Positive Structures in Lie Theory

by G. Lusztig"*

This paper is based on a lecture given at the In-
ternational Consortium of Chinese Mathematicians,
Taipei, December 2018.

0.1

In late 19th century and early 20th century, a new
branch of mathematics was born: Lie theory or the
study of Lie groups and Lie algebras (Lie, Killing,
E. Cartan, H. Weyl). It has become a central part of
mathematics with applications everywhere. More re-
cent developments in Lie theory are as follows.

- Analogues of simple Lie groups over any field (in-
cluding finite fields where they explain most of
the finite simple groups): Chevalley 1955;

- infinite dimensional versions of the simple Lie al-
gebras/simple Lie groups: Kac and Moody 1967,
Moody and Teo 1972;

- theory of quantum groups: Drinfeld and Jimbo
1985.

0.2

In Lie theory to any Cartan matrix one can asso-
ciate a simply connected Lie group G(C); Chevalley
replaces C by any field k and gets a group G(k). In
[L94] we have defined the totally positive (TP) sub-
monoid G(Rs) of G(R) and its “upper triangular” part
U™ (Rso). In this lecture we will review the TP-monoids
G(Rs9), UT(Rs) attached to a Cartan matrix, which
for simplicity is assumed to be simply-laced. In [L94]
the nonsimply laced case is treated by reduction to
the simply laced case.
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0.3

The total positivity theory in [L94] was a starting
point for

a solution of Arnold’s problem for real flag man-

ifolds, Rietsch 1997;

- the theory of cluster algebras, Fomin, Zelevinsky
2002;

- a theory of TP for the wonderful compactifica-
tions, He 2004;

- higher Teichmiiller theory, Fock, Goncharov
2006;

- the use of the TP grassmannian in physics, Post-
nikov 2007, Arkani-Hamed, Trnka 2014;

- a theory of TP for the loop group of GL,, Lam,
Pylyavskyy 2012;

- atheory of TP for certain nonsplit real Lie groups,
Guichard-Wienhard 2018;

- a new approach to certain aspects of quantum

groups, Goncharov, Shen.

0.4

Schoenberg (1930) and Gantmacher-Krein (1935)
(after initial contributions of Fekete and Polya (1912))
defined the notion of TP matrix in GL,(R): a matrix all
of whose s x s minors are > 0 for any s. Gantmacher
and Krein showed that if for any s, all s x s minors
of a matrix A are > 0 then the eigenvalues of A are
real, distinct and > 0. For example, the Vandermonde
matrix (A;;), Aij :x{_1 with x; <x, < --- < x, real and
> 0 is of this type. According to Polya and Szego, the
matrix (A;), Aij = exp(xy;) with x; > xp > -+ > x,, y1 >
y2 > --- >y, real is also of this type.

The TP matrices in GL,(R) form a monoid under
multiplication. This monoid is generated by diagonal
matrices with > 0 entries on diagonal and by matrices
which have 1 on diagonal and a single nonzero entry
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off diagonal which is > 0 (Whitney, Loewner, 1950’s).
Our definition [1.94] of the TP part of any G(R) was
inspired by the work of Whitney, Loewner.

However, to prove properties of the result-
ing monoid (such as the generalization of the
Gantmacher-Krein theorem) I had to use the canoni-
cal bases in quantum groups (discovered in [L90]) and
their positivity properties. The role of s x s minors is
played in the general case by the canonical basis of
[L90]. Unlike in [L94], here we define G(R-,) by gen-
erators and relations, independently of G(R). Surpris-
ingly, this definition of G(R-() is simpler than that of
G(R) (see [ST]). From it one can recover the Chevalley
groups G(k) for any field k. Namely, the relations be-
tween the generators of G(R-o) involve only rational
functions with integer coefficients. They make sense
over k and they give rise to a “birational form” of a
semisimple group over k. This is the quotient field of
the coordinate ring of G(k); then G(k) itself appears as
a subgroup of the automorphism group of this field.
In this approach the form G(R.) is the most basic,
all other forms are deduced from it.

0.5

We now describe the content of various sections.
In §1 we define a positive structure on a set. Such
structures have appeared in [L90], [L94] in connection
with various objects in Lie theory. In §2 we define the
monoid U™ (R~). In §3 we define the monoid G(R-y).
In §4 we use this monoid to recover the Chevalley
groups over a field. In §5 we define the non-negative
part of a flag manifold.

1. Positive Structures
1.1

The TP monoid can be defined not only over R
but over a structure K in which addition, multipli-
cation, division (but no substraction) are defined. In
[L94] three such K were considered.

(i) K=R-g;

(i) K =R(t)>0, the setof f eR(r) of form f=f,/f, for
some fy, f1 in R[¢] with constant term in R.g,e € Z
(¢ is an indeterminate);

(i) K =Z.

In case (i) and (ii), K is contained in a field R or R(r)

and the sum and product are induced from that field.

In case (iii) we consider a new sum (a,b) — min(a,b)

and a new product (a,b) > a+b. A 4th case is

iv) K = {1}

withl14+1=1,1x1=1.
In each case K is a semifield (a terminology of
Berenstein, Fomin, Zelevinsky 1996): a set with two

operations, +, x, which is an abelian group with re-
spect to x, an abelian semigroup with respect to +
and in which (a+ b)c = ac + be for all a,b,c. We fix a
semifield K. There is an obvious semifield homomor-
phism K — {1}. We denote by (1) the unit element of
K with respect to x.

1.2

In [L94] we observed that there is a semifield ho-
momorphism o : R(¢)~o — Z given by ¢° fo/ fi — ¢ which
connects geometrical objects over R(¢)~o with piece-
wise linear objects involving only integers. I believe
that this was the first time that such a connection
(today known as tropicalization) was used in relation
to Lie theory.

1.3

For any m € Z-( let P,, be set of all nonzero poly-
nomials in m indeterminates X;,X,,...,X,, with coeffi-
cients in N.

A function (aj,az,...,am) — (da},d},...,d,) from K™
to K™ is said to be admissible if for any s we have a, =
Pi(ay,az,...,an)/0Qs(ar,az,...,an) where P, Q, are in P,,.
(This ratio makes sense since K is a semifield.) In the
case where K = Z, such a function is piecewise-linear.
If m =0, the unique map K° — K° is considered to be
admissible (k° is a point.)

14

A positive structure on a set X consists of a fam-
ily of bijections f; : kK™ = X (with m > 0 fixed) indexed
by j in a finite set 7, such that fjjlfj K™ — K™ is ad-
missible for any j,; in J; the bijections f; are said
to be the coordinate charts of the positive structure.
The results of [L94], [L97], [L98], can be interpreted as
saying that various objects in Lie theory admit natu-
ral positive structures.

2. The Monoid U™ (K)
2.1 The Cartan Matrix

We fix a finite graph; it is a pair consisting of two
finite sets I,H and a map which to each » € H asso-
ciates a two-element subset [4] of 1. The Cartan matrix
A=(i:))ijeris givenbyi:i=2for alliewhileif i, jin
I are distinct then i: jis —1 times the number of h € H
such that [h] = {i, j}.

An example of a Cartan matrix is:

I:{i,j},A:<_21 _21)

We fix a Cartan matrix A. For applications to Lie the-
ory A is assumed to be positive definite. But several of
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the subsequent definitions make sense without this
assumption.

We attach to A and a field k a group G(k). When
A is positive definite, G(k) is the group of k-points of
a simply connected semisimple split algebraic group
of type A over k. Without the assumption that A is
positive definite, the analogous group G(k) (with k of
characteristic 0) has been defined in [MT], [Ma], [Ti].

We will associate to A and K a monoid G(K) and a
submonoid U"(K) of G(K). In the case where K = R.¢
(resp. K = R(t)-0), G(K) and U*(K) can be viewed as
submonoids of G(k) where k =R (resp. k = R(r)). In
the case where K = R.o,k = R,G(R) = SL,(R), U"(K) is
the monoid of TP matrices in G(R) which are upper
triangular with 1 on diagonal. We first define U (K).

2.2

Let U"(K) be the monoid (with 1) with generators
i“ with i €1, a € K and relations

i“i* =i*tv foriel, a,bin K;

i@ jbic = jbe/late)jate jab/late) for j je [ withi: j=—1,
a,b,c in K;

i = jbi¢ for i, je I'withi: j=0, a,bin K.

(In the case where K = Z, relations of the type
considered above involve piecewise-linear functions;
they first appeared in [L90] in connection with the
parametrization of the canonical basis.) The defini-
tion of U™ (K) is reminiscent of the definition of the
Coxeter group attached to A. In the case where K =Z
and A is positive definite the definition of U™ (K) given
above first appeared in [L94, 9.11].

2.3

When A = (% 3'), K =R.o, we can identify U* (k)
with the submonoid of SL;(R) generated by

1 a O 1 0 0

o1 o0of,({0 1 &),

0 0 1 0 0 1
with a,b in R..

2.4

Let W be the Coxeter group attached to A. It has
generators i with i € I and relations ii=1foricI; iji=
jijforijel i:j=—1;ij=jiforijel i:j=0.Let
0O,, be the set of reduced expressions of w that is the
set of sequences (iy,iy,...,i,) in I such that iji...i, =
w in U ({1}) where m is minimum. We write m = |w|
(= length of w).

When K = {1}, Ut (K) is the monoid (with 1) with
generators i! with i € I and relations i'i' =i' forier,

il = jlitjl forijel, i:j=—1;i'j' = ji' for i jel,

i: j=0.By alemma of Iwahori and Matsumoto we have
can identify (as sets) W = U ({1}) by w=ijiy...iy &
itid...il, for any (i1,i,...,in) € O,. This bijection is not

compatible with the monoid structures.

2.5

The semifield homomorphism K — {1} induces a
map of monoids U (K) — UT({1}). Let U,/ (K) be the
fibre over w e U ({1}). We have Ut (K) = UyewU,} (K).

We now fix w € W. It turns out that the set U (K)
can be parametrized by K™, in fact in many ways,
indexed by 0,. For i = (i1,iz,...,in) € O, we define
¢i: K" — U,S (K) by

Oi(ar,az,...,am) =iylis> . ..igm.
This is a bijection. Now U} (K) together with the bi-
jections ¢; : K™ — U} (K) is an example of a positive
structure. (We will see later other such structures.)

2.6

Let w € W,m = |w|. In the case K =Z, U/ (N) :=
¢o:(N™) C U(Z) is independent of i € 0,. We set
U™ (N) = U,ewU,S (N); this is a subset of U™ (Z).

When W is finite, let w; be the element of maximal
length of W. Let v =|w;|. Now U,/ (N) was interpreted in
[L90] as an indexing set for the canonical basis of the
plus part of a quantized enveloping algebra. A similar
interpretation holds for U,S(N) when W is not neces-
sarily finite and w is arbitrary, using [L96, 8.2].

3. The Monoid G(K)
3.1

In order to define the monoid G(K) we consider
besides I, two other copies —I ={-i;iel}, [={i;icl}
of I, in obvious bijection with I. For e = +1, i € I we
write ei=iife=1,ei=—iif e=—1.

Let G(K) be the monoid (with 1) with generators
i, (—i)%,i*“ with i € I,a € K and the relations below.

() (ei)(ei)’ = (ei)**? foriel, e=+1, a,b in K;
(ii) (Ei)a(fj)h(fi)C _ (Ej)bc/(a+c)(Gi)a+c(6j)ah/(a+c) for ij
inIwithi:j=-1,e==%1,a,b,cink;
(iii) (ei)*(ej)” = (ej)b(ei) fori, jinIwithi: j=0,e=+1,
a,b in K;
(iv) (Ei)a(—fi)b — (—Ei)b/(lJrab)j(lJrab)E (ei)a/(lJrab) forie I,
e==1,a,binK;
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3.2

When A = (% '), K =R., we can identify G(K)
with the submonoid of SL;(R) generated by:

1 a 0 1 00

o1 0|,[o 1 5],
00 1 00 1

1 00 1 00

c 1.0],l0 1 o],
00 1 0 d 1

e 0 0 1 0 0
0 (1/e) o], |0 f o |,
0 0 1 0 0 (1/f)

with a,b,c,d,e, f in Ryy.

3.3

The assignment i — i (with i € I,a € K) defines
a monoid isomorphism of U*(K) onto a submonoid
of G(K); when K = {1}, we denote by w € G({1}) the
image of w € U({1}) under this imbedding. The as-
signment i — (—i)* (with i € I,a € K) defines a monoid
isomorphism of U*(K) onto a submonoid of G(K);
when K = {1}, we denote by —w € G({1}) the image of
w e U({1}) under this imbedding. The map W x W —
G({1}), (w,w") — w(—w') is a bijection of sets (not of
monoids).

3.4

Tits has said that W ought to be regarded as the
Chevalley group G(k) where k is the (non-existent)
field with one element. But G({1}) is defined for the
semifield {1}. The bijections W = Ut ({1}), W x W =
G({1}) almost realizes the wish of Tits.

3.5

For general K, the semifield homomorphism K —
{1} induces a monoid homomorphism G(K) — G({1}).
Let G, _,/(K) be the fibre over w(—w’) of this homo-
morphism. We have G(K) = Ug,,)ew xw Gu—w (K). We
now fix (w,w') € W x W. Let M = |w| + [w/| +r. It turns
out that the set G, _,/(K) can be parametrized by
KM, in fact in many ways, indexed by a certain fi-
nite set 0,,_,,. Let O_,, be the set of sequences
(—i1,—i2,..., 7l“wl‘) in —7 such that (i},i,... »i\w’|) € Oy
Let 0,,_,, be the set of sequences (hi,hy,...,hy) in
IU(=I)ul such that the subsequence consisting of
symbols in 7 is in 0,,, the subsequence consisting of
symbols in —7 is in O_,,, the subsequence consisting
of symbols in I contains each symbol i (with i € I) ex-
actly once.

For h= (hy,ha,...,hy) € O,,_,» we define s, : KM —
Gw,fw’ (K) by

— 1,42 am
l/lh(al,ag,...,aM) —hl h2 "'hM‘

This is a bijection. The bijections y, : k¥ — G,, _,/(K)
(for various h € 0,, _,/) define a positive structure on
Gw,—w’ (K)

In the case where K = R. or K = R(¢)o, the state-
ments above are proved by using Bruhat decomposi-
tion in the group G(k) considered in 2.1 with k=R or
R(7). (When W is finite this is done in [L19]. See also
the proof of [L94, Lemma 2.3] and [L94, 2.7].) The case
where K = Z follows from the case where K = R(¢)~o,
using o : R(#)>o — Z in 1.2.

4. Chevalley Groups
4.1

In this section we assume that K = R-( and that
I+#0. Let ko be a field and let k be an algebraic closure
of ko.

Let w e W,w' € W. Let M = |w| + |w'| +r. For
hh' in O, ., v, v : KM — KM (see 3.5) is of
the form (ai,an,...,an) — (d},d5,...,a),) where a, =
(PM\s(ar,az, ... am) /(O )s(ai,az,...,ay) and each of
(P, (O), is a nonzero polynomial in N[X;, Xy, .. ., Xy]
(independent of K) such that the g.c.d. of its # 0 coeff.
is 1.

Applying the obvious ring homomorphism Z — kg
to the coefficients of these polynomials we obtain # 0
polynomials (B"),, (OI), in ko[X|,Xa,...,Xy]. We define
a rational map " : kM — kM by

(21,225 2m) = (23 Zhs o1 Zo)s
—1/ -
=Pz, 22, 2m) /(O (21,22, 2m)

This is a birational isomorphism. It induces an auto-
morphism [y] of the quotient field [k"] of the co-
ordinate ring of k™. We have [yf][yl'] = [y{"] for any
h,h’,h”. Hence there is a well defined field [G,,_, (k)]
containing k with k-linear field isomorphisms [y4] :
(G, (k)] = [k™] (for h € O,, _,/) such that

[vat] = [wi]lyaw] " : (K] — k"] for all h,h".

4.2

We now assume that W is finite. Let w;,v be as
in 2.6. Let M =2v+r. Letiele==*1,z€ky. We can
choose h= (hy,ha,...,hy) € Oy o such that h; = ei. The
isomorphism k™ — kM, (z1,z2,...,21) = (21 — 2,22+ - ,Zm)
induces a field isomorphism <, : [k™] — [kM]. Let A
be the group of all k-linear field automorphisms of
[Gow —o(k)]. We define (ei)* € A as the composition

(Gor—o(k)] 22h k] 55 ] 22 G, (k)
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Now (ei)? is independent of the choice of h. Let G(ko)
be the subgroup of A generated by (ei)* for various
i€l,e==+l1,z€ko. Then G(kp) is the Chevalley group
associated to kg and our Cartan matrix.

5. Flag Manifolds
5.1

In this section W is not assumed to be finite. We
assume that K is R.y. Let G(R) be the group consid-
ered in 2.1. Let V be an R-vector space which is an
irreducible highest weight integrable representation
of G(R) whose highest weight takes the value 1 at any
simple coroot. Let n be a highest weight vector of V.
Let B be the canonical basis of V (see [L93, 11.10])
containing n. Let P be the set of lines in the R-vector
space V. Let P>y be the set of all L € P such that for
some x € L—{0} all coordinates of x with respect to the
basis B are > 0. The flag manifold B of G(R) is defined
as the subset of P consisting of lines in the G(R)-orbit
of the line spanned by n. We define B(K) = BN P>¢. By
a positivity property [L93, 22.1.7] of B (stated in the
simply laced case but whose proof remains valid in
our case), the obvious G(R)-action on B restricts to a
G(K)-action on B(K). (As mentioned in 2.1, G(K) can
be viewed as a submonoid of G(R).) When W is finite,
B(K) is the same as the subset B> defined in [L94,
§8]. (This follows from [L94, 8.17].)
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