≤ s ≤ t} is the

observation history, modelled by a family of

σ -algebra.

2. The Kronecker product ⊗ is used for the concise-

ness of the notations [6], and is defined for any

two matrices Mr×s and Np×q:

M⊗N :=

 m11N · · · m1sN
· · · · · · · · ·

mr1N · · · mrsN

 .

3. The gHP is defined as

(6) Heα,β
n (x) = Hen (α(x−β )) ,

where {Hen(x)}∞
n=0 are the HP, α > 0 is the scaling

factor and β ∈R is the translating factor. For any

nonnegative integers n and m, we have

(7) Heα,β
n (x)Heα,β

m (x) = ∑
p≤n∧m

An,m,pHeα,β
n+m−2p(x),

where

(8) An,m,p =
n!m!

p!(n− p)!(m− p)!
.

4. Given α > 0 and β ∈ R, any function ◦ ∈
C∞

(
[0,T ];L2 (R)

)
can be projected onto the gHPs:

◦(x, t) =
∞

∑
k=0

◦α,β
k (t)Heα,β

k (x),(9)

where ◦α,β
k are smooth functions of t, which can

be computed by

◦α,β
k (t) =

1√
2πk!

∫
R
◦(x, t)Hek

α,β (x)e−
α2(x−β )2

2 dx.(10)

Formulation

This suboptimal method is given in two steps:

first, one gives the evolutionary SDE of the jth degree

of the gHP’s, j = 0,1, · · · , and truncates the first ν de-

gree of the gHP’s equation to form a bilinear system;

second, the similar procedure of KF has been applied

to this bilinear system to yield a suboptimal estima-

tion of the augmented states.

Step one: By Itô formula, one can easily derive

the jth degree of the gHP’s evolutionary SDE, j =
0,1, · · · . Then writing the first νth degree of the gHPs
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in the vector format, Heα,β
1:ν (xt), satisfies the following

bilinear system:
d Heα,β

1:ν (xt) =
(

Fν Heα,β
1:ν (xt)+F0,ν

)
dt

+
(

Gν Heα,β
1:ν (xt)+G0,ν

)
dvt

dyt =
(

Hν Heα,β
1:ν (xt)+H0

)
dt +dwt

,(11)

where Fν , F0,ν , etc. are constant matrices of proper

size. Thus, the NLF problem (4) has been approxi-

mated by a bilinear system, i.e. the drift, diffusion

and observation functions are all linear functions of

the state.

Step two: One obtain the evolutionary SDE of

the suboptimal estimation of the augmented states

{Heα,β
1:ν } conditioned on the observation history [7].

Theorem 2.1. For any given α > 0 and β ∈R. Ĥeα,β
1:ν (xt)

satisfies the equation

dĤeα,β
1:ν (xt)

=

(
Fν Ĥeα,β

1:ν (xt)+F0,ν

)
dt

+
(

Gν mα,β
ν (t)+G0,ν +Pα,β

ν (t)HT
ν

)
R−1

·
[

dyt −
(

Hν Ĥeα,β
1:ν (xt)+H0

)
dt

]
,(12)

where mα,β
ν := E

(
Heα,β

1:ν (xt)
)
satisfy the following equa-

tions

(13) ṁα,β
ν (t) = Fν mα,β

ν (t)+F0,ν

with the initial values mα,β
ν (0) = E

(
Heα,β

1:ν (x0)
)
, and

Pα,β
ν (t) is the conditional error covariance matrix

Pα,β
ν (t) =E

[(
Heα,β

1:ν (xt)− Ĥeα,β
1:ν (xt)

)
(14) (

Heα,β
1:ν (xt)− Ĥeα,β

1:ν (xt)

)T
∣∣∣∣∣Ft

]
(15)

evolving according to the equation

Ṗα,β
ν (t) =Fν Pα,β

ν (t)+Pα,β
ν (t)FT

ν +Q(t)

−
(

Gν mα,β
ν (t)+G0,ν +Pα,β

ν (t)HT
ν

)
R−1

·
(

Gν mα,β
ν (t)+G0,ν +Pα,β

ν (t)HT
ν

)T
,(16)

with Pα,β
ν (0) = Ψ

α,β
ν (0).

Equation (12) and (16) give the evolution equa-

tions of the conditional expectation and the condi-

tional covariance matrix, similarly as those in the KF

for the linear filtering problem. The “gain function”

(the second line on the right-hand side of (12)) plays

the same role as the Kalman gain in the KF, to update

the expectation by the innovation process, the differ-

ence between the real observation and the expected

one (the last term inside the bracket in (12)). However,

the difference between this suboptimal method and

the KF is that this gain function depends not only the

covariance matrix (14), but also the expectation with-

out any information (13).

We remark that for ν = 1, (12) and (16) coincide

with the extended Kalman-Bucy filter (EKBF).

Mathematical Explanations

In this subsection, we shall explain from the

mathematical point of view why this augmentation

by the gHPs is possibly better than the conditional

moments in [17]. This augmentation is motivated by

a key observation [30]: E
(

He1,0
j (ξ )

)
→ 0, as j → ∞, if α

and β are appropriately chosen and the density func-

tion of the random variable ξ obeys Gaussian distri-

bution. This observation can be easily extended to the

scaled and translated gHPs, stated in the lemma be-

low:

Lemma 1. Suppose that the random variable ξ ∼
N (a,b2). Then for any µ ∈ R, we have

E
[
He1/b,a

n (ξ +µ)
]
=
(

µ

b

)n
.

In particular, for any |µ|< b,

(17) lim
n→∞

E
[
He1/b,a

n (ξ +µ)
]
= 0.

This lemma shows that the higher order terms of

the gHPs can be arbitrarily small, if the scaling and

translating factors are chosen appropriately and ξ ∼
N (a,b2), and thus justifies the truncation in the bilin-

ear system (11). But the assumption that ξ ∼N (a,b2)

is too restrictive to be of practical use for (11), as

it implies that the conditional posterior distribution

of the original state is Gaussian for all t ∈ [0,T ]. This
cannot be true unless (4) is actually a linear filtering.

To weaken this assumption, the so-called exponential

decay (ED) class of density functions is introduced.

Definition 1. We say the density function p(x) ∈ L2(R)
belongs to the exponential decay (ED) class with re-

spect to (α,β ), if for any |µ|< 1
α
, there exists some con-

stant C > 0 and η ∈ (0,1−α|µ|), such that

(18) |pi| ≤Cη
i,

where pi, i = 0,1,2, · · · , are Fourier-Hermite

coefficients of p(x) defined in (10), i.e. pi =
1√
2πi!

∫
R

p(x, t)Heα,β
i (x)e−

α2(x−β )2

2 dx.

The ED class includes the Gaussian as a special

case, with only the first two nonzero Fourier-Hermite
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coefficients. The condition (18) is only on the Fourier-

Hermite coefficients. But it actually reflects the regu-

larity of the density by a similar argument as in the

Riemann-Lebesgue lemma. The smoother the density

is, the faster decay of the Fourier-Hermite coefficients

to zero. The condition (18) implies the smoothness

and the decay rate of the density, as |x| → ∞. Con-

sequently, combining Lemma 1 and Definition 1, we

claim that by choosing the parameters α,β appropri-

ately, the gHPs of high degree in (11) are small enough

to be neglectable.

Theorem 2.2. Let α > 0 and β ∈R. If the random vari-

able ξ has density function p(x) belonging to the ED

class with respect to (α,β ), then for any |µ| < 1
α
we

have

lim
n→∞

∣∣∣E[
Heα,β

n (ξ +µ)
]∣∣∣= 0.(19)

The assumption that the density belongs to the

ED class can never be verified. Thus, there is always a

probability that the suboptimal method cannot get a

“good” estimation. This is a shortcoming from all the

local approaches, no matter how delicate the design

is. Moreover, the choice of the parameter α is crucial

of the performance of the suboptimal method. We re-

fer the interested readers to the detailed discussions

on the implementation in [37, section 3.3 and 4].

Suboptimal Linear Estimation (SLE) for
the Continuous-Discrete Bilinear
System

As we explained, the NLF problem can be re-

duced to a bilinear system via Carleman approxima-

tion, see (11) in the previous section. In this section,

we shall present a suboptimal linear estimation (SLE)

for the continuous-discrete bilinear system, see the

detailed discussions in [32].

The bilinear continuous-discrete system consid-

ered in the probability space (Ω,F ,P) is as follows:

(20)


dX(t) =AX(t)dt +Ndt +

b

∑
j=1

(B jX(t)+F j)dWj(t),

Y (tk) =CX(tk)+D+
b

∑
j=1

G jVj(tk), k = 0,1, · · · ,K,

for t ∈ [0,T ], where 0 = t0 < t1 < .. . < tK = T , A, N, etc. are
constant matrices of proper size. Similar as in (11),

the drift, diffusion and observation functions are all

linear in the state. Thus, (20) is a bilinear system,

but with observations at discrete times. Moreover,

X(t) ∈ Rn is the state, Y (tk) ∈ Rm is the discrete obser-

vation data, Vj(tk)∼N (0,R j(tk)),R j(tk) ∈R, k = 0,1, . . . ,K,
are independent one-dimensional white noises and

Wj(t), j = 1, . . . ,b, are independent standard Brownian

motions. Let Ftk be the σ -field generated by the ob-

servations, i.e. Ftk , σ{Y (t0),Y (t1), . . . ,Y (tk)}.
Throughout this section, we search for the linear

estimation of X(tk). The linear estimation is defined in

the sense that at each time instant tk, the a priori es-

timate is a linear function of the posterior estimate,

meanwhile the posterior estimate is the linear combi-

nation of the a priori estimate and the innovation as

follows.

Definition 2. We call X̂(tk|tk) the

linear recursive estimate of X(tk) based on the

observation {Y (t0),Y (t1), . . . ,Y (tk)}, if

1. The a priori estimate, denoted as X̂(t|tk−1), t ∈
[tk−1, tk], is linearly dependent of the posterior es-

timate X̂(tk−1|tk−1) at time tk−1, i.e.

(21) X̂(t|tk−1) = H1(t)X̂(tk−1|tk−1)+H2(t),

where H1 and H2 are matrices of proper dimen-

sions;

2. The posterior estimate X̂(tk|tk) lives in the lin-

ear space spanned by 1, the a priori linear esti-

mate X̂(tk|tk−1) and the innovation Y (tk)−Ŷ (tk|tk−1),

where Ŷ (tk|tk−1) = CX̂(tk|tk−1)+D. More precisely,

X̂(tk|tk)
=H3X̂(tk|tk−1)+H4(Y (tk)− Ŷ (tk|tk−1))+H5,(22)

where H3,H4 and H5 are constant matrices of

proper dimensions.

In the section below, we shall give a two-step re-

cursive algorithm for (20). It looks similar to the KF,

which keeps track of the conditional mean and co-

variance matrix. The major difference comes from

the nonlinearity of the system (20). The conditional

posterior distribution of the state in the bilinear sys-

tem is no longer always Gaussian. Thus, the first two

central moments do not contain complete statistical

information of the state. To keep the computational

burden low, we still keep track of two statistical quan-

tities in the algorithm, but with Q(t|tk) taking place of

the covariance matrix P(t|tk). The substitute Q(t|tk) is
given by a SDE (24) below. This replacement is mean-

ingful, since Q(t|tk) is close to P(t|tk) in some sense by

(S-2) below.

Formulation

The algorithm, we shall present below, consists

of two steps: prediction and updating. The predic-

tion is the propagation of the state according to the

first equation in (20) between two observation times,

while the updating is to synchronize the observation

at each time instant tk. This is a typical framework in

the filtering literature.
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Step 1: Prediction

In the interval [tk−1, tk), the a priori estimate

X̂(t|tk−1) of X(t) based on data {Y (t0),Y (t1), . . . ,Y (tk−1)}
satisfies

˙̂X(t|tk−1) = AX̂(t|tk−1)+N,(23)

Q̇(t|tk−1) = AQ(t|tk−1)+Q(t|tk−1)A
T(24)

+
b

∑
j=1

[
B jQ(t|tk−1)B

T
j

+
(
B jX̂(t|tk−1)+F j

)(
B jX̂(t|tk−1)+F j

)T
]
,

with the initial value X̂(tk−1|tk−1) and Q(tk−1|tk−1) from

previous updating, X̂(t0|t0) := X̄0, and Q(t0|t0) := P̄t0 . Sim-

ilar as in the KF, the evolution equations of the condi-

tional expectation and the substitution of the condi-

tional covariance are described by (23) and (24), re-

spectively. It shows how the two statistical quanti-

ties of the state propagate between two observation

times.

Step 2: Updating

The posterior estimate X̂(tk|tk) of X(tk) based on

the observation history Ftk satisfies

X̂(tk|tk) =X̂(tk|tk−1)+Kk
[
Y (tk)− Ŷ (tk|tk−1)

]
,(25)

with Ŷ (tk|tk−1) = CX̂(tk|tk−1)+D, and the gain function

Kk is given by

Kk = Q(tk|tk−1)C
T

[
CQ(tk|tk−1)C

T +
b

∑
j=1

G jR j(tk)(G j)
T

]−1

.

(26)

Meanwhile, the matrix Q(tk|tk) is updated by

(27) Q(tk|tk) = (In −KkC)Q(tk|tk−1),

where In is the identity matrix of dimension n×n.
We remark that compared to the KF, the matrix

Q(t|tk−1) plays the role of the conditional variance

P(t|tk−1)

:=E
[
(X(t)− X̂(t|tk−1))(X(t)− X̂(t|tk−1))

T
∣∣Ftk−1

]
in SLE. However, Q(t|tk−1) 6= P(t|tk−1) in general, t ∈
(tk−1, tk), even if they have the same initial value at

t = tk−1.

Mathematical Properties of the SLE

In this subsection, we shall detail the nice mathe-

matical properties of the algorithm advertized in the

previous section. The only assumption we made is

that

(As) A and Aex are Hurwitz, where Aex := ∑
b
l=1(Bl ⊗

Bl)+ In ⊗A+A⊗ In.

This assumption essentially guarantees the stability

of the bilinear system. Under this assumption, the al-

gorithm presented before gives indeed a suboptimal

linear estimate (SLE) in the following sense:

(S-1) If X̂(t0|t0) is unbiased, so is X̂(tk|tk), i.e.,

(28) E
(
X̂(tk|tk)−X(tk)

)
= 0,

for k = 1, · · · ,K.
(S-2) The a priori estimate X̂(t|tk−1), for t ∈ [tk−1, tk] and

Q(t|tk−1) converge to the conditional expectation

E
(
X(t)|Ftk−1

)
and the conditional variance P(t|tk−1)

component-wise and exponentially fast with re-

spect to t.
(S-3) The posterior estimate X̂(tk|tk)minimizes the con-

ditional variance error trP(tk|tk) in the linear space

spanned by {1, X̂(tk|tk−1),Y (tk)− Ŷ (tk|tk−1)}, where
tr(◦) denotes the trace of ◦.

The proofs of these three properties (S-1)–(S-3)

are involved. We refer the interested readers to [32].

We remark that

1. As for (S-1), the posterior estimate X̂(tk|tk) is

a Ftk -measurable random variable, as the con-

ditional expectation E(Xtk |Ftk). But they are not

identical in general.

2. If the posterior estimate at tk−1 is the conditional

expectation at tk−1, then by (S-2) the estimate co-

incides with the conditional expectation for all

t ∈ [tk−1, tk].
3. (S-3) tells us that trP(tk|tk) is minimized by prop-

erly chosen Kk (26). And (S-2) asserts that Q(t|tk−1)

approaches to P(t|tk−1) exponentially fast. Con-

sequently, Q(tk|tk) is “almost minimized” by Kk

in (26), since Q(tk|tk−1) is close to P(tk|tk−1).
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