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Introduction

Dr. Tien-Yien Li, who coined the term “chaos” in

his famous paper “Period three implies chaos” with

Dr. James Yorke in 1975, passed away peacefully on

June 25, 2020, at the age of 75.
Dr. Li was born on June 28 of 1945 in Sha County,

Fujian Province of China. At age three, he followed

his parents to Taiwan, where he received traditional

Chinese education. He earned his B.S. in mathemat-

ics at the National Tsinghua University in Taiwan in

1968. He received his Ph.D. in mathematics from the

University of Maryland in the United States in 1974

under the guidance of Dr. James Yorke.

Dr. Li joined the faculty of the Department of

Mathematics at Michigan State University in 1976 and

was promoted to the rank of full professor in 1983.

He received the honorary title of University Distin-

guished Professor in 1998. He supervised 26 Ph.D. dis-
sertations in the general areas of dynamical systems

and numerical analysis. He retired as a University Dis-

tinguished Professor Emeritus in 2018 after spending

42 years at the university.

Dr. Li received the Guggenheim Fellowship in

1995, Michigan State University’s Distinguished Fac-

ulty Award as well as Frame Teaching Award in 1996,
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College of Sciences Distinguished Alumni Award of

the National Tsinghua University in 2002, Michi-

gan State University College of Natural Science’s

Outstanding Academic Advisor Award in 2006, and

National Tsinghua University’s Outstanding Alumni

Award in 2012.

Dr. Li was a trailblazer in several important fields

of applied mathematics and computational mathe-

matics. Some of his monumental accomplishments

include: he and Yorke’s paper, “Period three implies

chaos,” first formally encapsulated the concept of

“chaos” in mathematics; his proof of Ulam’s conjec-

ture is the fundamental work in the computation of

invariant measures of dynamical systems; his idea

and numerical method with R. B. Kellogg and Yorke

in computing Brouwer’s fixed point opened a new era

for the research in modern homotopy continuation

methods.

Although hemade numerous important contribu-

tions to other areas of mathematics during his aca-

demic career of five decades, such as the Cauchy

problem of ordinary differential equations in Ba-

nach spaces, solvingmultivariate polynomial systems

and algebraic eigenvalue problems, in this article,

we only survey Dr. Tien-Yien Li’s three most cele-

brated works, which were also done before his thir-

tieth birthday and which have had and will continue

to have deep impacts on mathematics and its appli-

cations.

In the next section we describe his most well-

known paper [6]. Section 3 will be on his pioneer-

ing work [4] in computational ergodic theory. Sec-

tion 4 will present his idea and construction [2] of

the first modern homotopy continuationmethod. The

contents of the article are partly based on [1, 5].
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“Period Three Implies Chaos”

The concept of chaos began to evolve in the

1880s when the great French mathematician Henri

Poincaré studied the three body problem, who found

that there can be orbits that are non-periodic and

yet not forever increasing nor approaching a fixed

point. Another great French mathematician Jacques

Hadamard of the same times also observed chaotic

motion in the “Hadamard billiards.” In the 1940s, En-

glish mathematicians Mary Cartwright and John Lit-

tlewood found chaotic dynamics of some nonlinear

differential equations. American meteorologist Ed-

ward Lorenz discovered chaos in his computer simu-

lation of weather prediction in the early 1960s. All

such observations and perspectives of chaos were

mainly from physical sciences. However, the first for-

mal formation of chaos in mathematics was given in

Tien-Yien Li and James Yorke’s paper “Period three

implies chaos” in 1975.

One Friday afternoon in March 1973, when Tien-

Yien Li entered his Ph.D. thesis advisor’s office, Yorke

immediately said to him, “I have a good idea for

you.” This idea had evolved in his head after reading

Lorenz’s four papers concerning weather prediction,

which had been passed to him by his meteorologist

colleague Allen Feller in the Institute of Fluid Dynam-

ics and Applied Mathematics, now called the Institute

of Physical Sciences and Technology, at the Univer-

sity of Maryland. Yet he had not been able to prove

it completely. Two weeks later, Tien-Yien Li, skillfully

manipulating his calculus techniques, proved what is

later known as the “Li-Yorke chaos.”

Li-Yorke Theorem. Let I be an interval and let S : I → I
be continuous. Assume that there is a point a ∈ I such
that

S3(a)≤ a < S(a)< S2(a) or S3(a)≥ a > S(a)> S2(a),

then for every n = 1,2, . . ., there is a periodic point of

period n in I. Furthermore, there is an uncountable set

A ⊂ I, containing no periodic points, that satisfies the

following conditions:

(1) for every x 6= y in A,

limsup
n→∞

|Sn(x)−Sn(y)|> 0 and liminf
n→∞

|Sn(x)−Sn(y)|= 0;
(1)

(2) for every x ∈ A and periodic point p ∈ I,

limsup
n→∞

|Sn(x)−Sn(p)|> 0.(2)

In particular, when S3(a) = a, namely S has a

period-3 point, then (1) and (2) are satisfied, which ex-

plains the short title of the resulting paper. However,

the more general assumption of S3(a) ≤ a or S3(a) ≥ a

has far richer applicability. For example, in popula-

tion dynamics, it is rare that the third year population

S3(a) is exactly the same as a of the initial year.

The mathematical tool that Tien-Yien Li used to

prove the theorem is the intermediate value theorem

from calculus, and he applied it in a smart way. Awell-

known direct application of the intermediate value

theorem is the Brouwer fixed point theorem in one

dimension: if S is a continuous function on a closed

and bounded interval J such that S(J)⊂ J, then S has a
fixed point in J. Tien-Yien Li discovered its “dual ver-

sion” in which “⊂” is changed to “⊃”: if the continuous
function S satisfies S(J) ⊃ J, then S has a fixed point

in J. By using repeatedly another result of his discov-

ery that if J0 is a closed subinterval of S(J), then there

is a closed subinterval J1 of J such that S(J1) = J0, to-

gether with the above fixed point theorem, Tien-Yien

Li proved the Li-Yorke theorem.

After finishing it, according to Yorke’s intention,

they sent the paper to the American Mathematical

Monthly, which is the most read mathematics jour-

nal in the world. However, it was rejected because its

writing style lacked the appealing to the major pool

of college students. The editor agreed that they may

re-submit the paper if the authors could rewrite it to

fit college students. Since Tien-Yien Li was busy with

research on differential equations and the others, this

paper sat untouched on his desk for nearly one year.

The year 1974 was a “special year” of biomathe-

matics in the Department of Mathematics at the Uni-

versity of Maryland. In the first week of May, the

department invited Robert May of Princeton Univer-

sity to lecture for a week. On the last day, he lec-

tured about the logistic model Sα(x) = αx(1− x) and

reported on its iteration sequences’ complicated dy-

namical behavior as the parameter α is near 4, yet he
did not offer an explanation, thinking that the phe-

nomenon is perhaps caused by computation errors.

After Yorke heard this lecture, he gave May the pa-

per of the Li-Yorke theorem on their way to the air-

port. May was stunned upon reading the conclusion

of the paper, and he recognized that this theorem had

fully explained his uncertainties. At once, Yorke re-

turned from the airport and contacted Tien-Yien Li,

“We should rewrite this paper immediately.” The task

was completed within two weeks, and it was accepted

by the American Mathematical Monthly. The paper

appeared in the December issue of 1975.

In the Li-Yorke theorem, expressions of (1) mean

that for any two points x 6= y in A, the distance se-

quence {|Sn(x)− Sn(y)|} has a subsequence that con-

verges to 0 and a subsequence that converges to a

positive number, and inequality (2) indicates that for

any x ∈ A and periodic point p of S, the sequence

{|Sn(x)−Sn(p)|} has a subsequence that converges to a
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positive number. These fully exhibit the sensitive de-

pendence on initial conditions and the resulting un-

predictable nature for the eventual behavior of the

dynamics of S, thus giving strictly a mathematical

definition of chaos. The Li-Yorke theorem thoroughly

unveiled the nature and characteristics of chaos the

first time in mathematics, and was credited by Free-

man Dyson of the Institute of Advanced Studies as

“one of the immortal gems in the literature of math-

ematics” in the 2008 Einstein Lecture article “Birds

and Frogs.” The paper “Period three implies chaos”

has been cited 4882 times as of September 19, 2020

according to Google Scholar.

Ulam’s Conjecture

Chaos theory began in ergodic theory, which is a

branch of mathematics that studies statistical prop-

erties of deterministic systems. An important topic

in ergodic theory concerns the existence and compu-

tation of an absolutely continuous invariant measure

associated with a mapping S, which is reduced to the

existence and computation of a fixed density func-

tion of the corresponding Frobenius-Perron operator

PS : L1(0,1)→ L1(0,1) defined by

PS f (x) =
d
dx

∫
S−1([0,x])

f (t)dt, ∀ f ∈ L1(0,1), x ∈ [0,1]

when S : [0,1]→ [0,1]. To a chaotic dynamical system,

such an invariant measure gives the probability dis-

tribution of chaotic orbits in the phase space, and it

is intimately related to crucial mathematical concepts

such as entropy and the Lyapunov exponent.

In 1960, Polish-born American mathematician

Stan Ulam, father of the American hydrogen bomb,

proposed a numerical scheme in his famous book

[7], entitled A Collection of Mathematical Problems, to

calculate a fixed density function of the Frobenius-

Perron operator associated with a nonlinear mapping

S : [0,1]→ [0,1]. He partitioned [0,1] into n subintervals

0 = x0 < x1 < · · ·< xn−1 < xn = 1. Next, he defined an n×n
row stochastic matrix Pn = [pi j] whose (i, j) entry is

pi j =
m{[xi−1,xi]∩S−1([x j−1,x j])}

xi − xi−1
,

where m is the Lebesgue measure. The number pi j

quantifies the fraction of those points in the i-th
subinterval [xi−1,xi] that are mapped into the j-th
subinterval [x j−1,x j] under S. In Ulam’s method, one

computes a normalized nonnegative left eigenvector

vn of Pn with respect to eigenvalue 1, so that the cor-

responding piecewise constant function fn with func-

tion values on the subintervals given by the compo-

nents of vn is a density function. This density function

fn can be considered as an approximate fixed den-

sity function of the Frobenius-Perron operator PS. For

the convergence of this numerical scheme based on

a probability argument, Ulam presented his famous

conjecture: if PS has a fixed density function, then the

sequence { fn} converges to a fixed density function f ∗

of PS as n approaches infinity.

In 1973, Polish Academician Andrzej Lasota and

Yorke solved in their paper [3] another problem that

Ulam proposed in A Collection of Mathematical Prob-

lems by proving that, if S : [0,1] → [0,1] is a piecewise

C2 mapping such that infx∈[0,1] |S′(x)| > 1, then the cor-

responding Frobenius-Perron operator PS has a fixed

density function. The key to proving this theorem is

using the Yorke inequality relating the variations of a

function and its product with the characteristic func-

tion of a subinterval. For the given mapping S, the
Yorke inequality implies that a positive constantC ex-

ists such that for all functions f of bounded variation,

there holds the following Lasota-Yorke inequality

1∨
0

PS f ≤ 2
infx∈[0,1] |S′(x)|

1∨
0

f +C
∫ 1

0
| f (x)|dx.

When Tien-Yien Li read the aforementioned

Lasota-Yorke theorem, he began to think about how

to numerically compute a fixed density function, the

existence of which is guaranteed. He keenly sensed

that the concept of functions of bounded variation

and Helly’s lemma in real analysis on a sequence of

functions of uniform bounded variation must play a

key role in proving the convergence of the numerical

method. First, he defined a finite dimensional oper-

ator Qn associated with a partition 0 = x0 < x1 < · · · <
xn−1 < xn = 1 of the interval [0,1]. The operator Qn maps

each f ∈ L1(0,1) into a piecewise constant function

that takes the average value of f on each [xi−1,xi] as its

value on it. Moreover, Qn is not only a Galerkin pro-

jection that projects the L1-space onto the subspace

of piecewise constant functions, but also a Markov

operator that preserves the positivity and integral of

nonnegative functions. If we compose Qn with the

Frobenius-Perron operator PS to form Pn = QnPS, then

the matrix representation of Pn restricted to the sub-

space of all piecewise constant functions under the

canonical density functions basis is a row stochastic

matrix. Utilizing Brouwer’s fixed point theorem, Tien-

Yien Li directly proved that Pn has a piecewise con-

stant fixed density function for every natural num-

ber n, and with the help of the Lasota-Yorke inequal-

ity and Helly’s lemma, he proved the convergence of

the numerical method that he constructed for the

Lasota-Yorke class of interval mappings. Specifically,

he proved that the sequence { fn} of approximate

fixed density functions contains a subsequence that

converges in L1-norm to a fixed density function f ∗ of
the Frobenius-Perron operator.
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Actually Tien-Yien Li independently invented

Ulam’s method. He had not known that the matrix

representation of the piecewise constant approxima-

tion method that he constructed is the same as what

Ulam proposed in his book, and he in fact proved

Ulam’s conjecture for the Lasota-Yorke class of one

dimensional mappings. After he finished his paper,

he was told about Ulam’s work around 15 years be-

fore. For this reason, he added “a solution to Ulam’s

conjecture” to his paper’s original title “Finite approx-

imation for the Frobenius-Perron operator.”

Ulam’s method and Tien-Yien Li’s solution of

Ulam’s conjecture initiated a new area of computa-

tional ergodic theory. In the following four decades,

the computation of invariant measures has become

an active branch of ergodic theory and nonlinear anal-

ysis. In the literature related to Ulam’s method and

its variants for the computation of invariant mea-

sures, the paper by Tien-Yien Li, published by the

Journal of Approximation Theory in 1976, became

one of the most essential and most widely cited pa-

pers. In addition, his thought process inspired his stu-

dent Jiu Ding and collaborator Aihui Zhou to prove

the convergence of Ulam’s method for the Góra-

Boyarsky class of multi-dimensional piecewise ex-

panding transformations 20 years later.

Modern Homotopy Continuation
Method

Solving nonlinear equations numerically is of

great importance in science and engineering. New-

ton’s method is a classic numerical scheme and its

modern theory was mainly developed by the Soviet

mathematician Leolid Kantorovich and his school. But

this method and its variants have a shortage of mere

local convergence, that is, only when the initial point

is near the unknown solution can the convergence

of the method be guaranteed. In other words, such

nonlinear solvers lack global convergence in general.

The idea of homotopy continuation helps eliminate

the drawback. Suppose we want to solve the equation

f (x) = 0, where f : Rn →Rn is a nonlinear mapping. We

first choose a “trivial equation” f0(x) = 0 whose solu-

tion x0 is available, say f0(x) = x−x0. Then we define a

homotopy mapping H : Rn × [0,1]→ Rn by

H(x, t) = (1− t) f0(x)+ t f (x).(3)

The traditional homotopy continuation method,

which had emerged as early as in the 1950s, is based

on the assumption that the inverse image H−1(0) of
0 under H can be represented as a curve (x(t), t) ∈
Rn× [0,1]with 0≤ t ≤ 1, which connects the known zero

point x0 of f0 and a zero point x∗ of f .

In 1953, the Soviet mathematician D. Davi-

denko introduced the initial value problem x′(t) =
−Hx(x, t)−1Ht(x, t) and x(0) = x0 to numerically solve the

homotopy equation, which was obtained by differen-

tiating the identity H(x(t), t) ≡ 0. By numerically inte-

grating the above initial value problem from t = 0 to

t = 1, a zero point x∗ of f can be found. However, this

method has the following fatal weakness: in general,

the homotopy curve x(t) may not always be mono-

tonic in t. In other words, it may turn around with

respect to t and Hx(x, t)−1 may not exist at the turning

point.

But, using ideas from differential topology, the

field of modern homotopy continuation methods was

born from a graduate course that Tien-Yien Li took.

As mentioned in Section 2, the simplest case of

Brouwer’s fixed point theorem is a consequence of

the intermediate value theorem, but for dimension

more than one, the proof of Brouwer’s fixed point the-

orem, which was mainly due to the Dutch mathemati-

cian L. E. J. Brouwer in his 1912 proof for the case of

dimension 2, is not trivial. Now, anyone who has stud-

ied algebraic topology or nonlinear functional analy-

sis would know the famous Brouwer’s fixed point the-

orem: a continuous mapping g from an n-dimensional

closed ball Dn of the Euclidean space Rn into itself

must have a fixed point. A short and beautiful proof

of this theorem was given by Morris W. Hirsh in

1963 with an argument by contradiction. Suppose g
is smooth and has no fixed point. Then for each x ∈Dn

let f (x) be the intersection of the line segment from

g(x) to x extended to the sphere Sn. It is easy to see that

f (x) = x if x is on the sphere. Thus, we obtain a smooth

mapping from the closed ball Dn onto its boundary Sn

such that its restriction to Sn is an identity mapping.

However, differential topology tells us this is impos-

sible.

In 1973, while Tien-Yien Li attended Professor

Bruce Kellogg’s course “Numerical Solutions of Non-

linear Equations” and heard the above proof of

Brouwer’s fixed point theorem, a marvelous idea

emerged: in Hirsh’s proof by contradiction, if g were

to have no fixed point at all, then for the mapping f
defined above, for almost all y ∈ Sn the smooth curve

f−1(y), which is the inverse image of y under f , would
have no place to reach. Thus, g must have a fixed

point. However, if we admit g has fixed points in the

first place, f can still be defined except on those fixed

points of g. Apparently for y ∈ Sn, the curve f−1(y)
must go toward the set of fixed points of g. More pre-

cisely, let F be the nonempty set of all fixed points of

a smoothmapping g :Dn →Dn, we can define a smooth

mapping f : Dn \F → Sn from the n-dimensional mani-

fold Dn \F to the (n−1)-dimensional sphere Sn. From

Sard’s theorem of differential topology, y is a regular

value of f for almost all y ∈ Sn. It follows that f−1(y) is
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a one dimensional manifold starting from y, that is,
f−1(y) is a smooth curve. The other end of this curve

can neither come back to the sphere nor stop inside

Dn \F . Therefore it must approach the fixed point set

F of g. If this curve can be numerically followed, a

fixed point of g can be calculated. Under the encour-

agement of Professors Kellogg and Yorke, Tien-Yien

Li began to implement this idea on computer.

In the next two months, he spent nearly every-

day with a computer for which the data could only be

inputted with cards, each time without success. The

stacks of paper that the computer spit out foreshad-

owed the program’s failure. Tien-Yien Li was not de-

feated; he persevered in modifying the program. He

modified and fixed, taking small steps from a com-

puting novice down the path to expertise. At last, he

beheld a single sheet of output from the computer,

and on that sheet was a successful computation of

a Brouwer’s fixed point! He finally made it! Thus,

a new numerical method for computing Brouwer’s

fixed points was born. It also paved the way for the

modern homotopy continuation method.

The revolutionary idea of the resulting Kellogg-

Li-Yorke paper [2] is: as long as 0 is a regular value

of the homotopy mapping H given by (3), the implicit

function theorem ensures that the smooth homotopy

curve must exist, and in this case the coordinates

vector variable x and the parameter variable t pos-

sess the same role. They may both be viewed as func-

tions of the curve’s arc length s for instance. There-

fore, regardless of whether the curve “turns back”

with respect to t or not, one can numerically follow

the homotopy curve and find a solution by using the

predictor-corrector technique. This is an important

application of modern theoretical mathematics, espe-

cially differential topology, to the field of computa-

tional mathematics.

Interestingly, Kellogg-Li-Yorke’s calculation of

Brouwer’s fixed point was not the first time it was

done. They did not know that in 1967, Yale Uni-

versity’s economics professor Herbert Scarf reduced

the equilibrium point for a model in econometrics

to a fixed point problem of a continuous mapping f
from an n-dimensional standard simplex into itself.

According to Brouwer’s fixed point theorem, such a

fixed point does exist. Scarf used the so-called sim-

plicial triangulation of the simplex and then utilized

Lemke’s complementarity pivoting procedure to find

an approximate fixed point, resulting in a simplicial

fixed point algorithm. In the 1970s, this algorithm

was extended to a class of simplicial algorithms to

solve systems of nonlinear equations, which became

a hot research topic during that period. In 1974, when

the organizing committee of the First International

Conference on Computing Fixed Points with Applica-

tions held at Clemson University found out Kellogg-

Li-Yorke’s new method, the committee immediately

provided them with two airline tickets so that they

may report their findings at the conference. As Scarf

wrote in the Introduction of the conference proceed-

ings Fixed Point Algorithms and Applications:

For many of us one of the great surprises of the
conference at Clemson was the paper by Kellogg,
Li and Yorke which presented the first computa-
tional method for finding a fixed point of a con-
tinuous mapping making use of the considerations
of differential topology instead of our customary
combinatorial techniques. . . .

Today, Kellogg, Li, and Yorke together are widely

regarded as the originators of the modern homotopy

continuation method for solving nonlinear problems,

and particularly, with his collaborators and students,

Dr. Tien-Yien Li had contributed tremendously to this

important field via his extensive and deep research on

polynomial systems and algebraic eigenvalue prob-

lems.
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