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Abstract. In 1943 from September to December

Kiyoshi Oka wrote a series of papers numbered

from VII to XI, as the research reports to Teiji

Takagi (then, Professor of Tokyo Imperial University),

in which he solved affirmatively the so-called Levi

Problem (Hartogs’ Inverse Problem termed by Oka)

for unramified Riemann domains over Cn. This

problem which had been left open for more than

thirty years then, was the last one of the Three

Big Problems summarized by Behnke–Thullen 1934.

The papers were hand-written in Japanese, consist

of pp. 108 in total, and have not been published

by themselves. The aim of the present article is to

provide an English translation of the most important,

last paper (Part II) with preparation (Part I). At the end

of Part I we will discuss a problem which K. Oka left

and is still open.
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Part I

In this Part I we discuss Kiyoshi Oka’s unpub-

lished series of five papers, VII–XI in 1943 ([26]),

which were hand-written in Japanese and consist of
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pp. 108 in total. In Part II we present the English trans-

lation of the last one XI of [26] that contains the most

important main results. Part II is the main part of

the present article. In Part I it is not intended to sur-

vey the developments of the subject since the time

of Oka and thereafter, but rather is aimed to serve

for the preparations or a sort of appendices, so that

Part II is readable for general readers without spe-

cific knowledge of the subject at the time. Moreover,

if one gets into the proofs described in XI, he will

still find methods that have not been presented in

published references, so far by the author’s knowl-

edge, and are original and have interests even from

the present viewpoint. For general references about

the developments of the present subject, cf., e.g., Hi-

totsumatsu [10], Gunning–Rossi [9], Hörmander [11],

Nishino [14], Lieb [12], Noguchi [15], [20].

The method of the proof of the Pseudoconvexity

Problem (i.e., Hartogs’ Inverse Problem, Levis’s Prob-

lem) given in this series of papers 1943 is quite sim-

ilar to that of Oka IX published in 1953 except for

the use of Coherence Theorems: There, in the unpub-

lished papers 1943, he proved some ideal theoretic

properties of holomorphic functions, which was suf-

ficient to prove the Jôku-Ikô (lifting principle) with

estimates; then it led to the solution of the Pseudo-

convexity Problem. In this series of papers, he already

had in mind a project not only to settle the Pseudo-

convexity Problem of general dimension, but also to

deal with the problem for ramified Riemann domains;

it would actually lead to the notion of “Coherence”.

Reading the series of unpublished papers 1943

we see the dawn of the then unknown notion of “Co-

herence” or “Idéaux de domaines indéterminés” in
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Oka’s terms, and may observe that the turn of years

“1943/1944 ” was indeed the watershed in the study

of analytic function theory of several variables.

1. Three Big Problems

a) K. Oka’s research [22], I–IX (published) was

motivated by the monograph of Behnke–Thullen [2]

1934: They summarized the main problems then in

the theory of complex analytic functions of several

variables, listing the following Three Big Problems.

(i) The Levi (Hartogs’ Inverse) Problem.

(ii) Cousin (I/II) Problem.

(iii) Problem of expansions of functions (Approxima-

tion Problem).

These problems are well-known among complex

analysists, but we will recall for convenience the

above problems in the next subsection b), following

Behnke–Thullen [2] (cf. Lieb [12]).

The difficulty of the problems was referred

by H. Cartan [25] as “quasi-surhumaine (quasi-

superhuman)” and by R. Remmert [25] as “Er löste

Probleme, die als unangreitbar galten (He solved prob-

lems which were believed to be unsolvable)”.

K. Oka solved all these problems in the oppo-

site order. By establishing “Jôku-Ikô”1 in [22] I–II, he

proved Problem (iii) above and (ii) the Cousin I Prob-

lem, and then in [22] III, he obtained the Oka Principle,

settling (ii) the Cousin II Problem. The most difficult

problem (i) was first proved for univalent domains

(subdomains) of C2 in [22] VI 1942, leaving for the

general dimensional case the last paragraph of the

paper:

“L’auteur pense que cette conclusion sera aussi in-
dépendante des nombres de variables complexes.
(The author thinks that this conclusion will be also
independent of the number of complex variables.)”

But, it was a general cognition that the higher di-

mensional case was still open (in Japan there seems

to have been a sentiment that the higher dimensional

case of univalent domains was already settled), and it

was proved as follows:

(1) S. Hitotsumatsu [10] (a short note in Japanese

was published), 1949 for univalent domains of

Cn (n ≥ 2, same as in (3) below by Weil’s integral).

(2) K. Oka [22] IX, 1953 for unramified Riemann

domains over Cn (by Coherence, Jôku-Ikô and

Cauchy integral).

(3) H.J. Bremermann [5] and F. Norguet [21] 1954,

independently for univalent domains of Cn (by

Weil’s integral).

1 This consists of two (Japanese) words, andmeans that “one
transfers himself from the original space of the given dimen-
sion to a space of even higher dimension”. Cf. §4.1

b) (i) To get the idea of the problemswe consider a

univalent domain (i.e., a subdomain) Ω of Cn. Let Ω′ ⊃
Ω be a domain of Cn. If every holomorphic function

in Ω is extendable to a holomorphic function in Ω′, Ω′

is called an extension of holomorphy of Ω. In the case

of n = 1, there is no extension of holomorphy other

than Ω′ = Ω, but in the case case of n ≥ 2, Ω′ ) Ω can

happen (Hartogs’ phenomenon, 1906–). For example,

let n ≥ 2, let a = (a1, . . . ,an) ∈ Cn and define ΩH(a;δ ,γ)⊂
Cn, so-called a Hartogs domain, as follows: With a pair

of n-tuples of positive numbers, γ = (γ j)1≤ j≤n and δ =

(δ j)1≤ j≤n satisfying 0 < δ j < γ j (1 ≤ j ≤ n), we set

P∆(a;γ) = {z = (z1, . . . ,zn) ∈ Cn : |z j −a j|< γ j,1 ≤ j ≤ n},
(1.1)

Ω1 = {z = (z1, . . . ,zn) ∈ P∆(a;γ) :

|z j −a j|< δ j, 2 ≤ j ≤ n},
Ω2 = {z = (z1, . . . ,zn) ∈ P∆(a;γ) : δ1 < |z1 −a1|< γ1},

ΩH(a;δ ,γ) = Ω1 ∪Ω2 ( P∆(a;γ).

It is immediate to see that the polydisk P∆(a;γ) is an

extension of holomorphy of ΩH(a;δ ,γ) (cf., e.g., [15]

§1.2.4).

The notion of the “extension of holomorphy” is

naturally generalized to the case of multi-sheeted

(ramified or unramified) domains over Cn and this is

definitely necessary in the case of n ≥ 2; in fact, it is

known that there is a subdomain of C2 which has an

infinitely-sheeted unramified domain over C2 as an

extension of holomorphy (cf., e.g., [15] §5.1). In this

paper, domains over Cn are unramified, as far as it is

not mentioned to be ramified.

Now, let Ω be a domain over Cn. The maximal do-

main among the extensions of holomorphy of Ω is

called the envelope of holomorphy of Ω, denoted by

Ω̂. It exists, but is not necessarily univalent even if Ω

is univalent as mentioned above.

If Ω = Ω̂, Ω is called a domain of holomorphy. In

the above example, P∆(a;γ) is the envelope of holo-

morphy of ΩH(a;δ ,γ) and a domain of holomorphy.

Hartogs’ phenomenon implies that the shape of sin-

gularities of holomorphic functions is not arbitrary;

contrarily, before Hartogs it had been thought arbi-

trary. In the study of the shape of singularities of

holomorphic functions, in other words, the shape of

the boundary of a domain of holomorphy Ω, E.E. Levi

found around 1910 in the case of n = 2 that with the

assumption of the C2-regularity of the boundary ∂Ω

defined by ϕ so that Ω = {ϕ < 0}, dϕ 6= 0 on ∂Ω, one

has

(1.2) L(ϕ)(a) =

∣∣∣∣∣∣
0 ϕz ϕw

ϕz̄ ϕzz̄ ϕwz̄

ϕw̄ ϕzw̄ ϕww̄

∣∣∣∣∣∣≥ 0, a ∈ ∂Ω,

where (z,w) are the variables of C2. For general n ≥
2, J. Krzoska (1933) formulated it as with the same
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boundary regularity, the hermitian matrix

(1.3)

(
∂ 2ϕ

∂ z j∂ z̄k
(a)

)
1≤ j,k≤n

(a ∈ ∂Ω)

is positive semi-definite on the homomorphic tangent

vector space{
(v1, . . . ,vn) ∈ Cn :

n

∑
j=1

v j
∂ϕ

∂ z j
(a) = 0

}
.

If n = 2, this is reduced to (1.2). Then it is natural to

ask the converse.

Levi Problem: If ∂Ω satisfies (1.3), is Ω a domain of

holomorphy?

The property characterized by (1.2) or (1.3) is

called a pseudoconvexity of Ω or ∂Ω, which is a biholo-

morphically invariant property in a neighborhood of

any point a ∈ ∂Ω.

There is an inconvenience in the above characteri-

zation by ϕ ; that is, even if ϕ1,ϕ2 satisfies (1.2) or (1.3),

c1ϕ1 + c2ϕ2 with positive constants c1,c2, does not sat-

isfy the similar condition. This was the reason why K.

Oka introduced a pseudoconvex function ψ in Ω such

that ψ is upper semi-continuous and the restriction of

ψ to the intersection of any complex affine line and Ω

is subharmonic (Oka VI, 1942).2 Pseudoconvex func-

tions play the similar role to that of ϕ in (1.2) or (1.3)

and still satisfies that c1ψ1 + c2ψ2 is pseudoconvex

for pseudoconvex functions ψ j and c j > 0 ( j = 1,2).
If ψ : Ω → R is of C2-class, ψ is pseudoconvex if and

only if the hermitian matrix
(

∂ 2ψ

∂ z j∂ z̄k
(a)

)
1≤ j,k≤n

(a ∈ ∂Ω)

is positive semi-definite.

In the unpublished papers 1943, K. Oka did not

assume the boundary regularity of Ω, but defined the

pseudoconvexity of Ω (or ∂Ω) as follows: For every

point a ∈ ∂Ω there is a neighborhoodU of a in Cn such

that if φ : ΩH(a;δ ,γ) → U ∩Ω is a biholomorphic map

from a Hartogs domain ΩH(a;δ ,γ) into U ∩Ω, then φ is

analytically continued to φ̃ : P∆(a;γ)→U ∩Ω. It is triv-

ial that a domain of holomorphy satisfies this pseu-

doconvexity, and K. Oka proved the converse: This is

why he called the problemHartogs’ Inverse Problem.

The solution naturally implies that of the Levi Prob-

lem.

(ii) Let Ω=
⋃

α∈Γ Uα be an open covering. Let fα (α ∈
Γ) be a meromorphic function in Uα such that fα − fβ

is holomorphic in Uα ∩Uβ as far as Uα ∩Uβ 6= /0. The
pair ({Uα},{ fα}) is called a Cousin-I data on Ω.

2 In similar time, P. Lelong defined the same notion as
plurisubharmonic functions from potential theoretic view-
point.

Cousin I Problem:3 If Ω is a domain of holomorphy,

then for a Cousin-I data ({(Uα},{ fα}) on Ω, is there a

meromorphic function F in Ω, called a solution of the

Cousin-I data, such that F − fα is holomorphic in every

Uα?

In the case of n= 1, Mittag-Leffler’s Theorem gives

an affirmative answer to the problem.

Similarly, we assume that fα are meromorphic

functions, not identically zero, and that fα/ fβ is a

nowhere vanishing holomorphic function in every

Uα ∩Uβ (6= /0). Then ({Uα},{ fα}) is called a Cousin-II

data on Ω.

Cousin II Problem: If Ω is a domain of holomorphy,

then for a Cousin-II data ({Uα},{ fα}) on Ω, is there a

meromorphic function F in Ω, called a solution of the

Cousin-II data, such that F/ fα is nowhere zero holo-

morphic in every Uα?

In the case of n = 1, this is answered affirmatively

by Weierstrass’ Theorem.

(iii) Let K b Ω be a compact subset and let f be a
holomorphic function in a neighborhood of K.

Problem of expansion (Approximation Problem):

Assume that Ω is a domain of holomorphy. Find a con-

dition for K such that for every such f there is a series

∑
∞
ν=1 fν with holomorphic functions fν in Ω such that

restricted on K,

f =
∞

∑
ν=1

fν ,

where the convergence is uniform on K.

In the case of n = 1 we have Runge’s Theorem. In

the problems of (ii) and (iii) above, the assumption

for Ω being a domain of holomorphy is necessary by

examples (cf., e.g., [16] §1.2.4, §3.7).

2. Unpublished Papers VII–XI 1943

We first list the titles translated from Japanese

and the numbers of pages of the papers with dates.

(i) On Analytic Functions of Several Variables VII

– Two auxiliary problems on the congruence of

holomorphic functions, pp. 28 (4 Sep. 1943).

(ii) On Analytic Functions of Several Variables VIII –

The First Fundamental Lemma on finite domains

without ramification points, pp. 11 (5 Sep. 1943).

3 This problem was dealt with by P. Cousin [4] and affirma-
tively solved when the domain is a cylinder (domain), which
is by definition an n-product of the coordinate plane do-
mains of Cn: Cousin II Problem below was also solved af-
firmatively there when the domain is a cylinder ∏ j D j with
simply connected plane domains D j (⊂ C) except for one D j.
He used the so-called Cousin integral (see p. 60). They were
solved affirmatively in general by K. Oka [22], I–III for uni-
valent domains, which in Cousin II Problem yielded the Oka
Principle.
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(iii) On Analytic Functions of Several Variables IX –

Pseudoconvex functions, pp. 29 (24 Oct. 1943).

(iv) On Analytic Functions of Several Variables X –

The Second Fundamental Lemma, pp. 11 (12 Nov.

1943).

(v) On Analytic Functions of Several Variables XI

– Pseudoconvex domains and finite domains of

holomorphy: Some theorems on finite domains

of holomorphy, pp. 29 (12 Dec. 1943).

K. Oka cited these papers in two places of the

published papers with mentioning a further problem

of ramified Riemann domains, which we quote.

(1) Introduction of [22] Oka VIII (1951, p. 204) be-

gins with:

Les problèmes principaux depuis le Mémoire I sont:
problèmes de Cousin, problème de développement
et problème des convexités.4 Dans les Mémoires
I–VI,5 nous avons vu, disant un mot, que ces prob-
lèmes sont résolubles affirmativement pour les
domaines univalents finis.6 Et l’auteur a encore

4 Ces problèmes sont fondés sur H. Behnke et P. Thullen,
Theorie der Funktionen mehrerer Komplexer Veränder-
lichen, 1934. Nous allons les expliquer en formes précises.
Soient D,D0 deux domaines connexes ou non sur l’espace
de n variables complexes tels que D0 ⊆D (c’est-à-dire que D0

soit un �Teilbereich� de D); nous appellerons que D0 est
holomorphe-convexe par rapport à D, s’il existe une fonc-
tion holomorphe dans D ayant des éléments de Taylor dif-
férents aux points différents de D0 et encore si, pour tout
domaine connexe ou non ∆0 tel que ∆0 bD0 (c’est-à-dire que
∆0 ⊂ D0 et ∆0 � D0), on peut trouver un domaine connexe
ou non ∆ tel que ∆0 ⊆ ∆ b D0 de façon qu’à tout point P de
D0 − ∆, il corresponde une fonction f holomorphe dans D
telle que | f (P0)|> max | f (∆0)|. Spécialement, si D0 est ainsi par
rapport à lui-même, nous l’appelons avec H. Behnke d’être
holomorphe-convexe (regulär-konvex). Les problèmes sont
alors: Problèmes de Cousin. Trouver une fonction méromor-
phe (ou holomorphe) admettant les pôles (ou les zéros sat-
isfaisant à une certaine condition) donnés dans un domaine
holomorphe-convexe. Problème de développement. Soit D0

un domaine (connexe ou non) holomorphe-convexe par rap-
port à D; trouver, pour toute fonction holomorphe f une
série de fonctions holomorphes dans D, convergente uni-
formément vers f dans tout domaine connexe ou non ∆0 tel
que ∆0 bD0. Problème des convexités. Tout domaine pseudo-
convexe est-il holomorphe-convexe? Pour les domaines uni-
valents, on peut remplacer � holomorphe-convexe� par �
domaine d’holomorphie�, grâce au théorème de H. Cartan
et P. Thullen.
5 Les Mémoires précédents sont: I–Domaines convexes
par rapport aux fonctions rationnelles, 1936; II–Domaines
d’holomorphie, 1937; III–Deuxième problème de Cousin,
1939 (Journal of Science of the Hiroshima University);
IV–Domaines d’holomorphie et domaines rationnellement
convexes, 1941; V–L’intégrale de Cauchy, 1941 (Japanese
Journal of Mathematics); VI–Domaines pseudoconvexes,
1942 (Tohoku Mathematical Journal); VII–Sur quelques no-
tions arithmétiques, 1950 (Bulletin de la Société Mathéma-
tique de France)
6 Précisément dit, pour le deuxième problème de Cousin,
nous avons montrer une condition nécessaire et suffisante
pour les zéros; et pour le problème des convexités, nous
l’avons expliqué pour les deux variables complexes, pour
diminuer la répétition ultérieure inévitable.

constaté quoique sans l’exposer, que ces résultats
restent subsister au moins jusqu’aux domaines fi-
nis sans point critiques.7

Il s’agit donc: ou bien d’introduire l’infini conven-
able, ou bien de permettre des points critiques; or,
on retrouvera que l’on ne sais presque rien sur les
domaines intérieurement ramifiés; .....

(2) Introduction 2 of [22] Oka IX (1953, p. 98) be-

gins with:

Dans le présent Mémoire, nous traiterons les prob-
lèmes indiqués plus haut, ainsi que les problèmes
arithmétiques introduits au Mémoire VII, pour les
domaines pseudoconvexes finis sans point critique
intérieur; dont la partie essentielle n’est pas dif-
férente de ce que nous avons exposé en japonais
en 1943.8

On verra dans le Mémoire suivant que quand on ad-
met les points critiques intérieurs, on rencontre à
un problème qui m’apparaît extrêmement difficile
(voir No. 23). C’est pour préparer des méthodes et
pour éclaircir la figure de la difficulté, que nous
avons décidé à publier le présent Mémoire, séparé-
ment.9

For convenience we recall their English transla-

tions by R. Narasimhan from [25]:

(1) The principal problems we have dealt with since

Memoir I are the following: Cousin problems, the

problem of expansions and the problem of (dif-

ferent types of) convexity10 In Memoirs I–VI11 we

7 L’auteur l’a écrit aux détails en japonais à Prof. T. Takagi
en 1943.
8 Voir la Note à l’Introduction de Mémoire VIII. Dans ce
manuscrit-ci on trouve déjà les problèmes (C1) (C2) (ex-
pricitement) et (E) (implicitement).
9 cité plus haut.
10 These problems are based on H. Behnke and P. Thullen,
Theorie der Funktionen mehrerer komplexer Veränder-
lichen, 1934. Let us explain them in precise form. Let D,D0

be two domains over the space of n complex variables con-
nected or not such that D0 j D (i.e. such that D0 is a “Teil-
bereich” of D). We shall say that D0 is holomorph-convex
with respect to D if D0 j H, H being the “Regularitätshülle”
of D0, and if, in addition, for every domain ∆0, connected or
not, such that ∆0 bD0 (that is, ∆0 ⊂D0 and ∆0 �D0), we can
find a domain ∆, connected or not such that ∆0 ⊂ ∆ bD0 and
such that, to every point P0 of D0 −∆, there corresponds a
function f holomorphic on D with f (P0)> max | f (∆0)|. In par-
ticular, if Dα has this property with respect to itself, we call
it, with H. Behnke, holomorph-convex (regulärkonvex). The
problems are then the following: Cousin problems. Find a
meromorphic (or holomorphic) function having given poles
(or given zeros satisfying a certain additional condition).
Problem of expansions. Let D0 be a domain (connected or
not) holomorph-convex with respect to D; for any function f
holomorphic on D0, find a series of holomorphic functions
on D which converges uniformly to f on any domain ∆0, con-
nected or not, such that ∆0 bD0. Problem of convexity. Is ev-
ery pseudoconvex domain holomorph-convex? For univalent
domains, one can replace “holomorph-convex” by “domain
of holomorphy” because of the theorem of H. Cartan and P.
Thullen.
11 The preceding Memoirs are: I. Rationally convex domains,
1936; II. Domains of holomorphy, 1937; III. The second
Cousin problem, 1939 (Journal of Science of Hiroshima Uni-
versity); lV. Domains of holomorphy and rationally convex
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have seen, to put it in one word, that these prob-

lems can be solved affirmatively for univalent do-

mains without points at infinity.12 Furthermore,

the author has verified, albeit without publish-

ing this, that these results remain valid at least

as far as domains without points at infinity and

without interior ramification points.13

We must therefore either introduce suitable

points at infinity or allow points of ramification.

Now, one will find that almost nothing is known

about domains with interior ramification. .....

(2) In the present memoir, we shall deal with the

problems indicated above, as well as the arith-

metical problems introduced in Memoir VII, for

pseudoconvex domains without interior ramifi-

cation and without points at infinity; the essen-

tial part of this memoir is not very different from

what we have expounded in Japanese in 1943.14

We shall see in thememoir following this one that

when one permits interior points of ramification,

one meets a problem which seems to me to be

extremely difficult (see also No. 23 below). It is to

prepare themethods and to illuminate the nature

of this difficulty that we have decided to publish

the present memoir separately.15

According to T. Nishino ([26] Vol. 1, Afterword),

the original manuscripts of this series sent to T. Tak-

agi in 1943 were lost, but fortunately, the complete

set of their draft-manuscripts had been kept in Oka’s

home library and was found posthumously.

It is really surprising for me to learn that the way

of arguments in Oka IX (published, 1953) is very sim-

ilar to the one in the series of papers 1943, ten years

prior, and that the part of the arguments to prove

so-calledOka’s Heftungslemma,16 an essential step in

the proof of the Levi (Hartogs’ Inverse) Problem, is al-

most a copy of the corresponding part in unpublished

Paper XI 1943.

For the English translation of Paper XI, I describe

in below some supplements and recall briefly the

domains, 1941; V. The Cauchy integral, 1941 (Japanese Jour-
nal of Mathematics); VI. Pseudoconvex domains, 1942 (To-
hôku Mathematical Journal); VII. On some arithmetical con-
cepts, 1950 (Bulletin de la Société Mathematique de France)
12 More precisely, we obtained a necessary and sufficient
condition for the second Cousin problem; and the problem
of convexity was only explained for two complex variables in
order to reduce the ultimate repetition which is inevitable.
13 The author has written this out in detail in Japanese and
sent it to Prof. T. Takagi in 1943.
14 See the note in the introduction to Memoir VIII. In that
manuscript, one finds already problems (C1), (C2) (explicitly),
and problem (E) (implicitly).
15 Cite the above.
16 Roughly speaking, the union of two adjacent holomorphi-
cally convex domains with pseudoconvex boundary is holo-
morphically convex (cf., e.g., [14], Chap. 9, [1])

main results that had been obtained in VII–X and used

in XI.

H. Cartan once has written ([25], p. XII):

.............
Mais il faut avouer que les aspects techniques de

ses démonstrations et le mode de présentation de
ses résultats rendent difficile la tâche du lecteur,
et que ce n’est qu’au prix d’un réel effort que l’on
parvient à saisir la portée de ses résultats, qui est
considérable. C’est pourquoi il est peut-être encore
utile aujourd’hui, en hommage au grand créateur
que fut Kiyoshi Oka, de présenter l’ensemble de
son œuvre.
.................

In English (by Noguchi),

.............
But we must admit that the technical aspects of

his proofs and the mode of presentation of his re-
sults make it difficult to read, and that it is possible
only at the cost of a real effort to grasp the scope
of its results, which is considerable. This is why it
is perhaps still useful today, for the homage of the
great creator that was Kiyoshi Oka, to present the
collection of his work.
.................

The present series is no exception. The aim of the

series is two folded:

(i) With an intention to deal with the problem for

ramified Riemann domains, the conditions and

the statements of lemmata, propositions etc. are

made as general as possible.

(ii) In the same time, they must be satisfied and

proved completely for unramified Riemann do-

mains as a special case.

This approach which contains in a sense a self-

confliction between “general” versus “special” seems

to increase an involvedness of the presentations of

the papers, but forms a motivation to invent “Coher-

ence” or “Idéaux de domaines indéterminés” in terms

of Oka (see §5), which is referred, e.g., as:

Of greatest importance in Complex Analysis
is the concept of a coherent analytic sheaf
(Grauert–Remmert [8]).

The last Paper XI contains the most important fi-

nal conclusion proving that every pseudoconvex un-

ramified Riemann domain over Cn is Stein (in terms of

the present days). In a year before, 1942, Oka pub-

lished Oka VI ([22]), proving the result in the case

of univalent domains of C2. In Oka VI ([22]), he used

Weil’s integral formula, which in n-dimensional case

takes a rather involved form already in univalent do-

mains. To deal with possibly infinitely sheeted un-

ramified Riemann domains with his intension even

to deal with ramified case, he wanted to avoid the

use of Weil’s integral formula, but to use simpler

Cauchy’s integral formula combined with “Jôku-Ikô ”

(lifting principle) which was prepared as The First

Fundamental Lemma at the end of Paper VIII of the
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present series. The method of Jôku-Ikô was invented

in his first two papers Oka [22] I and II.

For the proof of “Heftungslemma”, he uses an in-

tegral equation of the Fredholm type similarly to Oka

VI (published, [22]); in Oka IX (published, [22]) the in-

tegral equation is implicit.

Reading the series of unpublished papers VII–XI

1943, we observe not only the solution of the Levi

(Hartogs’ Inverse) Problem for unramified Riemann

domains over Cn (n ≥ 2), but also the dawn of the

then unknown notion of “Idéaux de domaines indéter-

minés” or “Coherence”.

Remark 2.1. It is a nature of Oka’s wording such as

Idéaux de domaines indéterminés to represent “a way

of thinking” rather than the formed object, similarly

to the case of “Jôku-Ikô” (see Footnote 1 at p. 45).

3. The XI-th Paper

3.1 Some Practical Notes

This series of the present Papers VII–XI in 1943

were written as a continuation of the published pa-

pers Oka I–VI ([22]). In Part II we shall present a

Japanese translation of the last Paper XI, in which at

some important places, footnotes are put to remind

the numbering as “Note by the translator”. As a conse-

quence, the numbering of the footnotes are different

to the original.

As Oka writes “Report VI”, then it means the pub-

lished paper with the same number in [22]. On the

other hand, Report VII to X (e.g., Report IX) is the arti-

cle of the present series (not the published Oka IX in

[22]).

As Oka writes “a finite domain”, it means a multi-

sheeted domain spread over Cn, not containing an in-

finite point, say, in a compactification such as com-

plex projective n-space.

3.2 The XI-th Paper

This is the last one of the series from VII-th, in

which Oka settled affirmatively the Levi (Hartogs’ In-

verse) Problem for general dimensional unramified

Riemann domains over Cn, ten years before Oka [22]

IX was published in 1953: There was then no notion

of “Coherence” or “Idéaux de domaines indéterminés”

termed by Oka. It is rather surprising to know that

the Problem had been solved just after Oka VI 1942

(in the case of 2-dimensional univalent domains) by

a different method, if one observes the state of ad-

vances at that time as discussed in §1.

Because of the importance, I chose the last one

for the translation into English.

In this paper K. Oka begins with proving the

Cousin I/II Problems as well as the Problem of ex-

pansions (Approximation Problem) for unramified Rie-

mann domains over Cn (n ≥ 2) by a different method

than those in Oka [22] I–III, using a new Jôku-Ikô pre-

pared in Papers VII–VIII of the present series.

Let us quote the most important main result from

Paper XI §10 (Part II):

Theorem I. A finite pseudoconvex domain with no
interior ramification point is a domain of holomor-
phy.

Remark 3.1. (i) In the published Oka I–VI the do-

mains are assumed to be univalent. Oka first

dealt with unramified multivalent domains over

Cn systematically in the present series of VII–XI.

(ii) In the proof of Oka’s Theorem I above he actu-

ally proves that such a pseudoconvex domain is

holomorphically convex and satisfies the separa-

tion property by holomorphic functions (see the

footnote of Theorem I, XI §10). It is noted that un-

ramified holomorphically convex domains (mul-

tivalent in general) are domains of holomorphy;

the converse holds, provided that the domains

are finitely sheeted (due to Cartan–Thullen [3]).

Cartan–Thullen [3] claimed the converse in gen-

eral, but there was an oversight in the case of

infinitely many sheeted domains. The oversight

was fulfilled by the proof of Oka’s Theorem I

above (cf. XI §11) as a series of implications: “do-

main of holomorphy”⇒ “pseudoconvex domain”

⇒ “holomorphically convex domain”. Thus the

three classes of unramified domains over Cn are

equivalent.

4. The VII–X-th Papers

To begin with, it will be interesting and worthy

to recognize Oka’s own observation of the state of

researches at the time to start writing the present se-

ries of papers 1943 by recalling the first paragraph of

the VII-th:

The problems discussed at the beginning of the
first report17 were solved more or less generally
in the series of reports up to VI.18 But, since these
were a sort of depth sounding in a sense, we
avoided domains such as not finite or non univa-
lent, and considered some of them only in the case

17 (Note by the present author) This is Oka [22] I 1936; the
same in the sequel.
18 (The original footnote) I began the present research with
the back ground of the following monograph.
H. Behnke–P. Thullen: Theorie der Funktionen mehrerer
komplexer Veränderlichen, 1934 (Egebnisse der Mathematik
und ihrer Grenzgebiete).
Reports prior to this report: I, 1936; II, 1937; III, 1939, (Jour-
nal of Science of the Hiroshima University). IV, 1940; V, 1940,
(Japanese Journal of Mathematics). VI, 1942, (The Tôhoku
Mathematical Journal).
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of two variables. While we may think of really vari-
ous kinds of problems on analytic functions of sev-
eral variables, it is, for a moment, our main aim of
the research to get rid of these restrictions one by
one. The present paper is devoted to the prepara-
tion for it.

In fact, Oka begun in the present series of pa-

pers to deal with general multi-valent domains over

Cn, systematically. Here we would like to summerize

briefly what were proved in the VII–X-th papers be-

fore the XI-th paper.

The four papers were roughly classified into two

groups, VII+VIII and IX+X.

4.1 VII+VIII

These two papers were devoted to the study of

ideal theoretic properties of holomorphic functions.

The study of this part led to the works of “Idéaux de

domaines indéterminés” or “Coherence” (Oka VII, VIII,

published [22]). Therefore, in Oka IX (published, [22])

the contents of this part were replaced by the more

general results of Oka VII, VIII (published, [22]).

In VII he considered a domain D in the space

of n complex variables x1, . . . ,xn. Let O(D) denote the

ring of all holomorphic functions in D. Let (F) =

(F1,F2, . . . ,Fp) be a system of holomorphic functions

in D. For f (x),ϕ(x) ∈O(D) we write

f ≡ ϕ (mod. F1,F2, . . . ,Fp),

and say that f and ϕ are congruent with respect to

the function system (F) in D, if there are functions

α j ∈O(D) (1 ≤ j ≤ p) satisfying

f −ϕ = α1F1 +α2F2 + · · ·+αpFp.

Let P be a point of D. We define the notion of

being congruent at P if the above property hold in

a neighborhood of P. Then it is different to say that

they are congruent in D and they are congruent at

each point ofD. To emphasize this difference we also

say the former case to be congruent globally in D.

If D̄ is a closed domain, we denote by O(D̄) the

set of all of holomorphic functions in neighborhoods

of O(D̄).

Then he formulate two problems:

Problem I. Let D̄ be a bounded closed domain in (x)
space. For a given holomorphic function system (F) =

(F1,F2, . . . ,Fp) with Fj ∈ O(D̄) and a given holomorphic

function Φ(x) ∈O(D̄) such that Φ(x)≡ 0 (mod. F) at ev-

ery point P ∈ D̄, choose A j ∈O(D̄) so that

Φ(x) = A1(x)F1(x)+A2(x)F2(x)+ · · ·+Ap(x)Fp(x), x ∈ D̄.

Problem II. Let (F) = (F1,F2, . . . ,Fp) be a system of holo-

morphic functions defined in a neighborhood of D̄.

Suppose that for each point P ∈ D̄ there are associ-

ated a polydisk (γ) with center P and a holomorphic

function ϕ(x) in (γ) satisfying that for two such pairs

((γ j),ϕ j), j = 1,2, with (δ ) = (γ1)∩ (γ2) 6= /0,

ϕ1(x)≡ ϕ2(x) (mod. F1,F2, . . . ,Fp)

at every point of (δ ) (congruent condition). Then, find

a Φ(x) ∈O(D̄) such that

Φ(x)≡ ϕ(x) (mod. F)

at every point P ∈ D̄.

Remark 4.1. Problem I is a sort of Syzygy type prob-

lem, and Problem II is a Cousin-I Problem for the ideal

generated by (F) = (F1,F2, . . . ,Fp).

In §2 of Paper VII he defines the following prop-

erty named

(A): Let (F1,F2, . . . ,Fp) be a system of holomorphic

functions in a domain D of (x)-space such that F1 6≡ 0.
Let q∈ {2,3, . . . , p} and let P∈D be an arbitrary point. If

holomorphic functions α j(x) ( j = 1,2, . . . ,q) in a neigh-

borhood U(⊂D) of P satisfy

α1(x)F1(x)+α2(x)F2(x)+ · · ·+αq(x)Fq(x) = 0, x ∈U,

then

αq(x)≡ 0 (mod. F1,F2, . . . ,Fq−1) at P.

Most importantly, he shows the following for

property (A):

Lemma 1. Let X be a domain in (x)-space, and let

f j(x) ( j = 1,2, . . . ,ν) be holomorphic functions in X .
Then the system of holomorphic functions Fj(x,y) =
y j − f j(x) ( j = 1,2, . . . ,ν) satisfies property (A).

This is intended to apply for an Oka map

ψ(x)= (x, f1(x), f2(x), . . . , fν(x))∈Ω×∆(1)ν ⊂∆(R)n×∆(1)ν ,

where f j(x) ∈ O(X), Ω (b X) is an analytic polyhedron

defined by

x ∈ X , | f j(x)|< 1, j = 1,2, . . . ,ν ,

∆(R) is the disk of radius R (> 0) with center at the

origin in C and R is chosen so that Ω ⊂ ∆(R)n. This is

the essential part of Oka’s Jôku-Ikô:

Remark (Jôku-Ikô). T. Nishino [14] uses “lifting prin-

ciple” for “Jôku-Ikô”. It is a methodological principle

termed by Oka such that

(i) one embedds a domain into a higher dimensional

domain of simple shape (i.e., a polydisk) through

the Oka map above;
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(ii) one extends a difficult problem on the original

domain to the one on the higher dimensional do-

main of simple shape;

(iii) by making use of the simpleness of the higher

dimensional domain, one obtains a solution of

the problem;

(iv) then, one restricts the solution on the embedded

original domain to get a solution of the original

problem.

Things do not go so simply, but this is the principal

method of K. Oka all through his works.

Oka then affirmatively solves Problems I and II

under this property (A) for (F).

Theorem 1. Let D̄ be a bounded closed cylinder do-

main and let (F) = (F1,F2, . . . , ,Fp) be a system of holo-

morphic functions in a neighborhood of D̄ which sat-

isfies property (A). Then, Problem I for (F) is solvable.

For a cylinder domain, see Footnote 3, p. 46.

Theorem 2. Let D̄ and (F) be the same as in Theorem

1 above. Then, Problem II for (F) is solvable.

In §§8–10 of Paper VII Oka deals with Problems I

and II with estimates.

Finally, at the end of Paper VIII Oka obtained

Fundamental Lemma I. Let X be a univalent cylinder

domain in (x)-space and Σ ⊂ X be an analytic sub-

set. Let V be a univalent open subset of X , contain-
ing Σ. Suppose that there are holomorphic functions

f1(x), f2(x), . . . , fp(x) ∈O(V ) such that Σ = {x ∈V : f j(x) =
0,1≤ j ≤ p}. Let X0 bX be a univalent bounded cylinder

domain, and set Σ0 = Σ∩X0.

Then, for every ϕ(x) ∈ O(V ) with |ϕ(x)| < M in V ,
there is a holomorphic function Φ(x) ∈O(X0) such that

at every point of Σ0

Φ(x)≡ ϕ(x) (mod. f1, f2, . . . , fp),

and

|Φ(x)|< KM, x ∈ X0,

where K is a positive constant independent from ϕ(x).

He finishes Paper VIII with writing

This theorem should be generalized soon later, but
so far as we are concerned with finite domains
without ramification points, this is sufficient for
our study.

Remark 4.2. By this comment we see that he had in

mind a project to deal with Levi (Hartogs’ Inverse)

Problem generalized to domains with ramifications.

4.2 IX+X

In these two papers Oka defines and studies pseu-

doconvex functions, equivalently plurisubharmonic

functions as well strongly pseudoconvex (plurisub-

harmonic) functions, and investigates the boundary

problem of pseudoconvex domains. The contents of

these IX and X correspond to and appear in Oka IX

(published, [22]), Chap. 2, §§B and C.

In these papers he deals with domains, finite

and unramified over (x)-space of n complex variables

x1,x2, . . . ,xn. He begins with the notion of unramified

domains over (x)-space.
Let D be a domain over (x)-space and let E ⊂D be

a subset. If the infimum of the Euclidean distances

from P ∈ E to the (ideal) boundary of D is not 0, one
says that E is bounded with respect to D.

He defines a pseudoconvex domainmodeled after

F. Hartogs as follows:

Definition. A domain D over (x)-space is said to sat-

isfy Continuity Theorem if the following condition is

satisfied: Let r = (r j),ρ = (ρ j) be n-tuples of positive

numbers with ρ j < r j, and consider a polydisk P∆(a;r),
|x j −a j|< r j with center a = (a j) and a Hartogs domain:

ΩH(a;r,ρ) :

|x j −a j|< ρ j, |xn −an|< rn ( j = 1,2, . . . ,n−1),
or |x j −a j|< r j, ρn < |xn −an|< rn ( j = 1,2, . . . ,n−1).

If φ : ΩH(a;r,ρ) → D is a biholomorphic map, then φ

necessarily extends biholomorphically to φ̃ : P∆(a;r)→
D.

Definition. A domain D over (x)-space is said to be

pseudoconvex if the following two conditions are sat-

isfied:

(i) For each boundary point M ofD there is a positive

number ρ0 with polydisk P∆ of radius ρ0 and cen-

ter M of the underlying point of M such that the

maximal subdomain D0 of D with the boundary

point M whose underlying points are contained

in P∆ satisfies Continuity Theorem. (D satisfies

locally Continuity Theorem.)

(ii) Let P∆1 ⊂ P∆ be a polydisk with the same center,19

and let D1 be the maximal subdomain with the

boundary point M whose underlying points are

contained in P∆1. Let (T ) be a one-to-one quasi-

conformal20 transform from P∆1 into (x′)-space
with the image denoted by ∆′

1, and D′
1 = T (D1).

Then, D′
1 satisfies always Continuity Theorem.

(The property (i) is not lost by quasi-conformal

transforms.)

Remark 4.3. From the definition above one sees why

he called the problem as Hartogs’ Inverse Problem.

Then he defines a pseudoconvex function or a

plurisubharmonic function valued in [−∞,∞) so that it

19 The radius of each variable may different.
20 It is unclear very much what “quasi-conformal” amounts
to, but it is holomorphic.
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is upper-semicontinuous and its restriction to every

complex line segment is subharmonic.

After Hartogs’ holomorphic radius he defines

Hartogs’ radii R j(P) ( j = 1,2, . . . ,n) at P ∈D by

R j(P) = sup{r j : P∆(P;(r1, . . . ,rn))⊂D, r j > 0, 1 ≤ j ≤ n},

where P∆(P;(r1, . . . ,rn)) := {(z j)∈ Cn : |z j − p j|< r j,1 ≤ j ≤
n} with P = (p j). He proves:

Theorem 1. If D is pseudoconvex, then − logR j(P) is

pseudoconvex in D. (Here the logarithm stands for the

real branch.)

Similarly, let d(P) (P ∈ D) denote the supremum

of radii r > 0 such that a ball with center P and radius

r is contained in D, and d(P) is called the Euclidean

boundary distance. He then proves:

Theorem 3. If D is pseudoconvex, then − logd(P) is a
pseudoconvex function in D.

Then he consider a pseudoconvex function ϕ(x)
of C2-class in general, confirming the semi-positivity

of the Hermitian form

W (ϕ;(v j),(wk))(P) = ∑
j,k

∂ 2ϕ

∂x j∂ x̄k
(P)v jw̄k, (v j),(w j) ∈ Cn.

This form W (φ ; ·, ·), which was written so in the paper

and is nowadays called the Levi form, is due to Oka

[22] VI. Then he proves in IX:

Theorem 5. If W (ϕ;(v j),(wk))(P) is strictly positive def-

inite at P = P0, then one can find a holomorphic poly-

nomial function f (x1,x2, . . . ,xn) of degree 2 such that

f (P0) = 0 and in a neighborhood of P0, the analytic hy-

persurface { f = 0} lies in the part {ϕ > 0} except for

P0.

Remark 4.4. In one variable, the situation is much

simpler: If D is a domain in C and P0 ∈ ∂D, then f (z) =
z−P0. It is the purpose to construct a meromorphic

function on D such that its poles are only 1
f (z) near P0.

When n ≥ 2, Oka formulated the positivity of W (ϕ; ·, ·)
to have f (z). Later, he solves the Cousin I Problem on

D̄with poles only 1
f (z) near P0, and then concludes that

D is holomorphically convex.

Oka took a smoothing of a pseudoconvex func-

tion ϕ(x) by the volume integration average, and re-

peat it to have aC2-differentiable pseudoconvex func-

tion; nowadays it is more common to take a convolu-

tion integration, but the role is the same.

Finally at the end of Paper X, he obtained

Fundamental Lemma II. Let D be a pseudoconvex do-

main over (x)-space without ramification point. Then

there is a continuous pseudoconvex function ϕ0(P) in
D satisfying the following two conditions:

(i) If Dc := {P ∈ D : ϕ0(P) < c} for every real number

c, then Dc bD.

(ii) There are exceptional points of D with no accu-

mulation point inside D and for any other point

P0 ∈D than them, one can find an analytic hyper-

surface Σ passing P0 in a neighborhood of P0 such

that ϕ0(P)> ϕ0(P0) for P ∈ Σ\{P0}.

5. After Paper XI, and Problem Left

The series of Papers VII–XI in 1943 was not trans-

lated into French for publication, but continued to Re-

port XII dated 26 May 1944 ([26]), titled

• On Analytic Functions of Several Variables XII –

Representation of analytic sets, pp. 22.

In this manuscript, he first used Weierstrass’

Preparation Theorem to study local properties of an-

alytic sets. As known well, Weierstrass’ Preparation

Theorem plays a crucial role in the proofs of Oka’s

Coherence Theorems. In this sense, the turn of years

1943/1944 was indeed the “watershed” in the study

of analytic function theory of several variables.

The research was continuedmore to the following

and further (cf. [26]):

• XIII On the condition of Weierstrass’ Preparation

Theorem ([26]).

The precise date of this manuscript is unclear,

but probably around 16 November 1945 due to T.

Nishino’s comment ([26] Vol. 2, Afterword).

Remark 5.1. These manuscripts are not completed

ones, while the formers (VII–XI) are. But it is still in-

teresting to read the introductions of the above two

manuscripts.

(i) In XII he begins with “We wish to extend more the
results obtained in the former reports”.

(ii) In XIII, he writes at the beginning: “To consider

the series of problems mentioned at the begin-

ning of this research, we have imposed some con-

ditions to the domains. From Reports I to VI21

the domains were assumed to be finite and univa-

lent, and from VII to XI22 we excluded the infinity

points and interior ramification points from the

domains. As we are going to take out these condi-

tions, it would be better to advance step by step.

Putting the problem of the infinity points aside

for a moment, we firstly would like to investigate

what will happen if the ramification points are al-

lowed to the interior of the domains.”

It should be noticed that this paragraph was

rephrased in the published [22] VIII, 1951.

21 (Note by the present author.) These numbers correspond
to the published papers [22].
22 (Note by the present author.) These are the unpublished
papers 1943.
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Remark 5.2. The problem of the infinity points was

affirmatively solved by R. Fujita [7] and A. Takeuchi

[27] for unramified domains over complex projective

spaces with at least one ideal boundary point; there

are more extensions in the unramified case, but we

stop to go further in this direction, which is away

from the problem of the ramified case. A counter-

example of a ramified domain over complex projec-

tive space was given by H. Grauert [13]. Therefore the

problem of ramification points remained open then

for domains over Cn: Later, in 1978 J.E. Fornæss [6]

gave a counter-example of a two-sheeted ramified do-

main over C2.

It is unusual not to publish such an important re-

sult obtained in the series of Papers VII–XI in 1943,

which were hand-written but rather complete, ready

for publication. Oka probably then noticed a shadow

of an unknown concept, “Idéaux de domaines indéter-

minés” or “Coherence”. With a project in mind to set-

tle the Levi (Hartogs’ Inverse) Problem for domains al-

lowing singularities and ramifications, he would have

been interested more in inventing the new necessary

notion for his project than the publication of the im-

portant result which was enough marvelous by itself

(cf. §2).

As briefly mentioned at the end of §2, reading the

series of unpublished Papers VII–XI 1943 and above

XII 1944, we can see how and why Oka continued the

study of the shadow of a new notion,“Coherence” or

“Idéaux de domaines indéterminés” with leaving the

papers unpublished, and what he really wanted to do;

the problem of ramified Riemann domains left by Oka

has not been settled, although the ramification case

was countered by example (cf. Remark 5.2). In this

sense, I think, the value of the series of the unpub-

lished papers in 1943 has not changed. (Here, we may

recall H. Cartan’s words quoted in p. 48.)

K. Oka wrote his intension implicitly in a para-

graph of Oka [24] ([25]) VII, Introduction, which was

written and published in an interval of six or eight

years after Oka [22] VI 1942, and explicitly in Oka [22]

VIII, Introduction, and IX, Introduction 2 and §23 (cf.

also Remark 5.1). We recall the first:

Or, nous, devant le beau système de problèmes
à F. Hartogs et aux successeurs, voulons léguer
des nouveaux problèmes à ceux qui nous suiv-
ront; or, comme le champ de fonctions analytiques
de plusieurs variables s’étend heureusement aux
divers branches de mathématiques, nous serons
permis de rêver divers types de nouveaux prob-
lèmes y préparant.

In English (from [25] VII, translation by R. Nara-

simhan):

Having found ourselves face to face with the beau-
tiful problems introduced by F. Hartogs and his
successors, we should like, in turn, to bequeath
new problems to those who will follow us. The field

of analytic functions of several variables happily
extends into divers branches of mathematics, and
we might be permitted to dream of the many types
of new problems in store for us.

Remark 5.3. The above paragraph was deleted in the

published Oka [22] VII without notification to K. Oka

in the editorial process. K. Oka was very unsatisfied

with this change of the original text, so that he wrote

[26] (cf. [15] Chap. 9 “On Coherence”).

The series of published papers Oka [22], I–IX will

be classified into two groups:

(A) I–VI+IX,

(B) VII–VIII.

In the first group he solved the Three Big Problems

of Behnke–Thullen (§1). It is now known that for the

solutions of those problems (even for unramified Rie-

mann domains) one needs only a rather simple Weak

Coherence ([18], [19]), not such general Coherence

Theorems proved by Oka.

The second group (B) of VII–VIII was written be-

yond the Three Big Problems and was explored to

a foundational theory of modern Mathematics, not

only of complex analysis by H. Cartan, J.-P. Serre, H.

Grauert, ....

As mentioned above, the Levi (Hartogs’ Inverse)

Problem for ramified domains over Cn was countered

by example due to Fornæss [6] in 1978; in the same

year K. Oka passed away. But it is unknown the cause

of the failure or what is the sufficient condition for

the validity of the problem in ramified case; a certain

sufficient condition was lately obtained by [17].

Therefore there still remains the following inter-

esting problem:

Oka’s Problem (Dream). What are the sufficient

and/or necessary conditions with which a ramified

pseudoconvex domain over Cn is Stein?

Remark 5.4. The English word “Dream” is taken from

the above Narasimhan’s translation of the original

‘rêver’. The problem of the pseudoconvexity wasmen-

tioned as the main problem of his research from the

beginning, Oka I ([22], published, 1936). After set-

tling the problem of pseudoconvexity for unramified

domains in VII–XI (unpublished, 1943) as described

above, the problem with interior ramification points

had been mentioned as the principal motivation in a

number of places such as, e.g., in XIII (cited above,

unpublished, around 1945, cf. Remark 5.1 (ii)); in VII

([22], published, 194823), the 3rd paragraph of the In-

troduction; in VIII ([22], published, 1951), Introduc-

23 It is common to use the year 1948 to refer Oka VII; the
actual publication year is 1950 (cf. [15] Chap. 9 “On Coher-
ence”).
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tion24 (cf. §2 too); in IX ([22], published, 1953), In-

troduction 2 and §23 (as already mentioned in §2

above); and later in his lecture (§5) at Yukawa In-

stitute for Theoretical Physics, Kyoto University in

March 1964 ([26]). In particular, it is noted that the

above two (published) papers VII and VIII are devoted

to establish his Three Coherence Theorems (OCn , ideal

sheaves of analytic subsets,25 and the normalizations

of the structure sheaves of complex spaces); cf. [15]

Chap. 9 “On Coherence” and [20] for more details.

Throughout his Mathematical research life, K.

Oka seemed to intend to prove Hartogs’s Inverse

Problem (Levi’s Problem) unconditionally for ramified

domains over Cn. H. Grauert mentioned at his talk

at Conference OKA 100, Kyoto/Nara 200126 that the

Levi problem is still open for domains ramified over

Cn.

Part II

The English translation of K. Oka’s unpublished

Paper XI 1943 translated by J. Noguchi.

On Analytic Functions of Several
Variables

XI – Pseudoconvex Domains and Finite
Domains of Holomorphy, Some Theo-
rems on Finite Domains of Holomor-
phy27

Kiyoshi Oka

We extend the results of the first research project

to unramified finite domains28 by making use of the

First and the Second Fundamental Lemmata. Here we

24 The first two paragraphs of the Introduction are the
rephrasing of those in XIII (cited above, unpublished) quoted
in Remark 5.1 (ii).
25 H. Cartan gave another proof for the second (cf. [15] Chap.
9 ‘On Coherence’).
26 Complex Analysis in Several Variables—Memorial Confer-
ence of Kiyoshi Oka’s Centennial Birthday, Kyoto/Nara 2001,
Ed. K. Miyajima et al., Advanced Studies in Pure Math. Vol.
42, Math. Soc. Jpn., Tokyo 2004. H. Grauert gave a talk titled
‘A simple way to perform the Levi-Oka-Theory’, but unfortu-
nately, his manuscript is not included in the proceedings.
27 This is an English translation of the original Japanese
text in OKA Kiyoshi Collection, Nara Women’s University Li-
brary, Unpublished manuscript, http://www.lib.nara-wu.ac.
jp/oka/fram/mi.html. The handwritten original text is found
in the same Collection, http://www.lib.nara-wu.ac.jp/oka/
moku/html/174/001.html. © by courtesy of Mr. Hiroya Oka
and OKA Kiyoshi Collection at Nara Women’s University Aca-
demic Information Center.
28 Added in translation: Oka used the term “finite domain”
in the sense that it spreads over Cn, not over a space with
infinity such as Pn(C) or (P1(C))n.

restrict ourselves to deal with the following prob-

lems: the Problem of pseudoconvex domains being

domains of holomorphy, Cousin I Problem, and Ex-

pansions of functions.29

As for Cousin II Problem and the integral repre-

sentation, we think that they will be similarly dealt

with.30

In the present paper, “domains” are assumed to

be finite and to carry no ramification point in its in-

terior: This assumption will be kept all through the

paper, and will not be mentioned henceforth in gen-

eral.

I – Theorems in Finitely Sheeted
Domains of Holomorphy

§1

The present chapter describes Cousin I Problem

and Expansions of functions on finitely sheeted do-

mains of holomorphy for the preparation of what

will follow in Chapter II and henceforth. The meth-

ods are due to the First Fundamental Lemma and the

H. Cartan–P. Thullen Theorem, and so they are essen-

tially the same as those in Report I.31

We first modify (the fundamental) Lemma I to a

form suitable for our purpose. We recall it (Report

VIII):

Lemma I. Let (X) be a univalent cylinder domain

in (x)-space, and let Σ be an analytic subset of

(X). Let V be a univalent open subset of (X) with

V ⊃ Σ. Assume that there are holomorphic functions

f1(x), f2(x), . . . , fp(x) in V with

Σ = { f1 = · · ·= fp = 0}.

29 Cf. Theorem I in §10 and Theorems in §11 for the results.
30 Since these are not in an inseparable relation as in the
above three theorems, and the present extension is at an in-
termediate stage, we will confirm them in the next occasion.
31 For this aim the First Fundamental Lemma is not neces-
sarily needed, and Theorem 1 in Report VIII suffices (as for
the methods, see §1 of the previous Report). This method,
however, will not be effective if once a ramification point is
allowed. Here it is noticed that one of the purposes of this
first extension (from Reports VII–XI) is to organize the stud-
ies of this direction in future. Because of this reason we here
choose the method of the present paper. And, it is was often
mentioned also by H. Behnke and K. Stein that the results of
the present chapter can be obtained by the method of The-
orem 1 of Report VIII (cf. the papers below).
H. Behnke–K. Stein: Approximation analytischer Funktionen
in vorgegebenen Bereichen des Raumes von n komplexen
Veränderlichen, 1939 (Nachrichten von der Gesellschaft der
Wissenchaften zu Göttingen).
H. Behnke–K. Stein: Die Konvexität in der Funktionentheorie
mehrerer komplexer Veränderlichen, 1940 (Mitteilungen der
Mathematischen Gesellschaft in Hamburg).
H. Behnke–K. Stein: Die Sätze von Weierstrass und Mittag-
Leffler auf Riemannschen Flächen, 1940 (Vierteljahrsschaft
der Naturforschenden Gesellschaft in Zürich).
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Figure 1. The first page of the draft-manuscript XI, Ref. No. 177. By the courtesy of OKA Kiyoshi Collection. Nara

Women’s University Library, Copyright (c) 1999; All rights reserved.
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Let (X0) b (X) be a relatively compact cylinder subdo-

main and set Σ0 = Σ∩ (X0).

Then, for a bounded holomorphic function ϕ(x) in
V such that |ϕ(x)|<M inV , there is a holomorphic func-

tion Φ(x) in (X0) such that at every point of Σ0

Φ(x)≡ ϕ(x) (mod. f1, f2, . . . , fp)

and

|Φ(x)|< KM

on (X0). Here K is a positive constant independent from

ϕ(x).

Let R be a domain in the space of n complex vari-

ables x1,x2, . . . ,xn (without ramification point in the in-

terior, and finite) or a countable union of mutually

disjoint such domains. We consider an analytic poly-

hedron (a point set) ∆ in R satisfying the following

three conditions:

1◦ ∆ b R. (Therefore, ∆ is contained in a finite union

of connected components of R, bounded and

finitely sheeted.)

2◦ ∆ is defined as follows:

(∆)

P∈R, xi∈Xi, f j(P)∈Yj (i = 1,2, . . . ,n; j = 1,2, . . . ,ν),

where (x) is the coordinate system of the point P,
Xi and Yj are univalent domains of (finite) planes,

and f j(P) are holomorphic functions in R (in the

sense of one-valued analytic functions in every

connected component of R; same in what fol-

lows).

3◦ The vectors [x1,x2, . . . ,xn, f1(P), f2(P), . . . , fν(P)] have
distinct values for distinct points of ∆.

We introduce new variables, y1,y2, . . . ,yν and con-

sider (x,y)-space. We then consider a cylinder domain,

(X ,Y ) with xi ∈Xi, y j ∈Yj (i = 1,2, . . . ,n; j = 1,2, . . . ,ν) to-
gether with an analytic subset

(Σ) y j = f j(P), P∈∆ ( j = 1,2, . . . ,ν).

Wemap a point P of ∆ with coordinate (x) to a point M
of Σ with coordinate [x, f (P)]. By Condition 3◦ distinct
two points P1,P2 of ∆ are mapped always to distinct

two points M1,M2 of Σ, and hence the map is injective.

All points of Σ is contained in (X ,Y ) and its bound-

ary points are all lying on the boundary of (X ,Y ). (If
f j(P) ( j = 1,2, . . . ,ν) are simply assumed to be holomor-

phic functions in ∆, then the first half holds, but not

the second half.) Let X0
i ,Y

0
j (i = 1,2, . . . ,n; j = 1,2, . . . ,ν)

be domains of complex plane such that X0
i bXi, Y 0

j bYj,

and let ∆0 denote the corresponding part of ∆. Then,

∆0 b ∆. Now, let ∆0 b ∆ be an arbitrary subset. If P1,P2

both belong to ∆0 and have the same coordinate, then

the distance between M1,M2 carries a lower bound

away from 0.

Let ϕ(P) be an arbitrary holomorphic function in

∆. With a point P of ∆ mapped to a point M of Σ, we

consider a function ϕ(M) on Σ by setting

ϕ(M) = ϕ(P).

As seen above, we may think a holomorphic function

in (x,y) defined in a univalent open set containing Σ,

which agrees with ϕ(M) onΣ, and locally independent

from (y). Therefore, Lemma I is modified to the fol-

lowing form:

Lemma I′. Let the notation be as above. Let (X0,Y 0)

be a cylinder domain such that (X0,Y 0)b (X ,Y ). Then,
for a given bounded holomorphic function ϕ(P) on ∆,

we may find a holomorphic function Φ(x,y) in (X0,Y 0)

so that if |ϕ(P)| < N in ∆, |Φ(x,y)| < KN in (X0,Y 0), and

Φ(x, f (P)) = ϕ(P) for all [x, f (P)] ∈ (X0,Y 0)∩Σ with coor-

dinate (x) of P. Here, K is a positive constant indepen-

dent from ϕ(P).

We have the following relation between the an-

alytic polyhedron ∆ above and a finitely sheeted do-

main which is convex with respect to a family of holo-

morphic functions:32

Lemma 1. Let D be a domain of holomorphy in

(x)-space, and let D0 be a finitely sheeted open subset

of D, which is holomorphically convex with respect to

the set of all holomorphic functions in D. For any sub-

set E b D0, there exist an analytic polyhedron ∆ and

an open subset R of D0 such that E b ∆ and R satisfies

the above three Conditions, where f j(P) ( j = 1,2, . . . ,ν)
may be taken as holomorphic functions in D, Xi (i =
1,2, . . . ,n) taken as disks |xi| < r, and Yj taken as unit

disks |y j|< 1.33

Proof. Let F be an arbitrary subset of D0 which is

bounded with respect to D0. Since D0 is finitely

sheeted, it is immediate that

F bD0.

Conversely, if F bD0, then F is bounded with respect

to D0 (even if D0 is not finitely sheeted).

Therefore, these two notions agree with each

other.

We denote by (F) the family of all holomorphic

functions in D. Then, D0 is convex with respect to (F),

and E b D0. As seen as above, we may take an open

set D
′
0 with E ⊂D

′
0 bD0, so that for every point P0 of

D0, not belonging to D
′
0, there is at least one function

ϕ(P) of (F) satisfying

|ϕ(P0)|> max |ϕ(E)|.

32 Cf. the previous Report, §1 for the definition of the con-
vexity.
33 Cf. the first two of the three papers of H. Behnke–K. Stein
cited above.
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(Here, the right-hand side stands for the supremum

of |ϕ(P)| on E.)
Let ρ denote the minimum distance of D

′
0 with re-

spect to D0, and let r be a positive constant such that

any point P(x) of E satisfies |xi| < r (i = 1,2, . . . ,n). We

consider those points of D0 such that the distance to

the boundary of D0 is
1
2 ρ , and denote by Γ the part of

them over the closed polydisk |xi| ≤ 2r. As seen above,

Γ is a closed set. It is clear that for an arbitrary point

M of Γ, there are a small polydisk (γ) with center M
contained in D, and a function f (P) of (F) satisfying

max | f [(γ)]|> 1, max | f (E)|< 1.

Therefore by the Borel–Lebesgue Lemma, Γ is covered

by finitely many such (γ). Let f1(P), f2(P), . . ., fλ (P) be

those functions associated with them. Set R = D
( ρ

2 )
0

(the set of points of D0 whose distance to the bound-

ary of D0 is greater than
ρ

2 . We consider the following

analytic polyhedron ∆:

(∆) P∈R, |xi|<r, | f j(P)|<1 (i=1,2, . . . ,n; j=1,2, . . . ,λ ).

Clearly, E ⊂ ∆ and ∆ b R. (The condition of Lemma re-

quires E b ∆, but this is the same.)

We check Condition 3◦. Since D is a domain of

holomorphy, there is a holomorphic function whose

domain of existence is D. Let F(P) be such one. Then,

by the definition of domain of holomorphy,34 for mu-

tually overlapped (the coordinates are the same) two

points P1 and P2
35 of D, the elements36 of F(P) at

P1 and P2 are necessarily different. Therefore, there

exists a partial derivative of F(P) with respect to

xi (i = 1,2, . . . ,n) which takes distinct values at P1 and

P2, and the partial derivative is necessarily a holomor-

phic function inD. Let ∆̄ denote the union of ∆ and its

boundary. Since ∆ bD0, ∆̄ is a closed set. Hence by the

Borel–Lebesgue Lemma, there are finitely many holo-

morphic functions consisting of F(P) and its partial

derivatives,

ϕ1(P), ϕ2(P), . . . , ϕµ(P)

such that the vector-valued function

[ϕ1(P),ϕ2(P), . . . ,ϕµ(P)] takes distinct vector-values at

any two distinct points of ∆̄. These functions are

bounded in ∆. We set

max |ϕk(∆)|< N, fλ+k(P) =
1
N

ϕk(P) (k = 1,2, . . . ,µ).

Then we see that the set of points of D satisfy-

ing three conditions, P ∈ R, |xi| < r, | f j(P)| < 1 (i =

34 Cf. Behnke–Thullen’s Monograph, p. 16.
35 (Note by the translator.) This means that P1 and P2 are
distinct and their projections to Cn (the base points) are the
same.
36 (Note by the translator.) That is, function elements or
germs in the present terms.

1,2, . . . ,n; j=1,2, . . . ,ν ; ν =λ +µ) agrees with ∆. The ex-

pression of ∆ of this type satisfies all Conditions 1◦,
2◦ and 3◦. C.Q.F.D.

Recall that a domain of holomorphy carries the

following property:

The First Theorem of H. Cartan–P. Thullen. A finite

domain of holomorphy is convex with respect to the

whole of functions holomorphic there.

This theorem is an immediate consequence of the

Fundamental Theorem of H. Cartan–P. Thullen37 on

the simultaneous analytic continuation.38

§2

We study the expansions of functions.39

We consider ∆ in Lemma 1: Here we also assume

that ∆ satisfies the conditions added at the end of the

lemma. Then, ∆ is of the form:

(∆) P∈R, |xi|<r, | f j(P)|<1 (i=1,2, . . . ,n; j=1,2, . . . ,ν)

We introduce complex variables y1,y2, . . . ,yν and in

(x,y)-space we consider a polydisk

(C) |xi|< r, |y j|< 1 (i = 1,2, . . . ,n; j = 1,2, . . . ,ν)

and an analytic subset defined by

(Σ) y j = f j(P), P ∈ ∆ ( j = 1,2, . . . ,ν).

Let r0 and ρ0 be positive numbers with r0 < r and ρ0 < 1,
and let ∆0,(C0),Σ0 respectively denote those defined

as ∆,(C),Σ with (r,1) replaced by (r0,ρ0).

Let ϕ(P) be an arbitrary holomorphic function in

∆. By Lemma I′ one can construct a holomorphic func-

tion Φ(x,y) in (C0) such that Φ(x, f (P)) = ϕ(P) for all

[x,P] ∈ Σ0. We expand this Φ(x,y) to a Taylor series

with center at the origin of (C0). Then the convergence

is locally uniform at every point of (C0). With substi-

tuting y j = f j(P) ( j = 1,2, . . . ,ν) in that expansion, we

obtain an expansion of ϕ(P) in ∆0, whose terms are

all holomorphic functions in D; the convergence is

locally uniform at every point of ∆0.

37 Cf. Behnke–Thullen’s Monograph, Chap. 6, §1 and the fol-
lowing paper by H. Cartan–P. Thullen: Regularitäts–und Kon-
vergenzbereiche, 1932 (Math. Annalen).
38 In this way we use the Fundamental Theorem of
Cartan–Thullen. However, this theorem no longer holds if
ramification points or points of infinity are allowed to come
in. Therefore there remains a problem how to deal with these
difficulties in future, but in the present paper this theorem
is not necessarily needed in fact; cf. the footnote of Theo-
rem I. Although there do not arise no other problems of this
kind, the author thinks that the one mentioned above is the
most noticeable.
39 Cf. Report I, §4.

JULY 2022 NOTICES OF THE ICCM 57



Since D0 is the limit of the monotone increasing

sequence of subsets of D0 satisfying the same prop-

erty as ∆, we have the following theorem:

Theorem 1. Let D be a domain of holomorphy in

(x)-space, and let D0 be an open subset of D which is

finitely sheeted and convex with respect to the whole

family (F) of holomorphic functions in D. Then, every

holomorphic function in D0 is expanded to a series of

functions of (F), which converges locally uniformly at

every point of D0.

§3

We next discuss Cousin I Problem.40 We begin

with a lemma.

Lemma 2. Let ∆ be as in Lemma I′, let L be a real hy-

perplane passing through a base point of ∆, and let S
denote the part of ∆ over L. Let ∆0 b ∆ be an open sub-

set and let ∆
′
0 be the part of ∆0 in one side of L and let

∆
′′
0 be the one in another side. Then, for a given func-

tion ϕ(P) holomorphic in a neighborhood of S in R, one
can find a holomorphic function ϕ1(P) (resp. ϕ2(P)) in
∆

′
0 (resp. ∆

′′
0) such that both are also holomorphic at

every point of S in ∆0, and there satisfy identically

ϕ1(P)−ϕ2(P) = ϕ(P).

Proof. We write x1 = ξ + iη with real and imaginary

parts (i for the imaginary unit) and may assume that

L is defined by

(L) ξ = 0.

For L is reduced to the above form by a linear trans-

form of (x). Recall ∆ to be of the following form:

(∆) P∈R, x j∈X j, fk(P)∈Yk ( j=1,2, . . . ,n;k=1,2, . . . ,ν).

Associated with this we consider the cylinder domain

(X ,Y ) in (x,y)-space as done repeatedly in above, and

the analytic subset Σ. Let X0
j ,X

1
j ,Y

0
k ,Y

1
k be domains in

the plane such that

X0
j bX1

j bX j, Y 0
k bY 1

k bYk ( j=1,2, . . . ,n;k=1,2, . . . ,ν).

Let ∆0 be the part of ∆, where (X ,Y ) is replaced by

(X0,Y 0). Then, one may assume ∆0 in the lemma to be

of this form.

Let A be an open subset of X1 in x1-plane which

contains the part of the line ξ = 0 in X1. Here we take

A sufficiently close to this line so that ϕ(P) is holo-

morphic in the part of ∆ over x1 ∈ A. Let A1 b A be an

open subset which is in the same relation with respect

to X1
1 as A to X1.

40 Cf. Report I, §3, and the proof of Theorem I in §5 in Report
I.

By Lemma I′ there is a holomorphic function

Φ(x,y) in the cylinder domain with x1 ∈ A1 and (x,y) ∈
(X1,Y 1), which takes the value ϕ(P) at every point

[x, f (P)] of Σ in this cylinder domain. Taking a line

segment or a finite union of them (closed set) l in the

imaginary axis of x1-plane, contained in A1 and con-

taining the part of the imaginary axis inside X0
1 , we

consider Cousin’s integral

Ψ(x,y) =
1

2πi

∫
l

Φ(t,x2, . . . ,xn,y)
t − x1

dt.

Here the left part (ξ < 0) of L in ∆0 is denoted by ∆
′
0, the

right part by ∆
′′
0, and the orientation of the integration

is the positive direction of the imaginary axis. Let (C′)

be the part ξ < 0 of (X0,Y 0), and let (C′′) be that of

ξ > 0. Then, Ψ(x,y) is holomorphic in (C′) and in (C′′).

We distinguish Ψ as Ψ1 in (C′) and that as Ψ2 in (C′′).

Then both of Ψ1 and Ψ2 are holomorphic also at every

point of ξ = 0 inside (X0,Y 0), and satisfy the following

relation:

Ψ1(x,y)−Ψ2(x,y) = Φ(x,y).

Therefore, we obtain the required functions

ϕ1(P) = Ψ1[x, f (P)], ϕ2(P) = Ψ2[x, f (P)],

where (x) is the coordinate of a point P of R. C.Q.F.D.

Let D be a domain in (x)-space. Assume that for

each point P of D there are a polydisk (γ) with center

at P in D and a meromorphic function g(P) in (γ), and

that the whole of them satisfies the following con-

gruence condition: For every pair (γ1),(γ2) of such (γ)

with the non-empty intersection (δ ), the correspond-

ing g1(P) and g2(P) are congruent in (δ ); i.e., precisely,

g1(P)− g2(P) is holomorphic in (δ ). In this way, the

poles were defined in D. Then, it is the Cousin I Prob-

lem to construct a meromorphic function G(P) in D

with the given poles; in other words, it is congruent

to g(P) in every (γ).

LetD be a finitely sheeted domain of holomorphy.

By the First Theorem of Cartan–Thullen, D is convex

with respect to the family (F) of all holomorphic func-

tions in D. Therefore we may take D = D0 in Lemma

1, and hence there is a ∆ in D stated in the lemma.

Here, however it is convenient to take a closed ana-

lytic polyhedron ∆ with closed bounded domains Xi

and Yj (i = 1,2, . . . ,n; j = 1,2, . . . ,ν). (Naturally, f j(P) are
chosen from (F).) Thus, D is a limit of a sequence of

closed analytic polyhedra,

∆1,∆2, . . . ,∆p, . . . ,

where ∆p are such ones as ∆ above, and ∆p b E with

the set E of all interior points of ∆p+1.
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Now, we take a ∆p and divide it into (A) as stated
in §3 of the previous Report:41 Here, we choose

2n-dimensional closed cubes for (A) and its base do-

main (α). We also allow some of (A) to be of incom-

plete form, and take (A) sufficiently small so that

(A) b (γ) for every (A) with one of (γ) above. Choos-

ing arbitrarily such (γ), we associate g(P) with (γ), and

then g(P) with this (A).
Let (A)1,(A)2 be a pair of (A) adjoining by a face

(a (2n − 1)-dimensional closed cube). The meromor-

phic functions g1(P) and g2(P) associated with them

are congruent in a neighborhood of the common

face (a neighborhood in D, same in below). It follows

from Lemma 2 that there is a meromorphic function

with the given poles in a neighborhood of the union

(A)1 ∪ (A)2. It is the same for a union of (A) such as,

e.g., (
α
(1)
j,q ,α

(2), . . . ,α(n)
)
,

where α are closed squares, q and α(2), . . . ,α(n) are

given ones, and j is arbitrary. Here (A)may be discon-

nected. Repeating this procedure, we obtain a mero-

morphic function G(P) in a neighborhood of ∆p with

the given poles.

Thus, we have

G1(P),G2(P), . . . ,Gp(P), . . . .

We consider

H(P) = Gp+1(P)−Gp(P).

Then, H(P) is a holomorphic function in a neighbor-

hood of ∆p. Hence by Theorem 1, Hp is expanded to a

series of functions of (F) which converges uniformly

in a neighborhood of ∆p. By this we immediately see

the existence of a meromorphic function G(P) in D

with the given poles. (The method of the proof is ex-

actly the same as in the case of univalent cylinder do-

mains.) Thus we obtain the following theorem.

Theorem 2. In a finitely sheeted domain of holomor-

phy, the Cousin I Problem is always solvable.

II – The Main Problem

§4

In this chapter we solve the main part of the prob-

lem abstracted from the series of those discussed

at the beginning by virtue of the First Fundamental

Lemma.42

41 (Note by the translator.) The “previous Report” is “Report
X”; there in §3, small closed cubes are defined so that their
sides are parallel to real and imaginary axes of the complex
coordinates of the base space Cn.
42 Except for the use of this lemma, the content is essentially
the same as in Report VI, Chap. 1.

We begin with explaining the problem. Let D be a

bounded finitely sheeted domain in (x)-space. We con-

sider a real hyperplane with non-empty intersection

with the base domain of D. We write x1 as

x1 = ξ + iη .

For the sake of simplicity we assume that this hyper-

plane is given by ξ = 0. Let a1,a2 be real numbers such

that

a2 < 0 < a1,

and the hyperplanes ξ = a1, ξ = a2 have both non-

empty intersections with the base domain of D. Let

D1 (resp. D2) denote the part of ξ < a1 (resp. ξ > a2)

in D, and let D3 be the part of a2 < ξ < a1 in D. We as-

sume that every connected component of D1 and D2 is

a domain of holomorphy. Then, necessarily so is every

component of D3.

Let f j(P) ( j = 1,2, . . . ,ν) be holomorphic functions in

D3. We consider a subset E of D such that E ⊃D\D3

and the following holds: A point P of D3 belongs to E
if and only if

| f j(P)|< 1 ( j = 1,2, . . . ,ν).

We assume that E has connected components which

extend over the part ξ < a2 and over ξ > a1. Let ∆ be

such one of them.

We assume the following three conditions for this

∆:

1◦ Let δ1 be a real number such that 0 < δ1 <

min{a1,−a2}. Let A denote the set of point P(x) of ∆

with |ξ |< δ1. Then,

A bD.

2◦ Let δ2 be a positive number and let ε0 be a positive

number less than 1. For every p of 1,2, . . . ,ν , any
point P of D3 satisfying

| fp(P)| ≥ 1− ε0

does not lie over

|ξ −a1|< δ2 or |ξ −a2|< δ2.

3◦ The vector-values

[ f1(P), f2(P), . . . , fν(P)]

are never identical for mutually overlapped two

points of A.

By the second Condition, ∆ is a domain. Let ρ0 be

a real number such that 1−ε0 < ρ0 < 1, and consider a

subset ∆0 of ∆ such that ∆0 ⊃ ∆\D3 and for a point of

D3 ∩∆ it belongs to ∆0 if and only if

| f j(P)|< ρ0 ( j = 1,2, . . . ,ν).
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By Condition 2◦, ∆0 is an open set. Denote by ∆
′
0 (resp.

∆
′′
0) the part of ξ < 0 (resp. ξ > 0) in ∆0.

The theme of the present chapter is the following

problem.

Let the notation be as above. Let ϕ(P) be a given

holomorphic function in A. Then, construct holomor-

phic functions, ϕ1(P) in ∆
′
0 and ϕ2(P) in ∆

′′
0, which are

holomorphic in the part of ∆0 over ξ = 0, and identi-

cally satisfy

ϕ1(P)−ϕ2(P) = ϕ(P).

§5

By making use of the method of Lemma 2 we

first solve a part of the problem related to D3. Let

y1,y2, . . . ,yν be complex variables, and consider in

(x,y)-space the analytic subset

(Σ) yk = fk(P), P ∈D3 (k = 1,2, . . . ,ν).

Let r and r0 be positive numbers with r0 < r, and let

r0 be taken sufficiently large so that the bounded do-

main D is contained in the polydisk of radius r0 with

center at the origin. Let ρ be a number with ρ0 < ρ < 1,
and consider polydisks

(C) |x j|< r, |yk|< ρ ( j = 1,2, . . . ,n;k = 1,2, . . . ,ν),

and

(C0) |x j|< r0, |yk|< ρ0 ( j = 1,2, . . . ,n;k = 1,2, . . . ,ν).

Let δ be a positive number with δ < δ1, and consider

a set

(A′) P ∈ A, |ξ |< δ , | fk(P)|< ρ (k = 1,2, . . . ,ν).

Since ϕ(P) is holomorphic in A, by Lemma I′ we
can construct a holomorphic function Φ(x,y) in the

intersection of (C) and |ξ | < δ such that Φ[x, f (P)] =
ϕ(P) for [x, f (P)]∈Σ with P ∈ A′ and the coordinate x of
P. We take a line segment l (connected and closed) in

the imaginary axis of x1-plane, so that it is contained

in the disk |x1| < r and the both ends are out of the

disk |x1|< r0. We then consider the Cousin integral

Ψ(x,y) =
1

2πi

∫
l

Φ(t,x2, . . . ,xn,y1, . . . ,yν)

t − x1
dt,

where the orientation is in the positive direction of

the imaginary axis.

Substituting yk = fk(P) in Ψ(x,y), we get

ψ(P) =
1

2πi

∫
l

Φ[t,x2, . . . ,xn, f1(P), . . . , fν(P)]
t − x1

dt.

The function ψ(P) represents respectively a holomor-

phic function ψ1(P) in ∆
′
0 ∩D3 and ψ2(P) in ∆

′′
0 ∩D3.

These are also holomorphic at every point of ∆0 over

ξ = 0, and satisfy the relation: ψ1(P)−ψ2(P) = ϕ(P).
We modify a little the expression of this solution.

We draw a circle Γ of radius ρ0 with center at the origin

in the complex plane. It follows from Cauchy that for

|ξ |< δ , |x j|< r and |yk|< ρ0 ( j = 1,2, . . . ,n;k = 1,2, . . . ,ν)

Φ(x,y)

=
1

(2πi)ν

∫
Γ

∫
Γ

· · ·
∫

Γ

Φ(x1, . . . ,xn,u1, . . . ,uν)

(u1 − y1) · · ·(uν − yν)
du1du2 · · ·duν ,

where the integral is taken on Γ with the positive ori-

entation. We write this simply as follows:

Φ(x,y) =
1

(2πi)ν

∫
(Γ)

Φ(x,u)
(u1 − y1) · · ·(uν − yν)

du.

We substitute yk = fk(P) (k = 1,2, . . . ,ν) in this integral

expression of Φ(x,y), change x1 with t, and substitute

them in the integral expression of ψ(P) above. Then,
with t = u0 we obtain

(1) ψ(P) =
∫
(l,Γ)

χ(u,P)Φ(x′,u)du,

χ(u,P) =
1

(2πi)ν+1(u0 − x1)[u1 − f1(P)] · · · [uν − fν(P)]
.

Here we simply write Φ(x′,u) for Φ(u0,x2, . . . ,xn,

u1, . . . ,uν), and use the same simplification for the in-

tegral symbol as above: It will be clear without further

explanation. Then we can use this (1) in ∆0∩D3 for the

integral expression of ψ(P) above.

§6

There are univalent domains of holomorphy in

(u)-space, which contain the closed cylinder set (l,Γ)
with u0 ∈ l, uk ∈ Γ (k = 1,2, . . . ,ν), and are arbitrarily

close to (l,Γ). Let V be such one of them. We shall

take V sufficiently close to (l,Γ), as we will explain at

each step in below.

Firstly, we would like to construct a meromorphic

function χ1(u,P) in (V,D1) ((u) ∈V, P(x) ∈D1), with the

same poles as χ(u,P) of (1) in (V,D3) and without other

poles.

This is possible by Theorem 2, because (V,D1) is

a finitely sheeted domain of holomorphy, and for the

pole distribution the congruent condition is satisfied

with V sufficiently close to (l,Γ) by Condition 2◦ on ∆.

Note that χ − χ1 is holomorphic in (V,D3). By

the First Theorem of Cartan–Thullen (V,D3) is con-

vex with respect to the family of all holomorphic

functions in (V,D1). By Theorem 1, χ − χ1 is hence

expanded to a series of holomorphic functions in

(V,D1), convergent locally uniformly at every point

of (V,D3). Therefore, taking V closer to (l,Γ), we have
the following function F1(u,P) for a positive number

60 NOTICES OF THE ICCM VOLUME 10, NUMBER 1



ε : F1(u,P) is holomorphic in (V,D1) and for the analytic

polyhedron A given in §4,

|χ −χ1 −F1|< ε in (V,A).

Put

K1(u,P) = χ −χ1 −F1.

The function K1(u,P) is holomorphic in (V,D3), and

|K1|< ε in (V,A). ForD2, we construct K2(u,P), similarly.

With these preparations we change the integration (1)

as follows:

(2) I1(P) =
∫
(l,Γ)

[χ(u,P)−K1(u,P)]Φ(x′,u)du,

I2(P) =
∫
(l,Γ)

[χ(u,P)−K2(u,P)]Φ(x′,u)du.

If (u) ∈ (l,Γ), then χ −K1 is equal to χ1 +F1, so that

it is meromorphic in P(x) ∈D1, and in particular, it is

holomorphic in ∆
′
0. Therefore, I1(P) is holomorphic in

∆
′
0; similarly, I2(P) is holomorphic in ∆

′′
0.

The analytic functions I1(P) and I2(P) are holomor-

phic at every point of ∆0 over ξ = 0: For ψ(P) in (1) has

this property and the both of K1 and K2 are holomor-

phic functions. By the property of ψ(P), the functions
I1(P) and I2(P) satisfy the following relation:

(3)

I1(P)− I2(P) = ϕ(P)−
∫
(l,Γ)

[K1(u,P)−K2(u,P)]Φ(x′,u)du.

We write

K(u,P) = K1(u,P)−K2(u,P).

Observing this identity again, we see that ϕ(P) is a

holomorphic function in P ∈ A, K is a holomorphic

function in (u)∈V and P∈D3, and Φ(x,y) is a holomor-

phic function in (x,y) ∈ (C) with |ξ |< δ . Therefore, the

right-hand side is a holomorphic function in P(x) ∈ A;
hence, it is the same for the left-hand side as above.

Put

ϕ0(P) = I1(P)− I2(P).

Let ϕ0 and K be given functions, and let ϕ,Φ be a

pair of unknown functions satisfying the relations de-

scribed next below.43 We consider a functional equa-

tion

(4) ϕ(P) =
∫
(l,Γ)

K(u,P)Φ(x′,u)du+ϕ0(P).

Here, Φ(x′,u) stands for Φ(u0,x2, . . . ,xn,u1, . . . ,uν),

ϕ0(P) is a holomorphic function in A, and K(u,P)
is a holomorphic function in (V,D3). In (V,A),
|K(u,P)|< 2ε . For the unknown functions ϕ(P) and

43 (Note by the translator.) Here is a point of the arguments
of the proof, but one must be careful of the notational con-
fusion with ϕ , ϕ0 and Φ discussed already.

Φ(x,y), the following condition is imposed besides

(4): ϕ(P) is a holomorphic function in P ∈ A, Φ(x,y)
is a holomorphic function in (x,y) ∈ (C) with |ξ | <
δ , and for every point [x, f (P)] of Σ with P ∈ A′,

Φ(x,y) = ϕ(P).

Since these conditions are imposed, this functional

equation is not so different from the definite integral

equation.

We are going to show that this equation has nec-

essarily a solution for a sufficiently small ε . Before it

we confirm that it suffices for our end. Suppose that

there exist functions ϕ(P) and Φ(x,y) as above. Substi-
tute Φ(x′,u) to (2). The function I1(P) thus obtained is

clearly holomorphic in ∆
′
0. Similarly, I2(P) is holomor-

phic in ∆
′′
0. It is clear that these analytic functions are

also holomorphic at every point of ∆0 over ξ = 0. One
easily sees relation (3) among them. (The argument

above is just a repetition of a deduction once done

with clarifying the conditions.) Thus, these I1(P) and
I2(P) are the solutions of the problem described in §4.

As seen above, it suffices to solve equation (4); here

one may take ε as small as necessary.

Now, we solve equation (4). Recall that the ana-

lytic polyhedron A is of the following form:

(A) P∈∆, |ξ |<δ1, | fk(P)|<1 (k=1,2, . . . ,ν).

Moreover, the analytic polyhedron A′ is obtained by

replacing (δ1,1) of A by (δ ,ρ) with 0<δ <δ1 and ρ0 <

ρ <1. Taking (δ ′,ρ ′) with ρ <ρ ′<1 and δ < δ ′< δ1, we

define an analytic polyhedron A′′, replacing (δ ,ρ) by

this (δ ′,ρ ′) in the definition of A′. We have the follow-

ing relation among them:

A′ b A′′ b A.

The function ϕ0(P) is holomorphic in A, and hence

bounded on A′′. Suppose that

|ϕ0(P)|< M0 on A′′.

We denote by (C′) the cylinder domain given by (x,y)∈
(C) and |ξ |<δ . By Lemma I′ we can take a holomorphic

function Φ0(x,y) in (C′) so that it has values ϕ0(P) at
points [x, f (P)] of Σ with P∈A′, and

|Φ0(x,y)|< NM0 on (C′),

where N is a positive constant independent of ϕ0(P)
(also independent of M0, and of ϕ0(P) being holomor-

phic in A). Applying the operator K(Φ0) for Φ0(x,y) de-
fined by

ϕ1(P) = K(Φ0) =
∫
(l,Γ)

K(u,P)Φ0(x
′,u)du,

we construct a function ϕ1(P). For (u) ∈ (l,Γ), K(u,P) is
holomorphic in P(x) ∈D3, and Φ0(x′,u) is holomorphic
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in |x j| < r ( j = 2,3, . . . ,n), and so is in (C). Hence, ϕ1(P)
is a holomorphic function in D3.

We next estimate ϕ1(P). For (u)∈ (l,Γ) and P∈A,
|K(u,P)|< 2ε , and |Φ0(x,y)|< NM0 in (C′). Therefore, we

have in A,

|ϕ1(P)|< 2εNN1M0, N1 = 2r(2πρ0)
ν .

Therefore in first we take ε so that

2εNN1 = λ < 1.

Thus, ϕ1(P) is a bounded holomorphic function in

A, and necessarily so is in A′′. As we choose a func-

tion Φ0(x,y) for ϕ0(P), we choose a function Φ1(x,y) for
ϕ1(P), and by setting ϕ2(P)=K(Φ1), we construct ϕ2(P).
Inductively, we obtain ϕp(P) and Φp(x,y) (p = 0,1,2, . . .).
Then we consider the following function series:

(5) ϕ0(P)+ϕ1(P)+ · · ·+ϕp(P)+ · · · ,

(6) Φ0(x,y)+Φ1(x,y)+ · · ·+Φp(x,y)+ · · · .

It follows that ϕp(P) is holomorphic in D3, and

Φp(x,y) is holomorphic in (C′). In A,

|ϕp(P)|< λ
pM0 (p > 0),

and in (C′),

|Φp(x,y)|< λ
pNM0.

Therefore, (5) (resp. (6)) converges uniformly in A
(resp. (C′)). We denote the limits by ϕ(P) and Φ(x,y),
respectively. We see that ϕ(P) (resp. Φ(x,y)) is holo-

morphic in A (resp. (C′)). Since Φp(x,y) (p= 0,1, . . .) take
values ϕp(P) at points [x, f (P)] of Σ with P ∈ A′, Φ(x,y)
there takes values ϕ(P). Therefore, it suffices to show
that ϕ(P) and Φ(x′,u) satisfy functional equation (4) in

P∈A. Now for P∈A we have

ϕ0=ϕ0, ϕ1=K(Φ0), ϕ2=K(Φ1), . . . ,ϕp+1=K(Φp), . . . ,

so that

ϕ = K(Φ)+ϕ0.

Thus, the problem stated at the end of §4 is always

solvable.

III – Pseudoconvex Domains and
Domains of Holomorphy, Theorems
on Domains of Holomorphy

§7

Apart from the theme we prepare some lemmata

for a moment (§§7–9).

We begin with reformulating the Second Funda-

mental Lemma.

Lemma II. Let D be a finite unramified pseudoconvex

domain over (x)-space. Then there necessarily exists

a real-valued continuous function ϕ0(P), satisfying the

following two conditions:

1◦ For every real number α , Dα b D, where Dα de-

notes the set of all points P ∈D with ϕ0(P)< α .

2◦ In a neighborhood U of every point P0 of D, there

is a hypersurface Σ ⊂U , passing through P0 such

that ϕ0(P)> ϕ0(P0) for P ∈ Σ\P0.

Proof. As a consequence of the former Report we

know that there is a pseudoconvex function in D sat-

isfying Condition 1◦ and Condition 2◦ outside of an ex-
ceptional discrete subset without accumulation point

inD. Let ϕ(P) be a such function, and let E0 denote the

exceptional discrete subset, provided that it exists. If

there is a point of E0 on ϕ(P) = λ for λ ∈ R, we then

call λ an exceptional value of ϕ(P). For an arbitrary

real number α , we denote by Dα the set of all points

P ∈D with ϕ(P)< α . Since Dα bD by Condition 1◦, Dα

is bounded and finitely sheeted. This remains valid

for a little bit larger α , and so there are only finitely

many points of E0 in Dα . Since limα→∞Dα =D, the set

of the exceptional values is countable. Let the excep-

tional values be

λ1,λ2, . . . ,λp, . . . , λp < λp+1.

Let α0 be a non-exceptional value and set Dα0 = ∆.

In ∆ we consider

ψ(P) =− logd(P).

Here d(P) denotes the Euclidean boundary distance

function with respect to ∆, and the logarithm symbol

stands for the real branch. Since ∆ is bounded, ψ(P)
is a continuous function. For any real number α , we

denote by ∆α the set of all points P of ∆ with ψ(P)< α .

Then, ∆α b∆. Thus, ψ(P) satisfies Condition 1◦ in ∆. We

next check Condition 2◦. Let P0 be an arbitrary point

of ∆, and set ψ(P0) = β . We draw a 2n-dimensional ball

S of radius e−β with center P0 in D. Then, S ⊂ ∆ and

there is a point M on the boundary of S, satisfying
ϕ(M) = α0. Since ϕ(P) satisfies Condition 2◦ in a neigh-

borhood of ϕ(P) =α0, there is a complex hypersurface

σ in a neighborhood of M, passing through M, such

that ϕ(P)> α0 for P ∈ σ \{M}. By a parallel translation

(T ) x′i = xi +ai (i = 1,2, . . . ,n),

we move M to P0, and σ to σ ′. Then, σ ′ is defined in a

neighborhood of P0. Let P′ be a point of σ ′ different to

P0. Then the corresponding point P of σ lies in ϕ(P)>
α0, and the (Euclidean) distance between P and P′ is

e−β , so that if P′ belongs to ∆, P′ lies in the part of
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ψ(P) > α .44 Therefore, ψ(P) is a continuous function

in ∆, satisfying Conditions 1◦ and 2◦.
We take a sequence of real numbers, µ1,µ2, . . . ,

µp, . . . such that

µ1 < λ1, λp < µp+1 < λp+1.

Taking α0 with

λ1 < α0 < µ2,

we consider ψ(P) above. Choosing α0 sufficiently

close to λ1, we may take β for this ψ(P), satisfying

Dµ1 b ∆β bDλ1
.

Modifying ϕ(P) by making use of ψ(P) thus obtained
(similarly to the last part of the previous Report), we

construct ϕ1(P): We explain it in below.

Let β1,β2 be real numbers with the same property

as β above such that

β1 < β2.

Let γ1,γ2 be real numbers with

λ1 < γ1 < γ2 < α0.

We divide D into five parts D j ( j = 1,2, . . . ,5) defined
by

D1 = ∆β1
, ∆β1

∪D2 = ∆β2
, ∆β2

∪D3 =Dγ1 ,

Dγ1 ∪D4 =Dγ2 , Dγ2 ∪D5 =D.

By taking a suitable B and a sufficiently large positive

A, we have

Ψ(P) = A[ψ(P)−B]

satisfying

ϕ(P)> Ψ(P) in D1,

ϕ(P)< Ψ(P) in D3 ∪D4.

Also by taking a suitable real number B′ and a suffi-

ciently large positive number A′, we have

Φ(P) = A′[ψ(P)−B′]

satisfying

Ψ(P)> Φ(P) in D3,

Ψ(P)< Φ(P) in D
′
5,

ϕ(P)< Φ(P) in D5,

44 (Note by the translator.) Here P is used in a different sense
from the one just before in the same sentence, and α is a typo
of β . They should be read as“ψ > β”

where D
′
5 is the part of D5 (a neighborhood) contain-

ing the point set, ϕ(P)=γ2. We define ϕ1(P) as follows:

ϕ1(P) = ϕ(P) in D1,

ϕ1(P) = max[ϕ(P),Ψ(P)] in D2,

ϕ1(P) = Ψ(P) in D3,

ϕ1(P) = max[Ψ(P),Φ(P)] in D4,

ϕ1(P) = Φ(P) in D5.

We examine ϕ1(P) thus defined. It follows that

ϕ1(P) is a real one-valued function in D, which is

clearly continuous. Since ψ(P) satisfies Condition 2◦,
and ϕ(P) satisfies Condition 2◦ outside a set of excep-
tional points without accumulation point in D, ϕ1(P)
satisfies the same condition as ϕ(P). We check up the

exceptional value of ϕ1(P). Since ϕ1 = Ψ in D3, and

ϕ1 = Φ in D5, we have for the exceptional values of

ϕ1(P)

λ
′
2, λ

′
3, . . . , λ

′
p, . . . ,

where the point set of ϕ1(P)= λ
′
p is the same as the

point set of ϕ(P)=λp. Comparing ϕ1(P) with the orig-

inal ϕ(P), we easily see that ϕ1(P)=ϕ(P) in Dµ1 , and

ϕ1(P) ≥ ϕ(P) in D. Since ϕ1 ≥ ϕ , ϕ1 satisfies Condi-

tion 1◦. This ϕ1(P) is a function satisfying almost the

same property as ϕ(P). Although they differ only in

the property of pseudoconvexity, the above operation

does not involve this property of ϕ(P). Therefore, in
the same way as to produce ϕ1(P) from ϕ(P), we may

construct ϕ2(P) from ϕ1(P). We repeat this operation

as far as the exceptional values remain, and thus ob-

tain

ϕ1(P), ϕ2(P), . . . , ϕp(P), . . . .

The part of properties of ϕp(P) (p> 1) which varies

with p is as follows: The exceptional values of ϕp(P)
are

λ
(p)
p+1, λ

(p)
p+2, . . . , λ

(p)
p+q, . . . ,

where ϕp(P)=λ
(p)
p+q and ϕ(P)=λp+q are the same point

set, and in Dµp , ϕp(P) = ϕp−1(P), and in D, ϕp(P) ≥
ϕp−1(P) (note that in D5, ϕ1 =Φ). We can thus choose

such ϕp(P). Let ϕ0(P) be the limit function of them, or

the last function in case the sequence is finite. Then

ϕ0(P) is clearly the required function. C.Q.F.D.

The function ϕ0(P) thus obtained is in fact a pseu-

doconvex function.45

§8

At the beginning of the second Report46 we ex-

plained the outer-convex “Hülle” with respect to poly-

45 For this, the pseudoconvexity ofDα0 =∆ suffices (Theorem
3 of the 9th Report). Cf. §9.
46 (Note by the translator.) This is the published second pa-
per of the series in J. Sci. Hiroshima Univ. Ser. A 7 (1937),
115–130.
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nomials. We generalize it a bit more to supplement

the fundamental lemma of the previous section, but

here we consider the (inner) convexity for conve-

nience.

Lemma 3. Let D be a finitely sheeted domain of holo-

morphy over (x)-space. Let E0 bD be an open subset.

Then, we have:

1◦ There exists a smallest open subset H among the

open subsets of D, containing E0, which are convex

with respect to the family of all holomorphic functions

in D, and so H bD.

2◦ There is no locally defined hypersurface σ satisfying

the following properties: σ passes through a boundary

point of H, but not through any point of H, E0 or the

boundary of E0, and the boundary points of σ do not

lie in H nor on its boundary, and σ is defined in a form

as follows:

ϕ(P) = 0, P ∈V,

where V is a domain with V b D, and ϕ(P) is a holo-

morphic function in a neighborhood of V over D.47

Proof. 1◦. We first show the existence of the Hülle H,

for which we make some preparations.

Since D is finitely sheeted, a subset D′ of D is

bounded with respect to D if and only if D′ b D. Let

(F) be the set of all holomorphic functions in D. Since

D is a domain of holomorphy, the First Theorem of

Cartan–Thullen implies that D is convex with respect

to (F). Therefore, regarding D = D0 in Lemma 1, we

can construct an analytic polyhedron ∆ of this lemma,

which is of the form:

(∆) P∈R, |xi|<r, | f j(P)|<1 (i=1,2, . . . ,n; j=1,2, . . . ,ν).

Here, f j(P) ∈ (F) and R is an open subset of D with

R c ∆. Further, note that for any given subset E b D,

one may choose ∆ c E.
Let ρ be an arbitrary positive number, and let d(P)

denote the Euclidean boundary distance of D. Let Dρ

be the set of all points P ∈D with d(P)> ρ . (Here, ρ is

chosen so that Dρ is not empty.) If D coincides with

the finite (x)-space, then Dρ = D. By a parallel trans-

lation

(T ) x′i = xi +ai, ∑ |ai|2 ≤ ρ
2 (i = 1,2, . . . ,n),

we move a point P of Dρ to P′ of D. If P is given, P′

is uniquely determined. For a function f (P) of (F), we
set

F(P) = f (P′).

47 Part 1◦ above immediately follows from the existence
theorem of K–Konvexe Hülle due to H. Cartan–P.Thullen.
Here, the original proof is based on a fundamental theo-
rem of simultaneous analytic continuation. Cf. the paper of
Cartan–Thullen mentioned above. (See also the footnote of
Theorem I.)

Then, F(P) is a holomorphic function in Dρ . Let (T )
be any of the parallel translation within the restric-

tion mentioned above, and let (Fρ) be the set of all

functions F(P) induced from functions f (P) of (F).
Let A b D be an open subset. Assume that A is

convex with respect to (F).

Let A0 b A be an arbitrary open subset. For a

boundary point M of A, there is a point P0 arbi-

trarily close to M such that there is at least one

function f (P) of (F) with | f (P0)|> max | f (A0)|.

We call this Property (α) for a moment. Conversely,

we prove that if A carries Property (α), A is convex with

respect to (F). Since A b D, an analytic polyhedron ∆

above mentioned is taken, so that A b ∆. Let ρ be a

sufficiently small positive number such that ∆ ⊂ Dρ .

Since A satisfies Property (α), it is clear that A is con-

vex with respect to (Fρ). Now, since every function

of (Fρ) is holomorphic in ∆, it follows from Theorem

1 that it can be expanded to a series of functions of

(F), converging locally uniformly in ∆. Therefore, it is

clear that A is convex with respect to (F).

Now, let A be an open subset of D, containing E0

and convex with respect to (F). Let H be the subset of

D consisting of all interior points of the intersection

of all such A’s.
Since E0 is open, E0 ⊂ H. For ∆ above, we may take

E =E0, and hence H bD. It is clear that H carries Prop-

erty (α). Therefore, H is convex with respect to (F).

Thus, H is the smallest open subset of D which con-

tains E0 and is convex with respect to (F), and H bD.

2◦. We assume the existence of a hypersurface σ

with the properties stated in the lemma. It suffices to

deduce a contradiction. Let ϕ(P) be holomorphic in

V ′ such that V bV ′ ⊂D. Let d(P) denote the Euclidean
boundary distance with respect to V ′. We choose a

positive number ρ such thatmind(V )> ρ (the left-hand

side of the inequality stands for the infimum of d(P)
in V ). Through the parallel translation

x′i = xi + zi, ∑ |zi|2 ≤ ρ
2 (i = 1,2, . . . ,n),

we move a point P of V to a point P′ of V ′. Regarding

(z) as complex parameters, we set

ψ(P,z) = ϕ(P′),

and consider a family of hypersurface pieces,

(G) : ψ(P,z) = 0, P ∈V.

We take ρ small enough, so that the boundary of any

hypersurface piece of (G) never intersects H.

Let H0 be the set of all points P of H such that

P does not belong to any hypersurface piece of (G).

Let A0 be an open subset with A0 b H0. As seen above,

there is a minimal open subset A of D, containing A0,
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which is convex with respect to (F). Since H is convex

with respect to (F), similarly to the case of H above,

we have A b H by Lemma 1. Now, we show that A ⊂ H0.

We describe a 2n-dimensional ball S with radius ρ

and center at the origin in (z)-space. The open subset

(H,S) ((x) ∈ H,(z) ∈ S) in (x,z)-space is convex with re-

spect to the set of all holomorphic functions in the

domain (x) ∈ D. Therefore by Theorem 2 there is a

meromorphic function G(P,Z) in (H,S) such that it is

congruent to

1/ψ(P,z)

in the intersection of (H,S) and (V,S), and it has

no pole elsewhere. (Theorem 2 is stated for finitely

sheeted domains of holomorphy, but in fact, it needs

only the properties which are endowed with D0 in

Lemma 1.)

Suppose that A is not contained in H0. Then, A,
which is an open set, contains a point outside H0. We

may take a point (z0) in S such that a point P0 of A lies

on ψ(P,z0) = 0. With a complex variable t, we consider
a function

G(P, tz0).48

Then this is meromorphic when P is in H and t
is in a neighborhood of the line segment (0,1), has
poles at P = P0, t = 1, and G(P,0) has no pole in a neigh-

borhood of A (over D). As t moves over the line seg-

ment (0,1) from 1 to 0, we denote by t0 the last t such
that G(P, tz0) carries a pole in A or its boundary. Then,

G(P, t0z0) has to carry a pole on the boundary of A and

to be holomorphic in A. et M be one of such poles. Let

P1 be a point of A, sufficiently close to M. Since A0 b H0

and M is not a point of indeterminacy locus, we have

|G(P1, t0z0)|> max |G(A0, t0z0)|.

By Theorem 1, G(P, t0z0) is expanded to a series

of functions of (F), locally uniformly convergent in

A: This clearly contradicts the minimality of A. Thus,
“A ⊂ H0” holds.

Since A0 is an arbitrary open subset with A0 b H0,

the above consequence implies that the open set H0

satisfies Property (α). Therefore, H0 is convex with re-

spect to (F); this conclusion holds no matter how ρ is

small. Now, for sufficiently small ρ , E0 ⊂H0: This again

contradicts the minimality of H. C.Q.F.D.

§9

The following two lemmata are easily deduced

from Lemma 3.

48 (Note by the translator.) In the manuscripts of Oka Library
[26], References of Part I of the present article, this is mis-
printed as G(P, t,z0): It is confirmed to see the 11th docu-
ment, 1943, Catalogue of Dr. Kiyoshi Oka’s own handwriting
manuscripts in the web-site of [26].

Lemma 4. Let ∆ be a univalent domain of (x)-space
which is convex with respect to polynomials, and let

ϕ(x) be a real-valued continuous function in a neigh-

borhood of ∆, satisfying Condition 2◦ stated in Lemma

II. If ∆α = {x ∈ ∆ : ϕ(x)< α} for an arbitrarily given real

number α , then ∆α is convex with respect to polynomi-

als, provided that it exists.

Proof. It follows from Lemma 3 that there is a uni-

valent minimal open subset H containing ∆α , which

is convex with respect to polynomials. Clearly, H ⊂ ∆.

Therefore, ϕ(x) is defined in a neighborhood of H. Let

H̄ be the closure of H, and let β be the maximum value

of ϕ(x) on H̄. There are points of H̄ with ϕ(x) = β . Let

M be one of them. Since ϕ(x) satisfies Condition 2◦, M
lies on the boundary of H. Furthermore, by the same

property, there is a hypersurface in a neighborhood

of M, passing through M and no other point of H̄. By

Lemma 3, M must be a boundary point of ∆α . It fol-

lows that β =α , and so H =∆α . Therefore, ∆α is convex

with respect to polynomials. C.Q.F.D.

Lemma 5. Let ϕ(P) be a real-valued continuous func-

tion in a domainD of (x)-space, satisfying Condition 2◦

in Lemma II. Let ∆ be a domain of holomorphy such

that ∆ bD. Put Dα = {P ∈D : ϕ(P)< α} for a real num-

ber α . If Dα b ∆, then Dα is convex with respect to all

holomorphic functions in ∆.

Since ∆ b D, ∆ is finitely sheeted. Thus, ∆ is a

finitely sheeted domain of holomorphy, and Dα b ∆.

Hence, Lemma 3 can be applied for ∆α , and the rest

is exactly the same as above.

We next state the theorems of H. Cartan–P.

Thullen and H. Behnke–K. Stein:

The Second Theorem of H. Cartan–P. Thullen. Let D

be a domain of (x)-space, and let (F) be the family of all

holomorphic functions inD. If the following two condi-

tions are satisfied, then D is a domain of holomorphy.

1◦ For an arbitrary set D0 with D0 b D, there is an

open set D′ with D0 bD′ bD such that for every

boundary point M of D′ there is a function f (P) of
(F), satisfying | f (M)|> max | f (D0)|.

2◦ For distinct two points P1, P2 of D, there is a func-

tion f (P) of (F) with f (P1) 6= f (P2).
49

Lemma of H. Behnke–K. Stein. Let D be a domain of

(x)-space, and let

D1,D2, . . . ,Dp, . . .

be a sequence of open subsets ofD such thatDp bDp+1

and the limit is D. We assume:

49 The original authors stated this Second Theorem (also,
the First Theorem) in terms of K-convexity, but we stated it
in the form above for convenience: The proof is fully similar
and direct.
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1◦ Every Dp is convex with respect to the family

(Fp+1) of all holomorphic functions in Dp+1;

2◦ For any two distinct points P1,P2 of Dp, there is a

function f (P) in (Fp+1) with f (P1) 6= f (P2).

Then, Dp has the same properties as 1◦ and 2◦ above
with respect to the family (F) of all holomorphic func-

tions in D.50

Proof. (Since Dp+1 is a domain of holomorphy by the

Second Theorem of Cartan–Thullen), it follows from

Theorem 1 that every holomorphic function ϕ(P) in
Dp is expanded to a series of functions of (Fp+1),

locally uniformly convergent in Dp. This holds for

p+1, p+2, . . ., as well, and so ϕ(P)may be similarly ex-

panded to a series of functions of (F). Therefore, Dp

clearly has properties 1◦ and 2◦ with respect to (F).

C.Q.F.D.

Theorem of H. Behnke–K. Stein. Let D be a domain

of (x)-space. Assume that for an arbitrary subset D0

with D0 bD, there is a domain of holomorphy D′ with

D0 ⊂D′ bD. Then, D is a domain of holomorphy.51

Proof. Since D′ is a domain of holomorphy, it is pseu-

doconvex by F. Hartogs. Therefore it is inferred from

Corollary 2 of Theorem 2 in the IX-th Report52 that D

is pseudoconvex. Thus, there is a function ϕ0(P) given
in Lemma II forD. By Lemma 5,Dα (ϕ0(P)<α , P∈D) is

convex with respect to all of holomorphic functions

in a domain of holomorphy D′ with Dα b D′. There-

fore, if α, β are arbitrary real numbers with α < β ,

Dα satisfies the two conditions stated in Lemma of

Behnke–Stein with respect to all of holomorphic func-

tions in Dβ , and hence Dα satisfies the same with re-

spect to all of holomorphic functions in D. Therefore

by the Second Theorem of Cartan–Thullen, D is a do-

main of holomorphy. C.Q.F.D.

We here generalize a bit more some parts of Lem-

mata 4 and 5.

Lemma 6. Let D be a finitely sheeted domain of holo-

morphy over (x)-space, and let ϕ(P) be a real-valued

continuous function in D, satisfying Condition 2◦ in

Lemma II. If Dα = {P ∈D : ϕ(P)< α} for an arbitrarily

given real number α , then, every connected compo-

nent of Dα is a domain of holomorphy (provided that

Dα is not empty).53

50 H. Behnke–K. Stein: Konvergente Folgen von Regularitäts-
bereichen und die Meromorphiekonvexität, 1938 (Math. An-
nalen).
51 The same as 50.
52 (Note by the translator.) This is the IX-th Report of the
present series VII–XI, 1943.
53 In fact, Dα is convex for the family of all holomorphic
functions in D.

Proof. Suppose that Dα exists. Since D is a domain of

holomorphy, thanks to F. Hartogs, D is pseudocon-

vex, so that there is a real-valued function ψ(P) in D,

stated in Lemma II. Let β be a real number with β < α ,

and let γ be an arbitrary number. We consider an open

set defined by

(Dβγ) P ∈D, ϕ(P)< β , ψ(P)< γ.

Since D is a finitely sheeted domain of holomorphy

and Dβγ b D, we can apply Lemma 3 with E0 = Dβγ .

Hereafter, fully in the same way as the case of Lemma

4, we easily see that Dβγ is convex with respect to all

of holomorphic functions inD. Therefore,Dβγ ⊂D, so

that by the Second Theorem of Cartan–Thullen, each

connected component of Dβγ is a domain of holo-

morphy. Note that Dβγ bDα , and Dβγ can be chosen

arbitrarily close to Dα . It follows from Theorem of

Behnke–Stein that each connected component of Dα

is a domain of holomorphy.54 C.Q.F.D.

§10

We return to our theme. In first, we claim that a

pseudoconvex domain is a domain of holomorphy.

We consider a finitely sheeted domain D in

(x)-space. We write

x1 = ξ + iη

with real and imaginary parts. Let a1 and a2 be real

numbers such that

a2 < 0 < a1,

and denote by D1 the part of D with ξ <a1, by D2 the

part of D with ξ > a2, and set D3 = D1 ∩D2. Assum-

ing that the parts of D with ξ <a2 and ξ >a1 are not

empty, we take points Q1, Q2 therein respectively. As-

sume that every connected component of D1 and D2 is

a domain of holomorphy. Then, necessarily so is D3.

Since a domain of holomorphy is pseudoconvex

by F. Hartogs, D is pseudoconvex. We may consider a

real-valued function ϕ0(P), stated in Lemma II for this

D. With a real number α , we consider a subset Dα of

D such that ϕ0(P)<α . For a large α , Dα contains the

fixed points Q1 and Q2 in one connected component

denoted by A. It is noted that A is bounded and finitely

sheeted. We denote respectively by A1, A2, A3 the parts

of A with ξ <a1, ξ >a2, and a2 <ξ <a1. It follows from

54 By F. Hartogs, domains of holomorphy are pseudoconvex,
so that we easily see the property of pseudoconvex domains
by Lemma 4 together with the theorems of the present sec-
tion and those of the IX-th Report: Let ϕ(x) be a pseudoconvex
function in a neighborhood of a 2n-dimensional ball S, and let
Sα denote the sets of all points x of S with ϕ(x) < α (α is an
arbitrary real number). Then, Sα , if exists, is pseudoconvex.
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Lemma 6 that every connected component of A1, A2

and A3 is a domain of holomorphy.

We denote by Γ the boundary of A over ξ =0. Let M
be any point of Γ. Then, there is a hypersurface piece

σ defined locally in a neighborhood of M and pass-

ing through M such that σ0 \ {M} lies only in such a

part of a neighborhood of σ in D that ϕ0(P) > α . Let

ψ(P)=0 (ψ(P) is a holomorphic function) be a defin-

ing equation of σ . Choose β with α < β , sufficiently

close to α . Then σ does not have the boundary point

in Dβ (ϕ0(P)< β ). (Here, if necessary, we take out a

neighborhood of the boundary of σ .) Let B denote the

part of Dβ with a2<ξ <a1. Then, B is finitely sheeted,

and every connected component of B is a domain of

holomorphy. Therefore, by Theorem 2 there is a func-

tion G(P), meromorphic in B with poles 1/ψ(P) only on
σ and no other poles. In A3, G(P) is holomorphic. For

every point M of Γ, there is such a function G(P) as-
sociated. Also, every connected component of A3 is a

domain of holomorphy (cf. the method of the proof

of Lemma 1). Therefore, if positive δ0 and ε0 are cho-

sen sufficiently small, by the standard arguments we

easily deduce the existence of holomorphic functions

f j(P) ( j=1,2, . . . ,ν) in A3 satisfying the following three

conditions:

1◦ Let A0 denote the set of all points of A with |ξ |<
δ0, | f j(P)|<1 ( j=1,2, . . . ,ν). Then, A0 b A.

2◦ Let p be anyone of 1,2, . . . ,ν . Then there is no point
of D3 with | fp(P)|≥1−ε0, lying over |ξ −a1|<δ0, or

over |ξ −a2|<δ0.

3◦ The vector-valued function [ f1(P), f2(P), . . . , fν(P)]
never takes the same vector-value for mutually

overlapped two points of A0.

Further, letting A4 be the set of points of A3 satis-

fying | f j(P)|<1 ( j=1,2, . . . ,ν), we see that A4 can be cho-

sen arbitrarily close to A3. The union of A4 and the part

of A satisfying ξ ≤a2 or ξ ≥a1 is an open set. Choose

f j(P) ( j = 1,2, . . . ,ν) so that A4 is sufficiently close to

A3. Then that open set contains the fixed points Q1

and Q2 in the same connected component, which is

denoted by ∆. The domain ∆ satisfies the conditions

given in §4.

If α is chosen to be larger than a certain num-

ber α0, we may consider A as a connected compo-

nent of Dα , which contains Q1 and Q2. Choose α ′ with

α0<α ′<α . In the same way as we associate α with A,
we associate α ′ with A′. Needless to say, A′ b A. Let A

′
1

(resp. A
′
2) denote the part of A′ with ξ <0 (resp. ξ > 0).

Since ∆ can be chosen arbitrarily close to A, we imme-

diately obtain the following consequence from the re-

sult of the previous chapter: For a given holomorphic

function Φ(P) in the open set, P∈A with |ξ |<δ0 (here, δ0

can be arbitrarily small), we can construct a holomor-

phic function Φ1(P) (resp. Φ2(P)) in A
′
1 (resp. A

′
2), which

is holomorphic in the part of A′ with ξ = 0, such that

Φ1(P)−Φ2(P) = Φ(P) holds there identically.

Suppose that a pole (℘) is given in A. By Theorem
2 we may construct a meromorphic function G1(P) in
A1 with pole (℘). It is the same in A2, and so the mero-

morphic function is denoted by G2(P). The difference
G1(P)−G2(P) is holomorphic in A3. By the result above

we see the following: For a Cousin I Problem given in

A we can solve it in A′.

We come back to A: A is a connected component of

Dα (α0<α), containing Q1 and Q2. Let M be any bound-

ary point of A. Let (γ) be the polydisk described over

D with center M. For sufficiently small (γ), there is a

hypersurface piece σ defined in (γ), passing through

M, which lies in ϕ0(P)>α except for M. Let σ be de-

fined by

ψ(P) = 0, P ∈ (γ),

where ψ(P) is a holomorphic function in (γ). If neces-

sary, (γ) is chosen a little smaller, there is α ′′ close to

α with α <α ′′, and the associated domain A′′ contains

no boundary point of σ . Therefore, by the arguments

as above, choosing α ′′ even closer to α , we may ob-

tain a meromorphic function G(P) in A′′ such that it

has poles 1/ψ(P) over σ , and has no other pole. Here

M is an arbitrary boundary point of A.
We examine the two conditions of the Second

Theorem of Cartan–Thullen for A. Let (F) denote the
set of all holomorphic functions in A. Clearly by what
we have seen above, 1◦ A is convex with respect to (F).

Let P1,P2 be an arbitrary pair of mutually over-

lapped points of A and denote the common base point

by P. We describe a half-line L with one end at P in

(x)-space. We describe a half-line on A starting from

P1 over L. Since A is bounded, this half-line necessarily

intersects the boundary of A. Let M1 be such a point,

and let L1 be the line segment (P1,M1). Similarly, we de-

scribe a half-line L2 starting from P2. Suppose that the

length of L1 does not exceed that of L2. (Clearly, this

assumption does not lose generality.) We denote by

G0(P) the function G(P) associated with M = M1; G0(P)
is holomorphic in A, holomorphic at every boundary

point of A except for M1, and has a pole at M1. There-

fore, G0(P) has to have different function elements at

P1 and P2. Thus we have 2
◦: For any distinct two points

of A, there is necessarily a function of (F) having dif-

ferent values at those points.

Thus, Conditions 1◦ and 2◦ are satisfied, and so by
the Second Theorem of Cartan–Thullen, A is a domain

of holomorphy. Since D is a finitely sheeted domain,

and A can be chosen arbitrarily close to it, Theorem of

Behnke–Stein implies that D is a domain of holomor-

phy.

Now, we assume thatD is a pseudoconvex domain

in (x)-space. For this D we take a function ϕ0(P) given
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in Lemma II, and consider Dα (ϕ0(P)<α) with an ar-

bitrary real number α . (Here we take α enough large,

so that Dα really exists.) As in the proof of Theorem

2 (cf. §3 and the last Report, §3), we divide Dα into

small 2n-dimensional cubes (open sets) (A); here how-
ever, (A) are not necessarily of complete form. After

sufficiently fine division, it follows from Lemma 4

that every (A) (not mentioning the case of complete

form, but also in another case) is a univalent open

set, convex with respect to polynomials. Therefore,

by the Second Main Theorem of Cartan–Thullen every

connected component of them is a domain of holo-

morphy. After taking the division sufficiently fine,

it is the same for (B) ((B)0 is a 2n-dimensional cube

with center (A)0, consisting of 9n number of (A) and
some parts of their boundaries, which may be not

of complete form). Hence, from the result obtained

above we easily infer in the same way as in the case of

Cousin I Problem that every connected component of

Dα is a domain of holomorphy. Therefore, Theorem

of Behnke–Stein implies D being a domain of holo-

morphy.

Theorem I. A finite pseudoconvex domain with no in-

terior ramification point is a domain of holomorphy.55

By this theorem, the problem to show a domain

being of holomorphy is reduced to show the pseudo-

convexity of the domain.56

§11

We extend the definition of convexity (the last Re-

port, §1) a little, and redefine it as follows:

Definition. Let D be a finite domain over (x)-space
with no interior ramification point, and let (F) be a

family of holomorphic functions in D. The domain D

is said to be convex with respect to (F) if for every

subset D0 bD, there is an open set D′ with D0 ⊂D′ ⊂
D, bounded with respect to D, and satisfying that for

an arbitrary point P ∈D\D′ there is at least one func-

tion f (P) of (F) with | f (P0)| > max | f (D0)|. In the case

where D consists of finite or infinite number of dis-

joint domains satisfying the property above, we use

the same terminologies as defined.

55 To detour around the use of the First Theorem of
Cartan–Thullen, it suffices just to replace “domain of holo-
morphy” by “domain D satisfying the following two condi-
tions”: Condition 1◦, with (F) denoting the set of all holo-
morphic functions in D, D is convex with respect to (F).; 2◦,
for every pair of distinct points of D there is a function in
(F) having distinct values at the two different points. Conse-
quently, Theorem I and the First Theorem of Cartan–Thullen
are obtained simultaneously.
56 Cf. Report VI, Introduction. As an example we frequently
encounter, we consider a “Überlargerungsbereich” over a
pseudoconvex domain, which is pseudoconvex, too. There-
fore, for example, in the Second Theorem of Cartan–Thullen,
the second condition is unnecessary.

The convexity in the sense of this definition

clearly implies that of the former definition. It is con-

venient to consider the following convexity as well:

Definition. In the above setting,D is said to be strictly

convex with respect to (F) if for every subset D0 bD,

there is an open set D′ with D0 ⊂ D′ b D, satisfying

the condition mentioned above.

The strict convexity clearly implies the convexity.

If D is finitely sheeted, these two new notions of con-

vexity agree with the former one. When D is convex

(resp. strictly convex) with respect to the family of

all holomorphic functions in D, D is simply said to

be holomorphically convex (resp. strictly holomorphi-

cally convex).57

It has been a question since the last Report if a do-

main of holomorphy is strictly holomorphically con-

vex.58 We study it, here.

Lemma 7. In Lemma II (§7), Dα is convex with respect

to the family of all holomorphic functions in D.

Proof. Note that Dα is pseudoconvex (due to Lemma

4, the Second Theorem of Cartan–Thullen and Har-

togs’ Theorem). Therefore, Dα is a domain of holo-

morphy by Theorem I. Hence, with a real number β

such that α < β , Dα is convex with respect to the fam-

ily of all holomorphic functions in Dβ by Lemma 5.

Therefore, it follows from Lemma of Behnke–Stein

that Dα is convex with respect to the family of all

holomorphic functions in D. C.Q.F.D.

Theorem II. A finite domain of holomorphy is strictly

holomorphically convex.

Proof. Let D be a (finite) domain of holomorphy over

(x)-space. Let E bD be an arbitrary subset. We takeDα

in Lemma II so that E bDα . By Lemma 7 above, Dα is

convex with respect to the family of all holomorphic

functions in D, and then by Lemma 1, with regarding

D0 = Dα , we can choose an analytic polyhedron ∆ of

the form

(∆) P∈R, |xi|<r, | f j(P)|<1 (i=1,2, . . . ,n; j=1,2, . . . ,ν),

such that E b ∆. Here, f j(P) are functions of (F), and

R is a certain open set such that ∆ b R ⊂D.

57 H. Behnke and people of his school use “convexity” in
the sense of “strict convexity”. (Cf. Behnke–Thullen’s mono-
graph, the first two papers of H. Behnke–K. Stein referred at
the beginning of §1, in particular the second one.) Here, as
mentioned once before, the notion of global convexity with
respect to a family of holomorphic functions was introduced
by H. Cartan. (Cf. H. Cartan’s paper referred in the footnote
at the end of Report IV.)
58 Cf. its §1. We did not leave from univalent domains until
the first research project (from Report I to Report VI) was
finished: The reason was at this point.
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Let P0 ∈D\∆ be any point. It suffices to show that

for this P0 there is a function f (P) of (F) with | f (P0)|>
max | f (E)|. We take ∆′ with the same property as ∆ such

that ∆ b ∆′ and P0 ∈ ∆′. Let ∆′ be of the form:

(∆′)

P∈R′, |xi|<r′, |Fk(P)|<1 (i=1,2, . . . ,n;k=1,2, . . . ,µ).

Here, we choose r′ so that r≤r′. From ∆ and ∆′ we form

(∆′′) P∈R′, |xi|<r, | f j(P)|<1, |Fk(P)|<1

(i=1,2, . . . ,n; j=1,2, . . . ,ν ;k=1,2, . . . ,µ).

Clearly, ∆ is one or a union of several connected com-

ponents of ∆′′. If P0 does not belong to ∆′′, there exists

necessarily a function with required property among

xi, f j(P). If P0 belongs to ∆′′, we consider a function in

∆′′ such that it is 0 in ∆, and 1, elsewhere. Then this

function is holomorphic in ∆′′, and so by Theorem 1

it is expanded to a series of functions of (F), locally

uniformly convergent in ∆′′. Therefore, there is such

a required function in this case, too. C.Q.F.D.

Corollary. Let D be a finite domain of holomorphy

over (x)-space, and let D0 be an open subset of D, con-

vex with respect to the family of all holomorphic func-

tions in D. Then, D0 is strictly convex with respect to

(F).

Proof. Since D0 is convex with respect to (F), for any

subset E bD0, there is an open set D′ in D0 such that

E ⊂ D′ ⊂ D0, D
′ is bounded with respect to D0, and

D′ satisfies the condition stated in the definition of

“convexity”. On the other hand, the above Theorem

II implies the existence of an open set D′′ in D with

E ⊂ D′′ b D, which satisfies the same condition with

respect to D, and hence naturally with respect to D0.

We considerD′∩D′′ =D1. Then, E ⊂D1 ⊂D0 and satis-

fies this condition. Now, D′′ is finitely sheeted and D′

is bounded with respect toD0, so thatD1 bD0. There-

fore, D0 is strictly convex with respect to (F). C.Q.F.D.

From Theorem 1 and this corollary, we obtain the

following consequence:

Theorem III. Let D be a finite domain of holomorphy

over (x)-space, and letD0 be an open subset ofD, which

is convex with respect to the family (F) of all holomor-

phic functions in D. Then, every holomorphic function

in D0 is expanded to a series of functions of (F), con-

vergent locally uniformly in D0.

The following result is deduced from Theorem 2

and Theorems II and III:

Theorem IV. In a finite domain of holomorphy, Cousin

I Problem is always solvable.

(End, Report XI, 3.12.12)

(Translated by Junjiro Noguchi (Tokyo))
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