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Dedication. It is with a heavy heart that I put

the finishing touches on this editorial. On April

19th, 2022, Professor John K. S. McKay passed away.

Though his soul is recalled to that eternal, infinite,

Platonic world of mathematics, his thoughts and

words shall remain with us. Over the years, he has

been a hero, a colleague, a friend, and above all,

a grandfather, intellectually and emotionally. It has

been a great honour to have explored mathematics

with John and it is a fitting tribute to his life that

this last work is in his own words, on one of his most

influential discoveries.

In piam memoriam J. K. S. McKay.

Abstract. These notes stem from lectures given

by the first author (JM) at the 2008 “Moonshine

Conference in Kashiwa” (organized by the Institute

for the Physics and Mathematics of the Universe

(IPMU) under the support of the Graduate School

of Mathematical Sciences, the University of Tokyo)

and contain a number of new perspectives and

observations on Monstrous Moonshine. Because
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many new points have not appeared anywhere in

print, it is thought expedient to update, annotate and

clarify them (as footnotes), an editorial task which

the second author (YHH) is more than delighted

to undertake. We hope the various puzzles and

correspondences, delivered in a personal and casual

manner, will serve as diversions intriguing to the

community.
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1. Introduction

I am very honoured to be able to attend and par-

ticipate in this conference which I would very much

appreciate to be a relevantly informal business where

some mathematics gets done. It is said that there’s

a very short time between being the youngest mem-

ber of a conference, and becoming the oldest. I don’t

know quite about Harada-San, but I’m 68, so I’m prob-

ably there.

My background is computer science, basically. I

started off computing character tables because of a

remark by a professor that computing character ta-

bles was more of an art than a science, and I thought

that should not be the case, and I was very fortunate

in starting off in the 60s, at about the same time as

the discovery of the modern sporadics. Janko’s first

group was discovered in 1964.

I’m sure you will have some delightful word that

would express the contents of moonshine, which

means something dubious, among other things, and

moonshine, of course, is illicitly produced liquor.1

1.1 Resources

Books on Moonshine: There is a book by Mark Ronan,

the very popular book [Ron], and there is a series of

four fifteen minute talks by him on the BBC3 radio

in Europe, at the beginning of this month. They have

been recorded. If you want to know more about this

recording I can tell you.2

Using the Web andMoonshine’s Web Page: One of the

things that I would like to emphasize is the use of the

computer and the web today (Internet). I was giving a

talk recently and several people come up to me and

1 The Kanji, or Chinese characters, for the word is ,
literally meaning “secretly made alcohol”. Of course, the
word does not quite capture the sense of “madness” in En-
glish which Conway originally used to express the incredible
nature of the Moonshine Conjectures. However, in classical
Chinese poetry, numerous allusions are made to drinking
accompanied by moon-light. The great poet Li Po (701–762)
supposedly drowned himself, in his habitual state of inebri-
ation, trying to grasp the reflections of moonlight in a lake.

Thus perhaps , or “moon-light liquor” is a more fit-
ting translation.
2 Since its incipience [Con-Nor] and proof [Bor] (of course,
there remains many more things to be understood, includ-
ing even Ogg’s initial mysterious observation of the super-
singular primes [Ogg] – q.v. recent accounts in [DO>, San>]),
Moonshine has developed into a vast field. The reader is re-
ferred, for example, to Ronan’s book and interview [Ron],
du Sautoy’s recent account [duS>], as well as nice techni-
cal progress reports of [Gan] and [DGO>]. In parallel, there
has been much activity in the physics community extend-
ing Moonshine to beyond the Monster, with special focus
on Mathieu 24 and its relation to the elliptic genus of
K3 surfaces [EOT>, Che>, CDH>, GHV>, CDHKW>, HMR>,
HeMcK>, DGO2>], to matrix models [HeJe], dessins d’enfants
[HM>, THM>] and to exceptional Lie algebras [HeMcK3>].

said: how do you manage to make these astonishing

connections between things? Well, it’s not that diffi-

cult, really. You have immense resources available on

the web, and they grow all the time, and what hap-

pened to me, one of the connections I made, was af-

ter having got knocked down by a car, maybe again

because I was thinking too much about problems. I

was in bed for two months, and I just searched on

the web for phrases in papers, and providing there

are not more than a 100 or so papers you can actu-

ally go through these papers and see where they are

relevant to your interests; a very effective and quite

successful way of finding things.

If you really want to know how to get informa-

tion if you are a graduate student, there is some-

thing in the literature: there’s Bruce Reznick [Rez]

who has written an article on extracting information,

and there are some techniques which don’t seem to

be too well known.

We have had web pages in the past on moonshine

groups. One of them was started up by Chi-Han Sah

from Stony Brook, and we had quite a nice little group

on that, but he died after an operation, and the whole

business folded after that. Then Chris Cummins, who

is a colleague of mine, put up a moonshine page (this

was several years ago) with the latest papers and

things, and that seems to have disappeared. Somaybe

the time is right to start up something again, where

we can discuss things.3

1.2 Talk Outline

Now, I have three ideas which I think worth pur-

suing, to the extent that you can show that they are

not worth pursuing if necessary, and I will talk about

them and explain what little there is to be said about

them.

I particularly want to emphasize a few things

which are not as well known as they should be. One of

them is the action of the Hecke operator and its con-

nection with some very classical objects called Faber

polynomials. Faber was, I believe, a numerical analyst

(an analyst), and in 1903, in Mathematische Annalen,

he wrote a paper on solving an approximation prob-

lem which was of interest to some fairly eminent peo-

ple, including Hilbert, and that’s how they started. But

in fact that’s not quite true. They go back to a man

called Francesco Faà di Bruno, and he was an Italian.

Probably the only Italian mathematical saint. He was

beatified in 1988. He died in March 27, 1888.

So these polynomials are of some interest, and

one can now look at them from a rather different

3 With the growth of blogs, especially in mathematics, there
are several emergent sites which are useful [Blog>]. However,
it would be useful to consolidate these resources, collect
comments and have them maintained professionally; much
in the spirit of the PolyMath projects [PolyMath>].
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light. Using these polynomials we can define what

we call replicable functions. This is a finite class of

functions of about several hundred of them, amongst

which the 171 functions which arise in the Monster’s

context as which we call monstrousmoonshine today.

These Faber polynomials describe the Hecke action,

and that’s part of the game.

I spoke to an eminent number theorist a year or

two back and he told me that everything was over and

we didn’t need to think any more about moonshine

and we understood everything about it. But that’s

very far from being the case, in my view. I think there

are several things which are worth thinking about.

One of them is Witten’s idea that there might be some

24-dimensional manifold which would explain this

moonshine by looking at the action of the Monster

group on the free loop space of the manifold. I can’t

find much by Witten on this, but maybe he’s written

something. That would be a very nice goal to either

establish the existence of the manifold and the Mon-

ster’s action, or to show that such a thing does not ex-

ist. I think Borcherds, for example, doesn’t think that

an action on M exists, but I don’t think you should

necessarily take much notice of experts; my experi-

ence has been rather negative in that respect.

Then finally, as a sort of dream, it would be

whether one could gather together all the finite sim-

ple groups. Let’s initially see whether we can put the

Monster within a better framework, presumably gen-

eralizing the Chevalley work in the Tohoku Journal in

1955 [Chev], and maybe one can pick up the Monster

by generalizing, and it’s conceivable that you might

be able to pick up other groups; the other six pariahs

(J1, J3, J4, Lyons, O’Nan, Rudvalis) in this way. John

Duncan has found some more moonshine attached

to two of the pariahs.

Let me make another remark. I think that it’s

quite useful if one finds mathematical objects in

other contexts, to find whether there is a connection

between them, and I’ll say a little bit more about that

later. I’ll give an example of it shortly.

1.3 Where to Start?

Galois 1832 As of a starting point of the talk, one can

start with Galois, who died in 1832, and Galois’

work in recognizing the notion of simplicity of

a group, normal subgroups, and the other result

that PSL2(p) is realizable on the cosets of a sub-

group of index p providing that p is not bigger

than 11. So there are certain cases of that, which

at least initially, were believed to be related to the

Monster (see [Con-Nor]).

Mathieu 1861, 1873 One can start with Mathieu in

1861. He wrote a paper in 1861 [Mat] in which

he said he had found five new groups as tran-

sitive extensions of classical linear groups.4 In

the 1861 paper he describes the smaller Mathieu

groups M11 and M12, and he says that others exist.

Then in a paper 12 years later, he writes that his

friends had a bit of trouble seeing how to con-

struct his big groups, and so in 1873 he gives a

description of the big groups M24, M23 and M22.

Now, it’s notable, and this is true throughout,

that the Schur multiplier5 of groups associated

with the sporadic groups is larger than one would

expect. The Schur multiplier of PSL3(4) is an ex-

ceptionally big group; a group of order 48. Now,
PSL3(4) is a group of size 26 ·32 ·5 ·7 = 20160 and is

the Mathieu group M21. So M21 is not a sporadic

group, but it is a classical group which starts the

chain of sporadic groups, M21, M22, M23, M24.

I don’t know how much skepticism there was

when Mathieu wrote this, but there is a paper 25

years after the second Mathieu group by a man

called G. A. Miller, who delighted in writing about

the problems of other people’s work, and his pa-

per attempts to show that M24 doesn’t exist. In

1900 he wrote a paper [Mil] in French correcting

himself. So that’s a history of theMathieu groups,

and we’ll come back to the Mathieu groups later.

Janko 1964 We could start with the Janko groups.

Janko was a hard worker. He did an enormous

amount of work attempting to find sporadic

groups, and he ended up with four groups, which

are called J1, J2, J3 and J4. So he worked very hard,

and the first successful outcome was in 1964.

This is the start of modern era for the sporadic

groups.

Plato 400 B.C. I could start with around the Plato’s

date, around 400 B.C., with the description of

the Platonic solids (cf. part (a) of Figure 1). Why

are we interested in them? There’s this very cu-

rious bijection between the Platonic solids and

their symmetry groups inside SU(2), and the A-,
D- and E-type Lie structures [McK]. So that’s the

reason for that. Predating Plato there’s an inter-

esting guy called Empedocles.6 I’ll say perhaps a

bit more at the end about him. He was interest-

4 We recall that k-transitive means the following. Let G
be a permutation group on n points and {a1,a2, . . . ,ak},
{b1,b2, . . . ,bk} are two sets of points with ai distinct and bi

distinct. If there is an element g ∈ G mapping each ai to bi for
i = 1, . . . ,k, then G is k-transitive. The only 4-transitive groups
are the symmetric group Sk≥4, the alternating group Ak≥6, and
the Mathieu groups M24, M23, M12 and M11 [Cam].
5 We recall that for a finite group G, the Schur multiplier
is the finite Abelian group whose exponent – the LCM of
the order of all elements – divides |G|. More generally, the
Schur multiplier of a group G is the second group homology
H2(G;Z).
6 Empedocles (circa 490–430 BC), pre-Socratic Greek philoso-
pher, known as the originator of the cosmogenic theory of
the four elements.
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Figure 1. (a) The 5 Platonic solids, the tetrahedron (T), cubic (C), octahedron (O), dodecahedron (D) and

icosahedron (I); C-O and D-I are graph duals and T is self-dual. (b) The Neolithic carved stones from Skara Brae,

Scotland (in the Ashmolean Museum, Oxford), circa 3200BC.

ing because he forecast and predicted the finite

speed of light, which I think was quite good for

about 500 B.C.

Skara Brae 3000 B.C. And then there is something

less well-known: Skara Brae. Skara Brae is a set-

tlement in the Orkneys7 which was discovered

in about 1850. It’s called late neolithic (that’s

a cultural date), but it is about 3200 B.C. This

settlement, in a very isolated part of the world,

contained some carved stones, and I’ll show you

some pictures of them (cf. part (b) of Figure 1).

Now these stones are all about the same size, and

nobody has any idea what they were for. The be-

lief is they were not weapons because they’re not

damaged, and the possibility is that they gave the

opportunity or permission to speak if you held

one of these balls.I don’t know whether the do-

decahedron was above the cube or not, but any-

how there are these things around. And if you

go to the Ashmolean Museum in Oxford,8 they

have them there. What was rather fun was that

I mentioned this to Nigel Hitchin, the (emeritus)

Savillian Professor of Geometry at Oxford, and

is about 400 yards from these things, and he’d

never heard of them.

7 Orkney Islands, northern Scottland, GB.
8 Ashmolean collection AN1927. 2727–2731, Oxford
University, q.v. http://www.ashmolean.org/ash/britarch/
highlights/stone-balls.html

2. Monstrous Moonshine

What I would like to do is make some remarks,

and see where we get going from here. Conway

and Norton’s paper [Con-Nor] was published at the

end of October 1979. And the story behind that

you’ve probably all heard, Fischer was visiting me

in Montreal, I wrote a letter to Thompson saying

that one of the coefficients of the elliptic modular

function j was 1 larger than the dimension of the

smallest faithful representation of the Monster. Fis-

cher took that back to Princeton. I think they all

laughed at the concept of there being any connec-

tions, but there are. Borcherds has reminded me that

what had happened was that I was reading a pa-

per by Swinnerton-Dyer and Oliver Atkin [Atk-Swi],

and in that paper they give the q-expansion for the

j-function.
Oliver Atkin used to be a next door neighbour of

mine in the ATLAS computer lab, and he is a number

theorist. I was working on these big finite groups, like

the Janko group whose order is 175,560, and he was

working on groups associated with two-by-two ma-

trices. I was sure they would be much simpler things

than I was working on, but I turned out to be wrong,

in retrospect.

This is the order of the monster9

(2) |M|= 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71 .

9 The Monster, largest of the 26 sporadic finite simple
groups, is a 2-generated group, according to the ATLAS
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There are 15 primes there. I don’t quite know what

name they should be given, but anyhow these are

the Monstrous primes, or the Monstrous supersingu-

lar primes. We will return to these primes shortly.

Thompson makes the remark. He says the order of a

finite group is a very strong invariant. These primes

appear elsewhere10 in Erdenberger [Erd] (see later).

That is indeed true, and if you’re trying to con-

struct the groups, as we were in the early days, when

these sporadic groups were sprouting so that every

few weeks there would be a new one, one of the first

things was getting hold of the order, and then using

Sylow’s Theorem to build up some structure, and per-

haps guessing a subgroup, and then using that sub-

group and the character table, then using characters

building up the character table for the group, and an-

nouncing that, and then someone would come along

and say the group doesn’t exist because the charac-

ter table doesn’t satisfy some property or other. Then

that property was eventually corrected. You had a

correct table as far as you knew, and the question

was trying to construct the group from the charac-

ter table, and if that could be done, that was usually

done by computer coset enumeration, and then using

some technique to prove that the subgroup that you

had made exists on the basis of the character table,

did indeed exist.

2.1 Primes in the Monster’s Order

It would be very useful to know more about these

primes. I don’t think there is so much that can be said

about them, except for a remark that Oggmade, when

he was attending at talk by Serre, I believe, at the Col-

lège de France [Ogg]. This would be in the early 70’s.

One takes

(3) Γ0(p) =

{(
∗ ∗
0 ∗

)
mod p

}
⊂ PSL(2;Z) ,

together with the Fricke involution αp :=
(

0 1
−p 0

)
. Con-

sider the group

(4) Γ0(p)+ =
〈
Γ0(p), αp

〉
,

[ATLAS]:

M = 〈a,b|a2 = b3 = (ab)29 = u50 = (au25)5(1)

= (ab2(b2a)5b(ab)5b)34 = 1;

u := (ab)4(abb)2〉 .

10 There are marvelous recent expositions on how these 15
primes appear in 5 different contexts by Sankaran [San>], as
well as how they can be explained from Moonshine [DO>].

and think of it as acting on the upper-half plane.11

Then the genus of the Riemann surface Γ0(p)+\H is

zero precisely when p is one of the 15 supersingular

primes that appear in the Monster’s order. That’s one

number theoretic characterization of these primes.12

We still don’t know why, and Thompson regarded

that as one of the major questions to be answered

in connection with the Monster.

There is another way of saying it: for elliptic

curves defined in characteristic p, then all the super-

singular j-invariants of these curves (being a priori in

Fp2 ) are lying in the base field Fp, rather than in Fp2 ,

precisely if p is one of the above 15 primes.

Now, rummaging through the contents of the

preprints on the arXiv.org every weekday you look

through and see if there’s anything of interest. We

found a paper by Cord Erdenberger [Erd], who is a

student of Klaus Hulek from Hannover. And these

15 primes come up in his work. His title is “The Ko-

daira Dimension of Certain Moduli Spaces of Abelian

Surfaces” (MR20923323 (2004)). He considers Abelian

surfaces (1, p) polarized (p a prime), and uses Jacobi

cusp forms of weight 2 and level p, and these appar-

ently exist just when p does not divide the order of

the Monster. So in a sense, one might say that they are

related to the existence of this Monster group. This is

one connection which needs some explanation. Here

you are working with a subgroup of the symplectic

group rather than the modular group.

I’ve contacted Erdenberger and his supervisor

Hulek, and nobody seems to know quite whether this

is really saying something new, or whether it can be

interpreted in terms of these supersingular elliptic

curves that I mentioned earlier. It’s something that

should be pursued, at least try to find out whether

there is a connection or not.

I would suggest if you want to follow this up,

look in Math review for the Math Review number I

have given above. The reason being that Sankaran re-

viewed it, and he does mention this in the review. You

won’t find any paper about it, and certainly Erden-

berger was not aware of it. I don’t know whether any-

one is pursuing this; I don’t know of any pursuit of

this fact.13

11 Indeed, a classical fact is that the upper-half plane, H :=
{z ∈ C : Im(z)> 0}, when adjoining appropriate compactifica-
tion points known as cusps which live in Q∪∞, quotients the
full modular group to give the Riemann sphere, of genus 0.
12 Genus 0 congruence subgroups are very rare. For example,
there are only 33 which are torsion free [Seb1] and the rela-
tion of these with elliptic surfaces, especially with K3 sur-
faces, is discussed in [Seb2, MS, HM>, HMR>].
13 The reader is referred to the recent works of [DO>] and
[San>] for various explanations.
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2.2 Balance

This is typical of the sort of fact that you can

gather, and one can formalize it as something (I don’t

know if it’s a great thing to do so) maybe the words

are “retro-syntactic retrieval”, or something like that,

but the game is very simple.14 You have a bunch of

people working on different subjects, and then if you

study the phrases that are used in common by these

people, or you find people who use a common phrase,

there’s a good chance that there is some related activ-

ity going on between the people that use this phrase.

I didn’t do that in this case. I think I was just looking

through the arXiv.org and found it.

Now let me say something about balance. If we go

back to the first paper, the word used is “seminal”,

certainly it was the only paper for a long time on the

subject by Conway and Norton [Con-Nor]. Conway is

here, and Simon Norton is not here. I don’t think he

should be forgotten. He is very often the motivating

force between a lot of activity, some of which never

gets published.

In this paper there is a list of observations which

are introductory to the business of moonshine and

one of them is that elements of the group M24 are

balanced. So, what does this mean, and what is its

significance? If you take a permutation in terms of

disjoint cycle lengths you have a bunch of numbers

which form a partition of the degree. A permutation

is balanced if the product of the lengths of pairs from

the outside-in is constant. Here is an example,15 a per-

mutation with cycle lengths 1, 2, 7 and 14 is balanced,
since N = 1.14 = 2.7 = 14. The number N is called the

balance number, if it exists.

In 1980 or thereabouts, we had a conference

called “The Coming of Age of the Finite Groups”,

and some of the people were here then. Dummit and

Kisilevsky and myself classified all permutations of

degree 24 that are balanced [DKM]. Why choose 24?

Well, we’re going to replace k by η(qk), q = e2πiτ , for

each cycle of length k, and thus form the product, we

call it eta products.

We found all the η-products which are weakly

multiplicative in the coefficients.16 There are exactly

14 This was mentioned earlier in the introduction about
how one could retrieve information and establish correspon-
dences.
15 Thus, an element of the permutation group
S24 of degree 24, would have cycle notation
(a1)(a2,a3)(a4, . . . ,a10)(a11, . . . ,a24), which is indeed the shape
of one of the 1575 conjugacy classes of S24 (1575 is the
number of unrestricted partitions of 24).
16 The simplest case is the famous ∆(q) = η(q)24, which is
the modular discriminant function, with q-expansion ∆(q) =

∞

∑
n=1

τ(n)qn with τ(n) being the Ramanujan tau-function. This

is weakly multiplicative in the sense that τ(m n) = τ(m)τ(n)
if gcd(m,n) = 1. The multiplicative eta-products appear in

30 of them, and all the permutations in the Math-

ieu group M24 are balanced. And being balanced and

weakly multiplicative is of the same thing as a theo-

rem of Bryan Birch and Morris Newman on that [New].

And you have a cusp form for each balanced permu-

tation, with what’s called a Grossen-character, whose

weight is half the number of parts.

Now we can generalize this to eta-quotients in-

stead of eta-products by writing fractions. Here is an

example: 224/124 whichmeans η(2τ)24/η(τ)24. Themul-

tiplicative η-quotients have been classified too17 by

Yves Martin [Mar]. These appear in [Apo].

The products are straight-forward because there

are only finitely many partitions to look at, so you

just go through them, find out the ones which look

like they’re multiplicative by looking at the first few

coefficients and checking, and then filter them out

and then you have to prove something. But for the

quotients that’s a different matter. The quotients are

much more difficult. There is potentially infinitely

many of them. The guy who had done a paper on them

is Yves Martin. He hasn’t completely done it. He made

an assumption that both the eta-quotient and the eta-

quotient with the above Fricke involution action on

it are weakly multiplicative and that’s not asked for.

So, the general question about what eta-quotients are

multiplicative is not known.

Being multiplicative means that you have some

Euler product through the (inverse) Mellin trans-

form,18 and here is the Euler product (we use the sub-

script g to identify the particular eta-product):

(5) ηg(s) = ∏
p

(
1−

ap(g)

ps +
bp(g)

p2s

)−1

with ap and bp integers; we have

(6) a2
p −ap2 = bp = χ

(
·
p

)
pwg−1 ,

where χ is some character and wg is the weight of

the eta-quotient, which is half the number of parts.

In particular, on the identity, the partition is 124 and

the weight is wg = 24/2 = 12, which yields p11. We have

a degree p11 generalized character. These are proper

characters which can be checked this directly. There

is some anomalous behavior for p = 3, but other than
that everything is clear.

physics, especially in partition functions in string theory and
are discussed in [GK>, Che>, HeMcK>].
17 Cf. also [Kil, MarOno] for relations to elliptic curves.
18 That is, we can form the Dirichlet series for the coeffi-
cients cn of the q-expansion ∑

n
cnqn for these eta-products to

give ηg(s) = ∑
n

cnn−s. This can then be taken as product over

primes as in (5).
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2.3 Conjugacy Classes

There are curious connections with physics and

conjugacy classes, and I think someone raised this

the other day at the EWM meeting,19 that in study-

ing elliptic genera you look at commuting pairs of

elements, and that’s related to the number of conju-

gacy classes in the group when working with a finite

group. And I just make the passing remark, the class

number – the number of conjugacy classes- of M24 is

26, which should ring a bell with some physicists.20

You have 5 quadratic boxes of irrationalities, so there

are 21 classes of cyclic subgroups, or if you like, 21

rationally irreducible representations. The group M12,

believe it or not, has 10 instead of 26.
If you want to know more about this remark

about conjugacy classes, there is recent publication,

a large book in fact called “From Number Theory to

Physics”, in Les Houches proceedings of 2002, con-

taining a paper with Sebbar and myself [McK-Seb].

More recently, in a paper in a conference proceed-

ings on things to do with moonshine, there’s a paper

by Anda Degeratu and Katrin Wendland [Deg-Wen>],

and they look again at one of these situations that you

discover by reading and saying “my goodness, it’s the

same number there.” They are looking at a situation

where the appropriate number replacing 26 is 194,

and 194 is the number of conjugacy classes in the

Monster.21 So they are looking at a situation that is

interesting if anything comes out of it.

2.4 Frame Shape

Now, these shapes we’ve been talking about – the

partition of n where n is the degree, or the more gen-

eral situation when you divide one term by another

is called Frame shapes. Now “Frame” is the name of a

person, J. S. Frame, not an abstract notion, and he was

an interesting man. His thesis was on character tables

in the 1930’s [Fra]. He did character tables like other

people do crosswords. So that’s who Frame was.

19 Encounters with Mathematics, Chuo University, May,
2008, http://www.math.chuo-u.ac.jp/ENCwMATH/45.
shtml.
20 In string theory, the critical space-time dimension of the
bosonic string is 26 and that of type II super-string is 10.
21 In other words, as remarked in [McK-Seb], the number of
conjugacy classes of M12 and M24 are respectively 10 and
26, the critical dimension of the supersymmetric and the
bosonic string theories. Moreover, 194, the number of con-
jugacy classes of the Monster, is the Picard number of the
base of an elliptically fibred Calabi-Yau threefold in an ex-
tremal case of heterotic-F-theory duality as studied in [AKM].
Furthermore, of these 194 classes, considered as column-
vectors in the character table, only 163 are linearly inde-
pendent; and of course, 163 is a famous Heegner num-
ber where the exponential assumes an almost-integer value:
exp(π

√
163)∼ 6403203 +744.

Basically speaking, what you are doing is that you

are describing the eigenvalues within an orthogonal

group. So if you have a fraction, you want to make

sure that the eigenvalues that you take away from the

denominator are already in the numerator, to make

any sense. There’s a paper by Takeshi Kondo [Kon],

who wrote a very nice paper about the Frame shapes

of elements in the automorphism group of the Leech

lattice, Aut(L). If you go down from there to Conway’s

group ·1, which is this group modulo the action on

diameters – i.e., Aut(L)/〈±1〉 – you get a mixture of the

functions that describe the elements on the various

classes and they are not as consistent as those for

the monster M.

By the way, there’s a very nice survey by Masao

Koike [Koi], I will say more about him later on. Again

this was in Sugaku, in Japanese that has been trans-

lated into English by the AMS translations #160. This is
one of the few early surveys on moonshine, so that’s

a useful paper too.

2.5 Faber Polynomials

If we take a Riemann map22 from the exterior

of some region in the complex plane containing two

points at least, by the Riemann mapping theorem we

can map the exterior of this region with some condi-

tions at infinity to the exterior of a disk of radius d,
and we can normalize this

(7) z = φ(w) = dw+d0 + ∑
k≥1

dkw−k .

If you are doing analysis you don’t have to worry

about the constant term and if you are doing moon-

shine you put it equal to 0 and the radius equal to 1.

We get an inverse of the same forms as (7)

(8) w = φ
−1(z) = z/d +g0 + ∑

k≥1

gkz−k,

and similarly we can take d = 1 and g0 = 0. The
Faber polynomial Fn is the part of (φ

−1(z))n with non-

negative powers of z. So you’re picking up the poly-

nomial part of this series (φ−1(z))n.

You may not be familiar with this, but if you’re

looking at pseudo-differential operators that’s a stan-

dard procedure to pick the plus part of the operator.

That’s what the Faber polynomial does for you, and

that how it’s used and I’ll say quite a lot more about

that.23

22 This approach of looking at Moonshine from the perspec-
tive of geometric function theory, in terms of the shape of
the analytic functional form of j(q) and generalizations, is
very much the spirit of the current lecture notes, and is also
summarized in [McK2].
23 In other words, we consider a meromorphic function and
its inverse with Laurent expansion of the form (7) and (9).
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What we do is we compose with the map z 7→ 1/q=
e−2πiz, to get

(9) f (z) = q−1 + ∑
k≥1

akqk, ℑ(z)> 0 .

The ak’s are general coefficients and we’ll take them

to be integers, but they need not be integers, and Si-

mon Norton has classified the functions we are in-

terested in (the replicable ones to come later) even

when they have complex coefficients. If these coeffi-

cients are not integers, they do lie in a field whose

Galois group is an elementary 2-group over the ratio-

nals. In other words, the ak’s, lie in a composite of

quadratic fields. I don’t think we really know which

quadratic fields and why, but anyhow that’s where

they lie whenwe’re talking about replicable functions,

that’s the ones we are interested in.

But for our purposes and for all the stuff here

we work with the ak’s being integers. That avoids any

problems with Galois theory and is convenient. The

functions of the form (9) are typical functions we

shall study, and we are going to study them first of all

slightly more generally than the connection with the

Monster, and then specialize to functions that are at-

tached to M.

2.6 Grunsky Coefficients

We can define the elliptic modular function j by
the above property, because, if this holds for some

other function f (z) for all positive integers n, the level
of this function f (z) must be equal to 1, and is there-

fore a rational function of j(z), and so, using the fact

that j is normalized at infinity as in (9), we have that

f (z) = j(z).
For f as in (9) we write

(10) Fn( f ) = q−n +n ∑
m≥1

hm,n( f )qm ,

the coefficients hm,n are called Grunsky coefficients,

see [Grun, Pomm]. These are in fact symmetric in

the m,n indices.24 They have a remarkable connec-

This is clearly inspired by the form of the q-expansion of
the j-invariant, as we shall shortly see. We emphasize that
the constant term is 0, so henceforth, by the j-invariant, we
mean the normalized one j(q)−744. In [HeJe], this shape of a
Laurent series was interpreted as the master-field of a large
N matrix model, whereby giving a modular matrix model.
24 We can in fact define the Grunsky coefficients and Faber
polynomials in the following way. We will encounter some
of the ensuing expressions in due course. Let g(z) be a holo-
morphic univalent (i.e., one-to-one on the open set) function
on the unit disk |z|< 1, normalized so that g(0) = 0, g′(0) = 1.
Then the function f (z) = g(1/z)−1 is a non-vanishing univa-
lent function outside the unit disk with simple pole at ∞ with
residue 1; that is,

f (z) = z+a0 +a1z−1 +a2z−2 + . . . .

tion with the Bieberbach conjecture.25 The Bieber-

bach conjecture is a bound on the coefficients of

functions univalent on the unit disk, and there’s a

very nice book [de Bra], an AMS publication, on the

solution to the Bieberbach conjecture by de Branges,

and these Grunsky coefficients played the major role

in the establishment of this conjecture in its early

days.26

In our definition (10), we have written Fn( f ) in this
way with an n in front in order to take advantage of

the symmetry of hm,n in m and n. In fact that is the

definition of the Grunsky coefficients

(13) hm,n( f ) = Tn( f )|qm .

There will be other introductions to the Faber poly-

nomials and these Hecke operators Tn later.
27

It’s not obvious from the above expression that

hm,n is symmetric in m and n, but it is, and we can see

The expansion coefficients cnm of

(11) log
f (z)− f (w)

z−w
=− ∑

m,n>0
cnmz−mw−n

are theGrunsky coefficients. Definition (11) implies, upon z ∂

∂ z

on both sides, that
zg′(z)

f (z)− f (w) −
z

z−w = ∑
m,n>0

mcnmz−mw−n. Thus we

define the Faber polynomials Fn(w), as

(12)
zg′(z)

f (z)−w
= ∑

n≥0
Fn(w)z

−n .

It is non-trivial that, thus defined, Fn(w) are monic polynomi-
als of degree n. In fact, Fn are themselves polynomials in the
coefficients ai in the definition of f (z). This is seen as follows.
Definition (12) implies, upon applying

∫
∞

0 dz 1
z on both sides,

that log f (z)−w
z = − ∑

n≥1

1
n Fn(w)z−n. Expanding out f (z) order by

order and comparing with (12) then gives the recursion

Fn(0) = 1 , Fn(w) = (w−a0)Fn−1(w)−nan −
n−1

∑
i=0

an−iFi(w) .

Furthermore, combining (12) and (11) we have that

∑
n≥0

Fn(g(ζ ))z−n = z
z−ζ

+ ∑
m,n>0

mcnmz−mζ−n = ∑
n>0

(
w
z

)n
+

∑
m,n>0

mcnmz−mζ−n so that

Fn(g(z)) = zn + ∑
m≥1

cnmz−m ,

which is (10) in our definition, up to the factor of n which
will be more convenient for our succeeding discussions.
25 We recall the statement of the Bieberbach Conjecture,
proven by de Branges. For univalent holomorphic function
with Taylor series of the form f (z) = z+ ∑

n≥2
anzn (such func-

tions are called Schlicht, or simple/plain), the coefficients
have the property that |an| ≤ n for all n ≥ 2.
26 There is a very recent paper on the appearance and rel-
evance of Bieberbach/de Brange as well as Grunsky coef-
ficients in scattering amplitudes in quantum field theories
[HSZ>].
27 In [McK-Seb], a particularly nice characterization of the
Faber polynomial is as given. Consider, as always, a function
f (q) = q−1 + ∑

n≥1
anqn for nome q = exp(2πiz) with Im(z) > 0, as

in (9). Then, for each n ∈ Z>0, there is a unique monic poly-
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it with a slightly different generating function for the

Grunsky coefficients.

3. Hecke Operators and Faber
Polynomials

I now turn to Part 2 of my lectures, having alluded

to the Hecke operators. There are Hecke operators,

and often in the books they assume that the function

on which the Hecke operator is acting has a weight

greater than zero, whereas the functions we are in-

terested in all have weight zero. You have a group

action acting linear fractionally on z, and on the mod-

ular function j this is given by, for all n ≥ 1

(14) Tn( j(z)) =
1
n ∑

ad=n
0≤b<d

j

(
az+b

d

)
=

1
n

Fn( j(z)) .

The effect of the Hecke action is to replace the pole of

order 1 of the j-function with a pole of order n at in-
finity. Moreover, the action of the Hecke operator pre-

serves the space of modular functions. Hence, Tn( j(z))
is a rational function of j(z), and so this going to be a

polynomial in j(z). Tn( j(z)) can be expressed both as a

q-series and as a polynomial in j(z). In fact, we can de-
fine the j-function by the fact that there is an action

of the Hecke operator defined in terms of sum over

the function valued on sublattices. Let’s have a quick

look at this, which is standard.

In part (a) of Figure 2, this is the fundamental re-

gion, up to orientation and homothety. The Hecke op-

erator Tn maps the lattice Λ = Z+ z.Z, z = ω1/ω2 such

that ℑz > 0, to sublattices {Λi} of index n, so induces

an action on functions defined on these lattices.28 For

example, for n = 2, there are 3 lattices of fundamental

region twice that of Λ and the Hecke action is given

by

(15) T2 : f (z) 7→ 1
2

(
f (2z)+ f

( z
2

)
+ f

(
z+1

2

))
.

nomial Fn such that

Fn( f (q)) = q−n +O(q) , as q → 0 .

These are the Faber polynomials. Depending on the Taylor
series of f (q), the first few are

F0(z) = 1, F1(z) = z, F2(z) = z2 −2a1, F3(z) = z3 −3a1z−3a2 .

More generally, we have

Fn(z) = det(zI−An) , An :=


a0 1

2a1 a0 1

.

.

.

.

.

.

.

.

.
(n−2)an−3 an−4 an−5 . . . 1
(n−1)an−2 an−3 an−4 . . . a1 1

nan−1 an−2 an−3 . . . a1 a0


28 The fundamental fact here is that sublattices of index n are
in one-one correspondence with integer matrices

(
a b
0 d

)
with

a> 0, b= 0,1, . . . ,d−1 and ad = n. For example, at n= 2, we have

3 such matrices,
(

1 0
0 2

)
,
(

1 1
0 2

)
and

(
2 0
0 1

)
, corresponding to

the lattices Z+2zZ, Z+(1+2z)Z and 2Z+ zZ.

Figure 2. (a) Fundamental region of the lattice

Λ = Z+ zZ. (b) The 3 sublattices of index n = 2, viz.,
Z+2zZ, Z+(1+2z)Z and 2Z+ zZ.

This is drawn in part (b) of Figure 2. I’ve used z here
because τ is used later.

For each of the functions we are interested in

there will be a discrete subgroup G f of PSL2(R) with
respect to which f is modular, and in [Con-Nor] there

is a discussion on howmuch is being fixed. The action

of G f is linear fractional. For us, the transformation

as an element of G f

(16) f

(
az+b
cz+d

)
= (cz+d)k f (z)

is not affected by the automorphy factor (cz+d)k be-

cause we are working with functions of weight k = 0,
and this is rather important since the behavior is dif-

ferent.29 There is also the notion of the level, which

is the smallest N such that Γ(N)⊂ G f .
30

Classically, for all gcd(n,N) = 1, Tn( f ) is a polyno-
mial in f ( f as in (9)). This last statement is the criti-

29 That is, the j-function is an absolute invariant j
(

az+b
cz+d

)
=

j(z) for
(

a b
c d

)
∈ PSL(2;Z). Indeed, for weight k objects, the

standard definition [Ser] of the Hecke operator is

Tn( f (z)) = nk−1
∑

ad=n
0≤b<d

d−k f

(
az+b

d

)
,

for all n ∈ Z≥1.
30 The congruence groups are defined with some modulo N
relation. For example, the principal congruence subgroup is
Γ(N) := {A ∈ PSL(2;Z) |A ≡ I mod N }.
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cal one that enable us to generalize the action of the

Hecke operator, and the generality is that if one de-

fines the j-function with the normal Hecke operator

acting as a polynomial then what we do is we preserve

the action of the (Faber) polynomial and redefine the

Hecke operator. Indeed, since for all n ≥ 1 we have

(17) Tn( f (z)) =
1
n ∑

ad=n
0≤b<d

f

(
az+b

d

)
=

1
n

Fn( f (z)) ,

the modular level is one, and therefore is a rational

function of j. Hence, using (9) where f is normalized

to have a simple pole at infinity and a zero constant

term, implies that Tn( f (z)) is a polynomial in j(z), and
thus f = j. This enables us to define the j-function
from the property that the Hecke operator on j aver-
aging over sublattices of index n is the Faber polyno-
mial associated with j.

I want to say quite a bit about this important poly-

nomial. It’s easy to find this polynomial from a com-

putational and algorithmic points of view. Start off

with (9) and look at various powers of f you’ll get

various negative powers of q on the right hand side

of (17), and by forming linear combinations of these

powers of f on the left hand side of (17) we can elim-

inate all but the largest negative power of q, and if

there is a constant term we can put it into the poly-

nomial on the left hand side. That makes it clear that

this polynomial is very simply determined from (9)

and is unique. What this polynomial is doing is re-

placing the simple pole at infinity in (9) by an order n
pole also at infinity in (17). And if we write, for f as
in (9),

(18) Fn( f ) = q−n +n ∑
m≥1

hm,n( f )qm,

the coefficients hm,n are the Grunsky coefficients. They

have a lot of interesting properties too.31

3.1 Replicable Functions: Norton’s Basis

We can define replicable functions { f (m)}, say, by
the same q-expansion as in (9)

(19) f (m)(z) =
1
q
+ ∑

k≥1

h(m)
k qk ,

31 Let us re-iterate this point. We saw in the footnotes above
that the Faber polynomials are the unique degree n monic
polynomials bringing q−1 +O(q) to q−n +O(q) as q → 0. Now,
our Hecke operator on j of weight 0 as in (17), thus all Tn( j(z))
are invariant under PSL(2;Z) since the sum gets permutated
by the action of the modular group. Whence they must be
rational functions in j(z) since the j-invariant, being a Haupt-
modul32, generates the function field of invariants. However,
since it has no poles in the upper half plane, they must in
fact be polynomials. In fact, we find that T ( j(q)) = q−n +O(q)
as q → 0. By uniqueness then, Tn( j) must be (up to overall
normalization) the Faber polynomials!

I am using the superscript (m) here, and I was talking

to John Conway in the breakfast about this. I think

the notation has to be changed. I’ve been using small

letters for coefficients and character, and I’ve used a

little hk here instead of ak. You can use ak if youwanted

to. But the I use the hk to remind you of the characters

of the Monster in the special case when you restrict to

the Monster. We can define a collection of functions

here by, for all n ≥ 1

(20) T̂n( f ) =
1
n ∑

ad=n
0≤b<d

f (a)
(

az+b
d

)
=

1
n

Fn( f ) .

What we’ve done is that we kept the Faber action in

the above and replaced the sum over representatives

of the sublattices of the function f by the functions
f (a). Those of you who want a glimpse of the future,

I can give you the relation between f and f (a) with
reference to the Monster.

To an element of the Monster g there corresponds
a function fg, corresponding for the moonshine for

this function on the element g, then raising f to the

a-th replicate power f (a) is the same as replacing g by
ga. You will get all this in a short time. There is no

need to make reference to the Monster in order to

define this.33

There is an inductive definition, and there is only

going to be one term, which is f (n), in the sum in (20),

and so you can take out the rest of this sum and put it

on the right hand side and that with will involve only

f (a) with a < n and you have an inductive definition

of these functions. I’ll say more about these Hecke

operators.

Now, Norton did all this unaware that it had all

been done 70 years before and before that. Perhaps

the easy definition of the Grunsky coefficients hm,n is

in terms of this generating function

(21) ln

(
f (p)− f (q)

1
p −

1
q

)
=− ∑

m,n≥1
hm,n pnqm

with p = e2πis, q = e2πiz. You take the logarithm of the

difference of the function evaluated at two different

arguments p and q. Remember that f (p) (resp. f (q))
will start with 1/p (resp. 1/q), so dividing through by

33 Historically, the concept of replicability came about
from Conway-Norton’s initial observation [Con-Nor] that the
moonshine functions (McKay-Thompson series) obeyed cer-
tain functional identities, which they called replication. This
is the reason for studying the type of recurrences in §3.5.
The motivation in defining it in the manner of the present
section is to generalize the remarkable fact that action of
the n-th Hecke operator on j is the n-th Faber polynomial in
j. Thus a function of the expansion type (9) is replicable if
there exists a family of function { f (a)}, called replicable func-
tions of f such that the generalized Hecke operator on these
1
n ∑

ad=n
0≤b<d

f (a)
(

az+b
d

)
is the Faber polynomial in f , i.e., 1

n Fn( f ).
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1/p−1/q gets rid of the singularities and you end up

with a quite nice series, namely the series on the right

hand side of (21). That’s the generating function for

the hm,n and you can expand that to have

(22) Eq. (21)= ln

(
1− pq ∑

k≥1

hk
pk −qk

p−q

)

and there are certain consequences of the expansion

one of them is that the hm,n’s are polynomial in the

hk’s with k ≤ m+ n; the value m+ n provides you with

the grading. I’m using the convention hk = ak = hk,1.

When we compare coefficients in the last expansion

with the ln term, we get this recursive expression

(23)

hr,s = hr+s−1 +
1

r+ s

r−1

∑
m=1

s−1

∑
n=1

hm+n−1(r+ s−m−n)hr−m,s−n.

Indeed, in (22), the terms
pk −qk

p−q
are part of psqt

where s+ t = k − 1, but you are multiplying by pq so

you get a term involving the expression involving the

hk’s and the hm,n corresponding to the appropriate

exponent. If we call r + s the grade then all hr−m,s−n

in (23) have a lower grade. The hr,s are not integers,

but the largest denominator is (r,s). I believe that’s

correct in a sense. Suppose we want to compute a

q-coefficient of the function, then that is typically

given by the term hr+s−1. So we have a choice: if we

want to compute hk then we can choose r+ s = k+1 so
that k = r+ s−1, and we can do that what will give us

the initial step, and the game is to try to find a pair

which has a reduced sum.

Simon Norton34 has a definition of a replicable

function which is that a function is replicable if hm,n =

hm′,n′ whenever mn = m′n′ and gcd(r,s) = gcd(m,n). This
is an important definition and we can take advantage

of this in computing the coefficients of a replicable

function from (23).

The following picture shows how to compute the

coefficient of qk. With k fixed this gives us a choice of

r, s, so we can draw the line x+ y = r + s = k + 1, and

34 Following [McK-Seb], we can proceed with this formal
definition of a replicable function. Consider a function the
form (9), and write its corresponding Faber polynomial, with
Grunsky coefficients hm,n as in (10). Then f is replicable if
hm,n = hr,s whenever gcd(m,n) = gcd(r,s) and lcm(m,n) = lcm(r,s).
Equivalently, we can define replicable functions using the
Hecke operators (for weight 0). The function of our form (9)
is replicable, if for each positive integer n and positive di-
visor a|n, there are functions f (a) of the form of (9) such

that T̂n( f ) :=Fn( f (q)) =∑ ad=n
0≤b<d

f (a)
(

az+b
d

)
. The functions f (a) are

called replication powers and have the property that

(24) f (k)(q) = q−1 +∑
i≥1

(
k∑

d|k
µ(d)hdki, k

d

)
qi ,

where µ is the standard Möbius µ-function.

then the game is to find a point (r,s) on that line that

dominates, if we are lucky, some other point (r′,s′)
with the same gcd and lcm. We then have the hyperbola

xy = rs. So if we can find this (r′,s′) on a lower line then
we start with, we can go to this line and proceed to

do the same thing again, and each time we do that

there are two possibilities – there is or there is not a

line below it. If the point exists we carry on. If it does

not exist we mark the parameter for the line. So here

there is a bunch of lines here, and it turns out – this is

Norton’s straight theorem – that there are 12 values

for which you can’t reduce them further. These are

23, 19, 17, 11, 9, 8, 7, 5, 4, 3, 2, 1 .

These 12 values are the values of k so that every co-

efficient of a replicable function is a polynomial in

these 12 values of hk. This is called Norton basis, and

that’s a very fundamental result. Now, Conway was

talking yesterday about the work of Atkin, Fong and

Smith [AFS], and by the way, Borcherds. Well, if Atkin,

Fong and Smith had got this theorem at the time they

did their computations they would have only needed

at worst 24 coefficients to establish the result of the

moonshine conjecture and these modular functions.

But they didn’t have it at the time and so that wasn’t

accessible to them. This is the general version, and

this provides a basis for all replicable functions.

I want to say a bit more about this, something

special, in a minute. If the function has odd level, that

means for the moonshine functions and that means

that for the conjugacy class containing the element

has odd order, you don’t need more than these few

at the bottom, in fact, 1, 2, 3, 5 are sufficient to do

the thing. There is something [CohMck] rather special

when you have odd level, but in general you need all

the above 12 elements. I’ll show a quite neat proof of

the theorem in a minute. This is a restatement of the

condition of replicability by Norton saying that

(25) hm,n = hlcm(m, n),gcd(m,n) .

Think of the Smith normal form of a 2×2 matrix per-

haps. You have a matrix with m and n on the diago-

nal and it’s equivalent to a matrix with gcd(m,n) and
lcm(m, n) on the diagonal. If you check the coefficients

h(k)i , where f (k)(z) = ∑h(k)i qi, you can see that

(26) h(k)i = k∑
d|k

µ(d)hk/d,dki, i > 0, h(k)−1 = 1, h(k)0 = 0 .

From this, inverting the above, you deduce for all r,s∈
N

(27) hr,rs = ∑
d|r

1
d

h(d)
r2s/d2 .
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This can be rewritten as

(28) hm,n = ∑
d|(m,n)

1
d

h(d)
mn/d2 .

This is the final result.

Now those of you who have read the useful book

A course in Arithmetic by Serre [Ser], the second half

of the book is devoted to things of interest to us

(modular forms), and mentions the Leech lattice and

various things to do with theta functions, you will

find a formula very like this without the superscript

(d), and if you follow Serre’s proofs they go through

pretty well word for word in this more general situa-

tion.

I’d like to just show you the proof of the Norton

basis theorem [Nor] done by Cummins [Cum] because

it’s very neat, and maybe other versions around are

not as neat as this.35

Theorem 3.0 (Norton Basis Theorem). The

q-coefficients of a replicable function are polyno-

mials in hk, k ∈ B = {1, 2, 3, 4, 5, 7, 8, 9, 11, 17, 19, 23}.

So what we want to do is to prove that for every-

thing that is not in the basis we can actually reduce

the sum m+n. So you need to prove that there exists

m, n, m′, n′ ∈ N such that

1. m+n = N, where N is given;

2. lcm(m,n) = lcm(m′, n′);
3. gcd(m,n) = gcd(m′,n′);
4. m′+n′ < m+n.

Proof. The first remark is that if we find some result

which is true for any number N then the result can be

true for kN. That’s a useful thing to look at, and that

means that we don’t need to have common factors in

the subscripts. Here are the cases to go through one

by one:

i. N = 2k not 2, 4 or 8; we can always look at what we

believe to be the basis and see what we need not

worry about. For N = 16, here is a pair m = 1, n =

15, m′ = 3, n′ = 5. All else is a power of 2 = 16t.
ii. For N odd and 2a + 1, a ≥ 4, N ≥ 17, we have m =

2a −2, n = 3, m′ = 2a−1 −1, n′ = 6.
iii. N odd N 6= 1 + 2k, you subtract 1 from it to get

m = N −1, n = 1, m′2−r(N −1), n′ = 2r with 2r|(N −1)
is a whole divisor of N − 1. You can follow that

through N − 1 > 2r ⇒ N > 2r + 1 ⇒ N(2r − 1) >
22r −1 ⇒ N > 2−r(N −1)+2r.

iv. Then N even not a power of 2. In this situation

N is a going to be a product of 2, 4 or 8 with 3,

5 or 9. And these cases we look at individually.

For 40 take m = 1, n = 39, m′ = 3, n′ = 13. For 36,
m = 1, n = 35, m′ = 5, n′ = 7 also works for 72.

This reduces all the ones that can be reduced, and

what you have left over is in the Norton basis, and

this proves what the Norton basis actually is.

3.2 Elastica

Now something of interest that maybe someone

throw some light on here. If you write down the Nor-

ton basis in this way

1 2 3 4 5 7 8 9 11 17 19 23

23 19 17 11 9 8 7 5 4 3 2 1

we have a symmetry36 in the Norton basis with the ex-

ception of the boxes that are supposed to contain 4

and 10. This was noticed by Matsutani who is in Yoko-

hama, and he wondered whether this has to do with

Weierstrass gaps [KMP>]. Some of you might know

about Weierstrass gaps and the implications of it if

there is some connection but that I don’t know.37 A

remark to make is that when you are working with

35 Cf. [McKSev] for more discussions on the algorithms. Of
course, one sees the beginning of the supersingular primes
here.
36 In that a number is accompanied by a gap, and vice versa,
except for positions 4 and 10.
37 We recall the statement of the Weierstraß gap theorem:
For a compact genus g> 0 Riemann surface X 3 x, there exists
exactly g numbers 1 = n1 < n2 < .. . < ng < 2g such that there
does not exist a holomorphic function on X\x with a pole of
order ni at x.

odd level functions, these 1, 2, 3 and 5 are the rel-

evant entries that you need for the basis. Now what

about 4 and 10? Well, you can write down expressions

for 4 and 10. Basically speaking you can express a10 in

terms of a4, and I think there might well be an argu-

ment for putting 10 in the above tables and leaving

things as they are otherwise, as you can express a4

in terms of a10. There is a little complication which I

don’t want to talk about.

This is an interesting remark and this leads to

some other work of Matsutani [Mats] which suggests

that there might be some connection with the vari-

ational problem of Euler and these replicable func-

tions. The variational problem of Euler is what you

get when you take an elastica, and elastica is Euler’s

word. It’s about 1750 or so.
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What is an elastica? Take ametal ruler and push it

in from the ends it will bend, and the question is what

is the curve that you get when you bend it and that

is a variational problem on the integral on the square

of the curvature over the arc length. That was solved

completely by Euler.38 But, if you generalized it a bit

into what Matsutani calls a quantized version [Mats2]

you get some interesting objects, and genus 0 func-

tions come up, rather than replicable functions. But

whether there is a connection or not, I don’t know.39

So that’s a curiosity which might be worth pursuing.

3.3 Faber Polynomials and Symmetric Functions

Let me come back to the Faber polynomials. They

haven’t been much studied, really. I’d like to mention

some things here. I think the first of the following

identities is perhaps the most important one to re-

member because it’s easy to remember

(29) 1+ ∑
n≥1

hntn = ∏
i
(1− xit)

−1 = exp

(
∑

tn

n
·∑

i
xn

i

)
.

The hn’s are called the complete homogeneous sym-

metric functions.40 Symmetric functions can be ex-

pressed in terms of x1, x2 · · · , and the hn is of de-

gree n and is a sum over the xi’s whether or not they

are equal. So you are looking at sums of xi’s where

xi1 ≥ xi2 ≥ ·· · . The functions on the right hand side

of (29) are generating functions for these homoge-

neous symmetric functions.41

McDonald [McD] on symmetric functions shows

that there is an involution that transforms the ho-

mogeneous symmetric functions to the elementary

ones, and thus involution changes the generating

functions. So there is a relation between

(30) 1+ ∑
n≥1

bntn = ∏
i
(1+ xit) = exp

(
∑

−tn

n
·∑

i
xn

i

)

and (29).

Now, what are the Faber polynomial doing? Well,

there is a completely different notion from what I’ve

been talking about and that is that the Faber polyno-

mials are related to a change of basis for a symmetric

function. There are six standard bases for symmetric

functions, five of which are well known, one of which

38 q.v. Leonhard Euler, “Methodus inveniendi lineas curvas
maximi minimive proprietate gaudentes, sive solutio prob-
lematis isoperimetrici lattissimo sensu accepti, chapter Ad-
ditamentum 1”, eulerarchive.org, E065, 1744.
39 The reader is referred to [CumGan] for a discussion on the
significance of the genus zero property.
40 It is also called the plethystic exponential and has been the
key to a programme of counting gauge-invariant operators
in quantum field theories [FHH].
41 This has been interpreted as fugacity-inserted plethys-
tic exponential of a Hilbert series in the context of D-brane
gauge theories [BFHH] and as Witt vectors in [FM>].

is the Doubilet basis, and is called the forgotten sym-

metric functions [Dou]. Anyhow, one could take one

of the above functions and multiply it by 1/t so that

everything is shifted by 1. You take the following ma-

trix (you have to be careful about these Faber polyno-

mials)

(31) An =



b1 1 0 · · · 0

2b2 b1 1
. . .

...

3b3 b2
. . .

. . . 0
...

...
. . . 1

nbn bn−1 b1


.

We have Fn(b1, · · · ,bn) = det(An).
42 Write Fn(z) =

Fn(z,b2, · · · ,bn) with F0( f ) = 1, F1( f ) = f , F2( f ) =

f 2 − 2b2, F3( f ) = f 3 − 3b2 f − 3b3. One can think of

the Faber polynomial as Fn(z), and remember that I

shifted everything by 1 in (30) (by dividing by q); the
function f we are dealing with here is

f (q) =
1
q

(
1+ ∑

n≥1
bnqn

)
.

For replicable functions b1 = 0 and bk = hk−1. More-

over, the Fn(z) are isobaric, meaning homogeneous in

the subscripts, in the sense that if you replace z by
b1 these are isobaric polynomials in the bi’s. It’s very

easy to get signs wrong, for me anyhow, and if you

get things correct for the third one I think you are ok.

These are Faber polynomials, and they come about

from solving the Newton relations which I just de-

scribed in terms of the roots of the polynomial Fn(z)
and its coefficients.43 So that’s what these Faber poly-

nomials really are.

As I said yesterday, historically it’s quite interest-

ing that they were described by Faber in 1903 and

mathematicians know them, and there are certainly

due to someone earlier than Faber, but it might be

one of this fairly folklorist things that goes back and

that might be even predates Newton. There is also Gi-

rard,44 but I don’t know quite what role he had to

play. Anyhow, Faà di Bruno is the person who pre-

dates Faber, and I don’t know what date we are talk-

ing about, probably 1857; he’s well known for the n-th
derivative of the composition of two functions.45

42 That’s the matrix, and I got into trouble when talking to
Serre about this because we were using different notations
and he objected very strongly to this. Note that the notation
in footnote 27 is the unshifted version.
43 That is, the recursion relations for the Faber polynomials
described in footnote 24.
44 Albert Girard (1595–1632), worked on fundamental theo-
rem of algebra, symmetric polynomials, Fibonacci numbers,
inter alia.
45 Francesco Faà di Bruno (1825–1888), cf. “Sullo sviluppo
delle Funzioni”, Annali di Scienze Matematiche e Fisiche, 6:
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3.4 Norton’s Conjecture on Replicable Functions

Now, I’d like to make a statement on this main

outstanding conjecture about replicable functions

and nobody, as far as I know, has tried to solve it,

but it’s not quite as simple as one might wish. This is

Norton’s main conjecture and it is that:

Conjecture 1 (Norton’s Conjecture). A function f of

the form (9) is replicable if either

0. f (q) = 1/q+ cq with c ∈ {0, −1, 1} as we are work-

ing with integer coefficients. Respectively for these

values of c we get the exp, sin and cos functions,46

which we call “Modular Fictions” and to be ig-

nored henceforth.

Or, surprisingly using the modular polynomial

you can get some results about these things, which

are consequences of the modular polynomial for

them. Things like the cos of twice the angle is

a polynomial of the cos whereas the sin of twice

the angle is not a polynomial in the sin. This was
proved by C. Cummins again [Cum], that this is

all there is.47

1. There exists N : Γ0(N) ⊂ G f ⊂ Nor(Γ0(N)), where

Nor is the normalizer inside PSL2(R), such that

the compact Riemann surface Ĝ f /H obtained by

adding a finite set of inequivalent cusps has genus

0, f is a principal modulus of this Riemann sur-

face, and G f is commensurable48 with PSL2(Z).
The maximal groups on the right side are called

Helling groups, and there is a paper by Conway

[Con] called “Understanding groups like Γ0(N)”

which was referred to by J. Duncan. It’s really

a pretty piece of work in that he also proves

Helling’s theorem.

What is needed is a proof of this result. I think

the proper way to do this is to use a two-sided de-

composition with respect to GL2 of the adèles, and in

that way one should be able to pick up the primes di-

viding the Monster’s order, which are the primes you

find inside the above levels N, namely the 15 super-

singular primes.

What has been done to now, I might say some-

thing about computations if there is time, it’s been

done by some people; I had some visitors that did

somework, C. Cummins did some, but the bulk of this

stuff was done by S. Norton and I could describe it.

Basically speaking, it was a very local picture that was

479–480, 1855 and “Note sur une nouvelle formule de cal-
cul differentiel”, The Quarterly Journal of Pure and Applied
Mathematics, 1: 359–360, 1857.
46 Recall that the nome q = exp(2πiτ).
47 Indeed, these are the Chebyshev polynomials; the reader
is referred to [McK-Seb] for discussions on how these famous
polynomials are the simplest replicable functions.
48 Recall thatG f was defined in (16) as themodular subgroup
for which f is invariant (weight k = 0).

used to do the computations to find these replicable

functions. There are one or two functions that you

know classically from Weber’s [Web] and Schläfli’s

[Sch] work, and from there you can build up other

functions which are closely related to replicable func-

tions. You just keep looking and making sure that the

genus is zero. But it is conceivable that something has

been left out, it’s unlikely but it’s possible.

The number 616 is the number of replicable func-

tions there are (with integer coefficients). That in it-

self is a quite interesting number, and there is amus-

ing reference to J. Conway’s remark. Remember that

he was talking about49 a group Y555 or perhaps Y666.

Well, 666 as you know occurs in the Bible, it’s sort of

a bad number, and I was giving this talk in Norway to

the mathematical department and I mentioned this

616 as the number of replicable functions and a per-

son in the back went out and he came back to me with

a transparency on which there is something called the

“Oxyrhynchus Papyrus” from few hundred A. D.50 In

the papyrus, which is written in Greek – it’s very read-

able, it says that the real number shouldn’t be 666; it

should be 616. So that was very quite amusing. I don’t

know why or how he came across to this.

Here is another piece of numerology, entirely

frivolous but nevertheless grounded on some deep

mathematics, whichmay amuse you. The Leech lattice

Λ24, the famous even unimodular lattice in 24 dimen-

sions, can be constructed from the even Lorentzian

unimodular lattice II25,1 in 26 dimensions using a

Weyl vector w = (0,1,2,3, . . . ,23,24;70). Then Λ24 is re-

alized as w⊥/w. That w is indeed an integral vector in

II25,1 follows from the remarkable Diophantine condi-

tion51

(32) 12 +22 +32 + . . .+232 +242 = 702 .

Now, consider the first 24 q-series coefficients

of the (normalized) modular J-function, viz,

49 The group is defined as follows. Consider a graph Gp,q,r

with a single tri-vertex, say a and 3 strands, each consisting
of respectively p, q and r nodes joined up; call these b1,...,p,
c1,...,q and d1,...,r. Thus there are p + q + r + 1 nodes in total.
The group Yp,q,r is a Coxeter-type group with one generator
associated to each of the nodes and presentation

Yp,q,r = 〈a,b1,...,p,c1,...,q,d1,...,r|(gg′)O(g,g′) = (ab1b2ac1c2ad1d2)
10 = 1〉 ,

where g and g′ are any of the a,b,c,d generators and that
O(g,g′) = 3 (respectively 2) if g and g′ are adjacent (respec-
tively, not adjacent). It was shown [Iva] that Y5,5,5 ' Y4,4,4 '
M oC2, the wreath product of the monster with the cyclic
group of order 2.
50 Manuscripts discovered in the C19th near Oxyrhynchus,
Egypt, dating from 1st to 6th century AD., mostly housed in
the Ashmolean in Oxford.
51 Discussions on this equation and the emergence of 42
from j(q) are presented in [HeMcK2>], in a volume in hon-
our of J. H. Conway. The number of pages of the present
notes is, of course, 42.
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196884,21493760,864299970,20245856256, . . . (that is

we do not include the constant term 744 nor 1/q
and start from O(q)). Sum the squares of these 24

numbers and compute it modulo 70, you will get 42,

which we all know to be the answer to the ultimate

question of life, the universe and everything. So, here

again, you see how Moonshine encodes all things.

3.5 Mahler’s Recurrence Relations

Now, there is another interesting paper [ACMS]

where we used recurrences to build up these series.

What is not very well known is the recurrence that we

use which people call Borcherds’ recurrence,52 which

is fair enough, is really due to Mahler and Mahler

wrote his paper in 1974, published in 1976 in the

journal of the Australian Math. Soc. [Mah].

He was a very remarkable number theorist. He

was a cripple and his father knew Carl Ludwig Siegel.

So he got to get a rather good education without going

through the usual processes of university and then

he became a refugee in Manchester for 30 years and

then he went from an assistant professor to a per-

sonal Chair, in Canberra where he lived and died not

a long ago.

He wrote me a letter in 1982 or 1983 in which

he said that he thought his paper has something to

do with moonshine, and if I would come to Canberra

and discuss it with him before he dies. I was in Mon-

treal and he was in Australia. I went out there and

unfortunately I got ill and I came back. So we never

actually met, but Mahler recurrence is the recurrence

that does the calculations.

We observe that (q.v. also [HeMcK3>])

360+256 =616

120+2×248 =616 .(33)

Maybe you can explain this. I’ll give you the Mahler re-

currence. I’m just going back a bit. I already remarked

upon

f (n)(nz) =
1
n

Fn( f (z))− 1
n ∑

ad=n
0≤b<d

a<n

f (a)
(

az+b
d

)
,

and that f (n)(nz) is invariant under z 7→ z+1/n. Cum-

mins and Norton have proved the replicability of ra-

tional Hauptmoduln [Cum-Nor], and remember that

the replicability property is essentially combinatorial.

You are just saying that things work nicely with Hecke

52 The sort of recurrences which arise from Borcherds’ proof
is the remarkable one such as

j(p)− j(q) =

(
1
p
− 1

q

)
∞

∏
m,n=1

(1− pnqm)cnm ,

where ck are the q-expansion coefficients of j(q). We will see
more recurrences in §3.5.

operators whereas if you want to prove results about

replicable being Hauptmodul you have to go from the

combinatorial side to the analytic and it’s a much

more difficult thing to do.

There is some very remarkable work done by a

student of Arne Meurman in Sweden. His name is

Dmitry Kozlov [Koz]. Masao Koike is the first to re-

alize what the generalized Hecke operator is. And if I

have done it correctly. When n = p is prime, the clas-

sical Hecke operator can be expressed in terms of the

Atkin U−-operator and if you know it for p you know

it for all integers because of the multiplicative prop-

erty, and the Adams’ V−-operator

Tp =
1
p

Vp +Up

Vp : f (q) 7→ f (qp)

Up : anqn 7→ apnqn .(34)

Koike recognizes this for the twisted Hecke operator

in the very early days

(35) T̂p =
1
p

Ψ
p ◦Vp +Up

with V̂p = Ψp ◦Vp : f (q) 7→ f (p)(qp). Now if you go back

to the moonshine to remember what this does for

you, this means that the coefficients are traces which

are the sums of the initial p-th power function. That’s
the context of moonshine but the rest is true for repli-

cable functions generally.

There are some characteristic classes associated

with this, and this is called the Bott Cannibalistic

Class. So when I was in Harvard I asked Bott about it,

but he told me he had forgotten so I don’t think we’ll

get any further there. By the way there is a remark-

able meeting in a week or two in Montreal, I think in

June, a week on Bott’s legacy with very good speakers

including Witten and Atiyah among others in the Uni-

versity of Montreal.53 I just make a passing remark is

that f ≡ f (p) mod p because in f (p) the coefficients are

sums of p-th powers of the coefficients of f . This is
the work of Koike, and there is a nice survey article

by him in Japanese in Sugaku, and there is an English

version in number 160 of the AMS translations [Koi].

I think Mahler must be the first or the only math-

ematician, unless Conway has done the same thing,

to publish a calculator program in the Royal Society

of London Proceedings, but he did that in an subse-

quent paper where he does his computations. What’s

extremely interesting about Mahler is that for each

prime p he has a recurrence relation to compute the

coefficients of these functions and he is really com-

53 This is the conference “A Celebration of the Mathemati-
cal Legacy of Raoul Bott”, CRM, June 9–13, 2008, Montreal.
One can find the proceedings in CRM Proceedings & Lecture
Notes, Volume 50, AMS 2010.
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puting the q-coefficients of the j-function. There are
several people who have done this for j, where the

actual setup will work for replicable functions in gen-

eral. This was true by Kozlov’s thesis which was on

the j-function, but in fact it applies to all replicable

functions. The same with Mahler; he has this recur-

rence relations for all prime p for the j-function and

he tries to use them in a broader context to other

functions that have arisen in [Fri] and others and it

doesn’t work and he doesn’t see why it doesn’t work.

Today we know why it doesn’t work. It’s because

the level of the function and the level of the Hecke

operator are not coprime, and that’s the modifica-

tion that you need to go from Borcherds’ formula to

Mahler’s formula. So I’m just going to give it to you

here. For p = 2 Mahler has used

f
( z

2

)
+ f

(
z+1

2

)
+ f (2z) = f (z)2 −2a1

f
( z

2

)
f (2z)+ f

(
z+1

2

)
f (2z)+ f

( z
2

)
f

(
z+1

2

)
(36)

= 2a2 f − f +2(a4 −a1) ,

which might be look at as the elementary symmet-

ric functions of degree 1 and 2 respectively in the

function values f
(

z
2

)
, f
(

z+1
2

)
and f (2z). This is for

the j-function originally, and then you have to make

modifications. The modifications are simple to make;

whenever you see a 2 in the f -value, say in f (2z) you
change it to f (2)(2z). These are the recurrence relations
from Mahler

a4k =
k−1

∑
j=1

a ja2k− j +
1
2
(a2

k −a(2)k ) ,

a4k+ = a2k+3

k

∑
j=1

a ja2k+2− j +
1
2
(a2

k+1 −a(2)k+1)+
1
2
(a2

2k −a(2)2k )

−a2a2k +
k

∑
j=1

a(2)j a4k−4 j +
2k−1

∑
j=1

(−1) ja ja4k− j ,

a4k+2 = a2k+2 +
k−1

∑
j=1

a ja2k+1− j ,

a4k+3 = a2k+4

k+1

∑
j=1

a ja2k+3− j +
1
2
(a2

2k+1 −a2k+1)−a2a2k+1+

(37)

+
k

∑
j=1

a(2)j a4k+2−4 j +
2k

∑
j=1

(−1) ja ja4k+2− j ,

which do come from

f
( z

2

)
+ f

(
z+1

2

)
+ f (2)(2z) = f (z)2 −2a1

f
( z

2

)
f (2)(2z)+ f

(
z+1

2

)
f (2)(2z)+ f

( z
2

)
f

(
z+1

2

)(38)

= 2a2 f − f +2(a4 −a1) ,

and these are Borcherds’ relations. That’s the differ-

ence between Mahler’s and Borcherds’.

Notice that the original ones are universal, and if

you have any function in this case of odd level these

are the recurrence relations for its coefficients and

if you have a function of even level then you have

to know what f (2) is in order to make use them; you

have to use coefficients from f (2) in order to build up

these relations. They come in a group of four. They

are extremely good for computing several hundreds

coefficients quite easily, but if you speak to someone

like Atkin few hundreds is nothing; he computes the

first 10,000.

Now, to go back to some remarks a bit earlier on.

We find f (p) = ∑n h(p)
n qn and

(39) h(p)
n = phpn,p − pap2n .

On M : f〈g〉 −→ f (k)〈g〉 = f〈gk〉, this is the replication for-

mula I mentioned to you.54 Since |M|< ∞ there exists

k = k0 such that gk0 = id and so f〈gk0 〉 = f〈id〉 = j. So in a

sense you can think of the functions we start with as

replication roots of the j-function.
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