
Hypergeometric Heritage

of W. N. Bailey

On the occasion of Bailey’s 123rd birthday

by Wadim Zudilin*†

Abstract. We review some of W. N. Bailey’s work

on hypergeometric functions that found solid

applications in number theory. The text is

complemented by Bailey’s letters to Freeman Dyson

from the 1940s.

MSC 2010 subject classifications: 33C, 33D, 11J, 11M.

1. Introduction

This paper is a review of those parts of the math-

ematical legacy of the late Wilfrid Norman Bailey

(1893–1961) that have had greatest impact on cer-

tain developments in number theory in which we

have been involved. In other words, these are our

personal encounters with the mathematics of Bai-

ley, mathematics—we believe—that should be better

known. The details of Bailey’s biography can be found

in his obituary [55] written by Lucy Slater, where she

also summarises his research as follows:

“His life work was in the field of classical analysis. He
studied hypergeometric functions, all the functions of math-
ematical physics which are specialized cases of hypergeo-
metric functions and the interconnections between the vari-
ous types of function. He was always seeking the underlying
common features of these functions and he had the aim to
unify the various theorems on special functions as far as
possible into one theory of general application.
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He wrote one book, the Cambridge Tract Generalized Hy-
pergeometric Series, by which his name will always be re-
membered. This was the first work in English to be written
on the subject. It gathered together all his researches up to
that date (1935) in a very readable form, together with out-
lines of all the earlier work which had been carried out by his
predecessors, Gauss, Heine, Appell, and others, on the Con-
tinent. It has been remarked by students that he did not al-
ways say who had proved some of the theorems in the Tract,
but, characteristically modest, he replied: “I did not want to
keep on repeating the word Bailey.”

The generalized hypergeometric series is defined

as

(1) mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z

)
=

∞

∑
n=0

(a1)n(a2)n · · ·(am)n

(b2)n · · ·(bm)n

zn

n!
,

where

(a)n =
Γ(a+n)

Γ(a)
=

{
a(a+1) · · ·(a+n−1) if n ≥ 1,

1 if n = 0,

denotes the Pochhammer symbol (or rising facto-

rial). The series in (1) can be shown to be conver-

gent inside the unit disk |z| < 1, and in that region

defines an analytic function of z that satisfies a (lin-

ear homogeneous) hypergeometric differential equa-

tion of order m with regular singularities at z = 0, 1
and ∞. It is this differential equation which is com-

monly used to analytically continue the mFm−1 func-

tion defined in (1) to the whole C-plane with the

cut between two singularities (for example, with the

cut along [1,∞)); the result of such analytic continu-

ation is the generalized mFm−1-hypergeometric func-

tion.
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Writing the right-hand side in (1) as the sum

∑
∞
n=0 u(n) we can notice that u(0) = 1 and

u(n+1)
u(n)

=
(a1 +n)(a2 +n) · · ·(am +n)
(1+n)(b2 +n) · · ·(bm +n)

z,

so that a way to characterise a hypergeometric series

(sum or function) is to say that the quotient of two

successive terms is a rational function of the index.

Of course, in our particular setting (1) we addition-

ally impose the condition on the degrees of the nu-

merator and denominator of the rational function to

coincide as well as the specific factor 1+n to be pre-

sented in the denominator. But any of these can be

relaxed; for example, having more generally the fac-

tor b1 +n in place of 1+n leads to what is called a bi-

lateral hypergeometric function. One can further gen-

eralise such generalized hypergeometric functions to

generalized hypergeometric integrals, commonly re-

ferred to as Barnes-type integrals (because of pres-

ence of many other integral representations for hy-

pergeometric functions), and to basic hypergeomet-

ric functions when the quotient u(n+ 1)/u(n) of two
successive terms is a rational function of qn, where

the base q becomes another parameter. One more

step of generalization of that process is considering

double and multiple hypergeometric functions. We

will witness many of such hypergeometric creatures

later on.

The fact that the first great hypergeometric play-

ers, like Euler, Gauss and Riemann, also happened to

be number theorists hints at possible links between

the two mathematics areas. However, a division of

certain topics within mathematics always has been

subjective: for example, the theta functions of Jacobi

were, for a long part, a topic of analysis, whereas

these days many of us place them in number theory

or even algebraic geometry. As Slater’s quotation re-

veals, Bailey’s research was in analysis and his treat-

ment of the functions he investigated was entirely an-

alytical. Although he did not care about number the-

ory much, we hope he would be very pleased to learn

what a great impact on different topics of number

theory his results have had.

The rest of this paper is organised as follows.

In Section 2 we outline some links between Bailey’s

transformations of hypergeometric series and the ir-

rationality and linear independence results for the

values of Riemann’s zeta function ζ (s) = ∑
∞
n=1 n−s at

positive integers. Bailey’s investigations on reduction

of Appell’s (double) hypergeometric functions to sin-

gle hypergeometrics are reviewed in Section 3; some

number-theoretical consequences of these results are

new Ramanujan-type identities for 1/π which were

recently discovered experimentally by the Chinese

mathematician Zhi-Wei Sun. In Section 4 we examine

one of first signs of the ‘q-desease’ in Bailey—a proof

of what can regarded as a q-analogue of Euler’s iden-
tity ζ (2,1) = ζ (3), where

ζ (2,1) = ∑
n>l≥1

1
n2l

.

Our final Section 5 outlines some further connections

of Bailey’s research with number theory, in particu-

lar, his work on generalized Rogers–Ramanujan iden-

tities with influences from and to Freeman Dyson,

the work that eventually led to what George Andrews

called the Bailey pairs and Bailey chains in 1984.

Apart from Bailey’s famous and highly cited book

[10], the latter objects are the known hypergeometric

heritage of W. N. Bailey, something that Slater could

not forecast in 1962.
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2. Transformations of
Hypergeometric Series and
Irrationality of Zeta Values

It is hard to imagine that one innocent-looking

identity [7, eq. (3.4)], namely,

(2)

7F6

(
a,1+ 1

2 a, b, c, d, e, f
1
2 a, 1+a−b,1+a− c,1+a−d,1+a− e,1+a− f

∣∣∣∣ 1

)

=
Γ(1+a−b)Γ(1+a− c)Γ(1+a−d)Γ(1+a− e)Γ(1+a− f )

Γ(1+a)Γ(b)Γ(c)Γ(d)Γ(1+a− c−d)Γ(1+a−b−d)
×Γ(1+a−b− c)Γ(1+a− e− f )

× 1
2πi

∫
i∞

−i∞

Γ(b+ t)Γ(c+ t)Γ(d + t)Γ(1+a− e− f + t)
×Γ(1+a−b− c−d − t)Γ(−t)dt

Γ(1+a− e+ t)Γ(1+a− f + t)
,

may have anything in common with the irrationality

of ζ (3). And with much more irrational than that.

The hypergeometric series on the left-hand side

in (2) is evaluated at z = 1 and is of a very special
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type when its parameters come in pairs with the same

sum:

a+1 =
(
1+ 1

2 a
)
+ 1

2 = b+(1+a−b) = c+(1+a− c)

= · · ·= f +(1+a− f ).

This property characterises a well-poised hypergeo-

metric series—a term coined by F. J. W. Whipple [62];

the special form of the second pair of parameter,

1 + 1
2 a and 1

2 a, assigns it to the class of very-well-

poised hypergeometric functions in modern termi-

nology. The majority of known summation and trans-

formation formulae are specific to these classes, as

they possess some additional structural symmetries.

The integral on the right-hand side in (2) is of Barnes

type; the path of integration in it is parallel to the

imaginary axis, except that it is indented, if necessary,

so that the decreasing sequences of poles of the inte-

grand lie to the left, and the increasing sequences to

the right of the contour. If this hypergeometric inte-

gral is evaluated by considering the residues at poles

on the right of the contour, then we obtain the trans-

formation of a very-well-poised 7F6 in terms of two

balanced (or Saalschützian) 4F3; for a hypergeometric

series the latter means that the sum of the denomi-

nator parameters exceeds the sum of the numerator

parameters by 1.

Before going into details of the interplay between

(2) and the irrationality questions of the zeta values—

the values of Riemann’s zeta function ζ (s) at integers
s = 2,3,4, . . . , let us make some historical remarks on

the latter. Giving the closed form ζ (2) = π2/6 for the

first convergent zeta value was a part of Euler’s tri-

umph in his resolution of the Basel problem: he also

extended this more generally to ζ (2k)/π2k ∈Q and, on

this way, discovered the functional equation that re-

lated ζ (s) to ζ (1− s). In absence of complex analysis

at that time, Euler’s interpretation of the divergent

series for ζ (s) when s < 0 looks very impressive. It

was much later, when functions of a complex vari-

able became available, that Euler’s ideas and meth-

ods were put on a solid ground. That development

was an essential tool in Lindemann’s 1882 proof [41]

that π is a transcendental number. The latter result,

together with Euler’s, left over a little mystery about

the arithmetic nature of ζ (2),ζ (4),ζ (6), . . .—the even

zeta values—but at the same time initiated an intrigue

for the odd zeta values ζ (3),ζ (5),ζ (7), . . . . It was only
in the 1970s when the senior mathematician Roger

Apéry from Caen, in a process of executing his con-

vergence acceleration method against a “number ta-

ble due to Ramanujan” [2, 46], managed to demon-

strate that ζ (3) is irrational. The detailed account

of the controversial story of Apéry’s discovery [3] is

given in the excellent exposition [59] by Alf van der

Poorten. It took another couple of decades and the

junior mathematician Tanguy Rivoal, also from Caen,

to prove in 2000 that infinitely many odd zeta val-

ues are irrational [51]. The development of the story

from 1979 to 2000 was quite intense, with several in-

teresting novelties appearing in both sharpening of

the number-theoretical tools and constructing ratio-

nal approximations to zeta values. As we will see now,

the latter are all about hypergeometric functions.

Several ways are now known to write Apéry’s ra-

tional approximations vn/un ∈ Q, where n = 0,1,2, . . . ,
to ζ (3). One can use the explicit formulae

(3) un =
n

∑
k=0

(
n
k

)2(n+ k
k

)2

and somemore involved double sums for vn originally

produced by Apéry himself, or define sequences of

both the denominators {un} = {un}n=0,1,... and of the

numerators {vn}= {vn}n=0,1,... as solutions of the same

polynomial recursion

(4a) (n+1)3un+1 − (2n+1)(17n2 +17n+5)un +n3un−1 = 0

with the initial data

(4b) u0 = 1, u1 = 5 and v0 = 0, v1 = 6.

Alternatively, one can use the Beukers triple inte-

gral [25]

(5)

unζ (3)− vn =
1
2

∫∫∫
[0,1]3

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− xy)z)n+1 dxdydz

or the Gutnik–Nesterenko series [36, 43]

(6a)

unζ (3)− vn =−1
2

∞

∑
ν=1

d
dt

(
(t −1)(t −2) · · ·(t −n)
t(t +1)(t +2) · · ·(t +n)

)2∣∣∣∣
t=ν

.

The fact that each of these representations defines

the same un and vn is already a chain of nontrivial an-

alytical identities. The integral (5) reminds an expe-

rienced hypergeometer of the Euler–Pochhammer in-

tegral for generalized hypergeometric functions. The

series (6a) can be in turn recognised as a hypergeo-

metric (Barnes-type) integral:

− 1
2

∞

∑
ν=1

d
dt

(
(t −1)(t −2) · · ·(t −n)
t(t +1)(t +2) · · ·(t +n)

)2∣∣∣∣
t=ν

(6b)

=
1

2πi

∫ i∞

−i∞

(
π

sinπt

)2( (t −1)(t −2) · · ·(t −n)
t(t +1)(t +2) · · ·(t +n)

)2

dt

=
1

2πi

∫ i∞

−i∞

Γ(t)4Γ(n+1− t)2

Γ(n+1+ t)2 dt

(see [43] for details). The fact that the right-hand side

in (6a) indeed represents a linear form in ζ (3) and

1 with rational coefficients is quite elementary and

uses the partial fraction decomposition [43, 69] of the
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regular rational function

R(t) =

(
(t −1)(t −2) · · ·(t −n)
t(t +1)(t +2) · · ·(t +n)

)2

.

This strategy also allows one to gain an explicit arith-

metic information about the sequences {un} and {vn},
namely, un ∈ Z (something that can be seen from (3)

as well) and 2d3
nvn ∈Z, where dn denotes the least com-

mon multiple of the first n positive integers. (The se-

quence dn certainly belongs to analytic number the-

ory: the prime number theorem asserts that d1/n
n → e

as n → ∞.) The same arithmetic can be demonstrated

on the basis of the integrals (5) but based on a differ-

ent argument—see [25].

Furthermore, any of representations (5) and (6)

can be used for estimating the growth of unζ (3)− vn

as n → ∞. For example, from (5) we deduce that

0 < unζ (3)− vn <

(
max
[0,1]3

x(1− x)y(1− y)z(1− z)
1− (1− xy)z

)n

× 1
2

∫∫∫
[0,1]3

dxdydz
1− (1− xy)z

= (
√

2−1)4n ·ζ (3)

essentially as an exercise in calculus, while the (more

advanced) saddle-point method applied to the single

integral in (6b) results in the asymptotics

unζ (3)− vn = cn−3/2 (
√

2−1)4n (1+O(n−1)) as n → ∞

for some explicit c > 0.
Finally, to draw conclusions about the arithmetic

of ζ (3), we assume that it is rational, p/q say, and con-

sider the sequence of then integers

rn = 2d3
n (pun−qvn)= 2qd3

n (unζ (3)−vn), where n= 1,2, . . . .

Thus, on one hand rn > 0 implying rn ≥ 1 because of the
integrality of the numbers, while on the other hand

r1/n
n ≤ e3(

√
2−1)4(1+o(1))< 0.6 for sufficiently large n.

The two excluding estimates imply that ζ (3) cannot
be rational, and the approximations constructed to

the number further allow us to measure its irrational-

ity quantitatively: for any

µ > µ0 = 1+
4log(

√
2+1)+3

4log(
√

2+1)−3
= 13.417820 . . . ,

there are only finitely many solutions of the inequal-

ity |ζ (3)− p/q| < q−µ in integers p,q. (In diophantine

approximation theory, if α is an irrational real num-

ber then the infimum of µ , for which the inequality

|α − p/q| < q−µ has at most finitely many solutions,

is called the irrationality exponent of α and denoted

µ(α). Dirichlet’s theorem asserts that µ(α)≥ 2 for all

α ∈R\Q; furthermore, considerations of metric num-

ber theory imply µ(α) = 2 for almost all real α , so

that 2 is a typical irrationality exponent. What is said

above is that µ(ζ (3)) ≤ µ0, somewhat insufficiently

sharp from a metric point of view, but better than

nothing.)

Though we have outlined a proof of the irrational-

ity of ζ (3) and there are indeed some hypergeomet-

rically looking series and integrals for constructing

Apéry’s rational approximations to the number, so

far there is no clue to how all this is related to Bailey’s

transformation (2). But we get closer: around 1999, in

an unpublished note, Keith Ball gave a different series

of rational approximations to ζ (3), namely,

ũnζ (3)− ṽn = n!2
∞

∑
ν=1

(
t +

n
2

)(7a)

× (t −1) · · ·(t −n) · (t +n+1) · · ·(t +2n)
t4(t +1)4 · · ·(t +n)4

∣∣∣∣
t=ν

.

He used the clear symmetry R̃(−t − n) = −R̃(t) of the
rational summand

R̃(t) = n!2
(

t +
n
2

) (t −1) · · ·(t −n) · (t +n+1) · · ·(t +2n)
t4(t +1)4 · · ·(t +n)4

and the related partial-fraction decomposition of R(t)
to show that the sum on the right-hand side of (7a),

a priori living in Qζ (4) +Qζ (3) +Qζ (2) +Q, has van-

ishing coefficients of ζ (4) and ζ (2). Ball’s proof im-

plied the weaker arithmetic properties 2dnũn,2d4
n ṽn ∈ Z

than those for the representations above but he could

show that (ũnζ (3)− ṽn)
1/n → (

√
2− 1)4 as n → ∞ using

Stirling’s formula for the gamma function as the hard-

est ingredient. Unfortunately, because of e4(
√

2−1)4 >

1, where e4 corresponds to the growth of d4
n , there

seemed to be no way to adapt Ball’s construction to a

new irrationality proof. Ball did not make explicit the

fact that the value of his series (7a) is exactly the same

as the one coming from, say, the Gutnik–Nesterenko

series (6a), though he was aware of this on the ba-

sis of computation of a couple of terms and of the

asymptotics he obtained. The fact that

unζ (3)− vn = ũnζ (3)− ṽn

was first established in the thesis [52] of Rivoal, who

used (a version of) the Gosper–Zeilberger algorithm

of creative telescoping [45] to verify that the hyper-

geometric series

n!2
∞

∑
ν=1

(
t +

n
2

) (t −1) · · ·(t −n) · (t +n+1) · · ·(t +2n)
t4(t +1)4 · · ·(t +n)4

∣∣∣∣
t=ν

(7b)

=
(3n+2)!n!7

(2n+1)!5

× 7F6

(
3n+2, 3

2 n+2, n+1, n+1, n+1, n+1, n+1
3
2 n+1, 2n+2, 2n+2, 2n+2, 2n+2, 2n+2

∣∣∣∣ 1

)
satisfies Apéry’s recursion (4a) and the initial data

agree with (4b).
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The coincidence of the two representations, (6)

and (7), is a particular case of the transformation (2):

it corresponds to the choice of parameters a = 3n+ 2
and b = c = d = e = f = n+ 1. Things could have gone

quite differently if a hypergeometer would come in

at an early stage and recognise that the Barnes inte-

gral (6b) can be transformed into the very-well-poised

7F6 followed by a number theorist who would observe

the reason for the coefficients of ζ (4) and ζ (2) (“the
parasites” as Rivoal called them, those known to be

irrational) to disappear. The phenomenon of this dis-

appearance can be pushed further to construct linear

forms, with rational coefficients, in odd zeta values

only using (very-)well-poised hypergeometric func-

tions evaluated at z= 1 (and z=−1). This program was

successfully carried out by Rivoal in [51, 52] and in his

joint work [22] with Ball: for odd s > 1, their approxi-
mating forms were (essentially) given by

2ds+1
n ·n!s+1−2r

∞

∑
ν=1

(
t +

n
2

)
∏

rn
j=1(t − j) ·∏rn

j=1(t +n+ j)

∏
n
j=0(t + j)s+1

∣∣∣∣
t=ν

(8)

∈ Zζ (s)+Zζ (s−2)+ · · ·+Zζ (5)+Zζ (3)+Z,

where the auxiliary integral parameter r < s/2 is of

order r ∼ s/ log2 s for large s. Then the explicit for-

mulae for the forms in (8) allow one to compute

the asymptotic behaviour of them and their coeffi-

cients as n → ∞, and the final step of estimating the

number δ (s) of linearly independent over Q among

ζ (s),ζ (s−2), . . . ,ζ (3) and 1 from below uses a criterion

of Nesterenko. The result is δ (s)> 1
3 logs (and 1

3 can be

replaced by any constant closer to but smaller than

1/(1+ log2) for sufficiently large s).
It is quite remarkable that the class of well-poised

hypergeometric functions plays such a special role in

establishing that infinitely many of the odd zeta val-

ues are irrational. But the transformation (2) provides

us with slightly more: one can use the full power of (2)

to produce a sharper quantitative irrationality of ζ (3).
In Section 7.5 of his book [10] Bailey discusses the

hypergeometric transformation group, of size 1920,

that acts on the six parameters a,b,c,d,e, f of the hy-

pergeometric functions involved. Using this group

and the arithmetic “permutation group” method de-

veloped by George Rhin and Carlo Viola in [49, 50]

one can prove the estimate µ(ζ (3)) ≤ 5.513890 . . . for
the irrationality exponent of ζ (3). This is the result

originally proved by Rhin and Viola [50] in 2001 by

applying their novel techniques to the Beukers-type

integrals

I(h, j,k, l,m,q,r,s) =
∫∫∫
[0,1]3

xh(1− x)lyk(1− y)sz j(1− z)q

(1− (1− xy)z)q+h−r(9)

× dxdydz
1− (1− xy)z

∈ Zζ (3)+Q

that generalise those in (5); here the eight positive pa-

rameters are subject to the two relations j+ q = l + s
and h + m = k + r (the latter one in fact defines the

parameter m missing in the integral in (9)). In order

to recognise a permutation group acting on the set

of the eight parameters (that, for example, includes

the cyclic permutations of the set (h, j,k, l,m,q,r,s)),
they designed several birational transformations of

the unit cube preserving the measure of integration

in (9) as well as the form of the integrand. This group

can be recognised as Bailey’s hypergeometric group

from [10, Section 7.5] with the help of the identity

I(b−1,c−1,d −1,a−b− e,a−b− c,
1+2a−b− c−d − e− f ,a− c−d,a−d − f )

=

Γ(1+a)Γ(b)Γ(c)Γ(d)Γ(1+a− c−d)Γ(1+a−b− e)
×Γ(1+a−b− c)Γ(1+a−d − f )

Γ(1+a−b)Γ(1+a− c)Γ(1+a−d)Γ(1+a− e)Γ(1+a− f )

× 7F6

(
a,1+ 1

2 a, b, c, d, e, f
1
2 a, 1+a−b,1+a− c,1+a−d,1+a− e,1+a− f

∣∣∣∣ 1

)
which follows from either [44, Theorem 2] or [66, The-

orem 5]. In [67] we show that the Rhin–Viola estimate

for ζ (3) can be obtained directly on using Bailey’s

transformation (2) and that another hypergeometric

transformation can be applied in a similar fashion to

obtain the Rhin–Viola estimate µ(ζ (2)) ≤ 5.441242 . . .
for the irrationality exponent of ζ (2) (hence, of π2). At

the top level of (very-well-poised) hypergeometric hi-

erarchy there is a transformation of the Barnes-type

integral that decomposes into a linear combination

of two very-well-poised balanced 9F8. This is given

by Bailey in [10, Section 6.8] and the corresponding

hypergeometric group of order 51840 can be used

for estimating the irrationality exponent of ζ (4)—the

details can be found in [66] (together with a subtle,

and still open, “denominator conjecture” which is re-

quired to make the result unconditional). The papers

[66, 67] are already expository enough to follow the

circle of ideas and arithmetic ingredients around the

irrationality of zeta values but one can also check

with the reviews [35, 70] for a development of the

topic from a broader perspective.

Are there deep reasons for hypergeometric iden-

tities and irrationality investigations to be related?

The philosophy is that behind any hypergeometric

transformation there is some interesting arithmetic,

and one further illustration of the principle is our re-

cent work [71] in which we prove the record bound

µ(ζ (2)) ≤ 5.095411 . . . for the irrationality exponent of

ζ (2). The transformation used for the proof relates

two Barnes-type integrals,

1
2πi

∫ i∞

−i∞

Γ(a+ t)Γ(b+ t)Γ(e+ t)Γ( f + t)
Γ(1+ t)Γ(1+a− e+ t)Γ(1+a− f + t)Γ(g+ t)

(10)

×
(

π

sinπt

)2

dt
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= (−1)a+b+e+ f Γ(e+ f −a)Γ(e)Γ( f )
Γ(g−b)

× 1
2πi

∫ i∞

−i∞

Γ(a−b+g+2t)Γ(a+ t)Γ(e+ t)Γ( f + t)
Γ(1+a+2t)Γ(1+a−b+ t)Γ(e+ f + t)Γ(g+ t)

× π

sin2πt
dt,

and is expected to be true for a generic set of in-

tegral parameters a,b,e, f ,g; it is only proved in [71]

for a particular (required) set of parameters that de-

pend on a single integral parameter n by application

of (a version of) the Gosper–Zeilberger algorithm of

creative telescoping. Both sides of (10) represent a

linear form in ζ (2) and 1 with rational coefficients.

Even more, we expect the companion transforma-

tion, in which (π/sinπt)2 and π/sin2πt are replaced

with π3 cosπt/(sinπt)3 and (π/sinπt)2, respectively, to

be true as well; the corresponding integrals in that

case represent a linear form in ζ (3) and 1, with the

same coefficient of ζ (3) as the coefficient of ζ (2)
in the former linear form. The coincidence of the

leading coefficients is known to be true in general

thanks to Whipple’s transformation [10, Section 4.5,

eq. (1)],

4F3

(
f , 1+ f −h, h−a,−N

h, 1+ f +a−h, g

∣∣∣∣ 1

)
=

(g− f )N

(g)N

(11)

× 5F4

(
a,−N, 1+ f −g, 1

2 f , 1
2 f + 1

2

h,1+ f +a−h, 1
2 (1+ f −N −g), 1

2 (1+ f −N −g)+ 1
2

∣∣∣∣ 1

)
,

where N is a positive integer, so that the both hyper-

geometric series in (11) terminate.

Identity (10) and its companion should be a spe-

cial case of a hypergeometric-integral identity valid

for generic complex parameters. We failed to trace

this more general identity in the literature, though

there are a few words about it at the end of Bailey’s

paper [7]:

“The formula (1.4)1 and its successor are rather more
troublesome to generalize, and the final result was unex-
pected. The formulae obtained involve five series instead
of three or four as previously obtained. In each case two
of the series are nearly-poised and of the second kind, one
is nearly-poised and of the first kind, and the other two
are Saalschützian in type. In the course of these investiga-
tions some integrals of Barnes’s type are evaluated analo-
gous to known sums of hypergeometric series. Considera-
tions of space, however, prevent these results being given in
detail.”

It is quite similar in spirit to Fermat’s famous “I have

discovered a truly marvelous proof of this, which this

margin is too narrow to contain”, isn’t it? Interest-

ingly enough, the last paragraph in Chapter 6 of Bai-

ley’s book [10] again reveals no details about the trou-

blesome generalization. Did Bailey possess the iden-

tity?

1 This is equation (11) above.

3. Appell’s Hypergeometric Functions
and Generating Functions of
Legendre Polynomials

In the short note [18] Bailey’s gives an elegant

generalization of Jacobi’s elliptic integral

K(k) =
∫

π/2

0

dθ√
1− k2 sin2

θ

, where |k|< 1.

Namely, he proves that the two variable extension

I(k, l)=
∫

π/2

0

∫
π/2

0

dθ dλ√
1−k2 sin2

θ − l2 sin2
λ

, where k2+ l2<1,

can be evaluated in terms of the elliptic integrals as

follows:

I(k, l) =
2

1+ l′
K(k1)K(k2),

where

k1 =
k′−

√
1− k2 − l2

1+ l′
,

k2 =

√
(1+ k)(l′+ k)−

√
(1− k)(l′− k)

1+ l′

and k′, l′ are the moduli complementary to k, l (in other
words, k′ =

√
1− k2 and l′ =

√
1− l2).

The beauty of the evaluation is mainly in the in-

gredients of the proof which uses the transforma-

tion [4]

F2

(
a; a−b+ 1

2 ,b; c,2b

∣∣∣∣ X
(1+Y )2 ,

4Y
(1+Y )2

)
(12)

= (1+Y )2aF4(a,a−b+ 1
2 ; c,b+ 1

2 | X ,Y 2)

of Appell’s hypergeometric functions in two variables

F2(a; b1,b2; c1,c2 | x,y) = ∑
m,n≥0

(a)m+n(b1)m(b2)n

m!n!(c1)m(c2)n
xmyn

and

F4(a,b; c1,c2 | x,y) = ∑
m,n≥0

(a)m+n(b)m+n

m!n!(c1)m(c2)n
xmyn,

an Euler-type double integral for F2 and a special re-

duction of F4 to single-variable hypergeometric func-

tions. And the latter special reduction requires our

special attention, because it generated several appli-

cations in different parts of analysis and was a crucial

part of proofs of certain number-theoretical identi-

ties. It is

F4(a,b; c,a+b− c+1 | X(1−Y ),Y (1−X))(13)

= 2F1

(
a, b

c

∣∣∣∣ X

)
2F1

(
a, b

a+b− c+1

∣∣∣∣ Y

)
,
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valid inside simply-connected regions surrounding

X = 0, Y = 0 for which

|X(1−Y )|1/2 + |X(1−Y )|1/2 < 1.

This reduction is quite different from those given ear-

lier in [4] as the result is a product of two Euler–

Gauss hypergeometric functions rather than a single

one of the type. Formula (13) was published in [8, 9]

and shortly thereafter in the book [10] and it is clear

from the comments in the latter as well as in its use in

later works of Bailey that this was one of his personal

favourites.

This time the number theory counterpart came in

2011 from China, where motivated by Ramanujan’s

beautiful formulae and systematically experimenting

with binomial expressions Z.-W. Sun observed [58]

some that produce approximations to simple multi-

ples of 1/π . Some typical examples of Sun’s produc-

tion were the identities

(14)

∞

∑
n=0

7+30n
(−1024)n

(
2n
n

)2

Tn(34,1) =
12
π
,

∞

∑
n=0

2+15n
972n

(
2n
n

)(
3n
2n

)
Tn(18,6) =

45
√

3
4π

,

where Tn(b,c) denotes the coefficient of xn in the ex-

pansion of (x2 +bx+ c)n, explicitly

Tn(b,c) =
bn/2c

∑
k=0

(
n
2k

)(
2k
k

)
bn−2kck.

Although the formulae are not very practical for com-

puting 1/π (hence, π itself), they very much resemble

the formulae that were given by Srinivasa Ramanujan

[47] in 1914 such as

∞

∑
n=0

1103+26390n
3964n

(
2n
n

)2(4n
2n

)
=

992

2π
√

2

which converges to the multiple of 1/π on the right-

hand side very rapidly. In both situations we have the

pattern

∞

∑
n=0

(A+Bn)u(n)zn
0 =

C
π
,

where A and B are certain integers, C is an algebraic

number and z0 is a rational close to the origin. In Ra-

manujan’s cases from [47] the series ∑
∞
n=0 u(n)zn is a

hypergeometric 3F2 series (with a special choice of

the parameters), which clearly does not happen for

the examples in (14). In fact, the main feature of Ra-

manujan’s identities for 1/π and their later gener-

alizations is that the function ∑
∞
n=0 u(n)zn satisfies a

third order (arithmetic) linear differential equation

with regular singularities which happens to be a sym-

metric square of a second order differential equa-

tion. The interested reader is advised to consult the

surveys [23, 68] on the topic of Ramanujan-type for-

mulae for 1/π and here we will only indicate a clas-

sical hypergeometric instance of such hypergeomet-

ric functions ∑
∞
n=0 u(n)zn, which is known as Clausen’s

identity:

(15) 3F2

( 1
2 , r, 1− r

1, 1

∣∣∣∣ 4x(1− x)

)
= 2F1

(
r, 1− r

1

∣∣∣∣ x

)2

.

The arithmetic cases correspond to the choice r ∈
{ 1

2 ,
1
3 ,

1
4 ,

1
6}.

The functions ∑
∞
n=0 u(n)zn in Sun’s examples from

[58] satisfy fourth order linear differential equations,

so that the structure of those identities is somewhat

different from the one in Ramanujan’s situations. But

they can be cast in a more hypergeometric form, be-

cause the binomial sums Tn(b,c) are recognised as

Tn(b,c) = (b2 −4c)n/2Pn

(
b

(b2 −4c)1/2

)
,

where

Pn(x) = 2F1

(
−n, n+1

1

∣∣∣∣ 1− x
2

)
are the classical Legendre polynomials. Then the for-

mulae on Sun’s list read

∞

∑
n=0

(A+Bn)
(r)n(1− r)n

n!2 Pn(x0)zn
0 =

C
π

with some algebraic x0,z0 and, as before, r ∈ { 1
2 ,

1
3 ,

1
4 ,

1
6}.

The series rang a bell with us and after a little search

in the literature about generating functions of orthog-

onal polynomials we found that

∞

∑
n=0

(r)n(1− r)n

n!2 Pn(x)z
n

(16)

= 2F1

(
r, 1− r

1

∣∣∣∣ 1−ρ − z
2

)
· 2F1

(
r, 1− r

1

∣∣∣∣ 1−ρ + z
2

)
,

where ρ = ρ(x,z) := (1− 2xz+ z2)1/2, as a particular en-

try on the rich list [28] of findings of Fred Braf-

man in his 1951 thesis. One can notice that the two

identities (15) and (16) have a very similar shape

and the only difference is that the product of two

different specializations of 2F1 in (16) is replaced

with the square of a single specialization. It has

become a quite enjoyable adventure for three of

us, Heng Huat Chan, James Wan and myself, to

adapt in [32] the methods of proofs of Ramanujan

(-type) formulae for 1/π to the new settings and rigor-

ously establish the experimental observations of Sun

from [58].

The fact that Brafman’s generating function (16)

looks very much like Bailey’s formula (13) is not sur-

prising as Brafman used the latter one for derivation
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of the former by using

F4(r,1− r; 1,1 | X(1−Y ),Y (1−X))

=
∞

∑
n=0

(r)n(1− r)n

n!2 Pn

(
X +Y −2XY

Y −X

)
(Y −X)n.

In fact, Brafman’s identity in [28] was a general gen-

erating functions of Jacobi polynomials, something

that Bailey had found himself earlier in [14] (but

the trigonometric way Bailey stated his result ob-

scured its applicability). Brafman went much further

in his dedication to generating functions of orthog-

onal polynomials, and in our joint project [60] with

Wan we used another (hypergeometric!) theorem of

Brafman from [29] and its generalization given by H.

M. Srivastava [57] to produce some new generating

functions of rarefied Legendre polynomials, valid in

a neighbourhood of X = Y = 1:

∞

∑
n=0

( 1
2 )

2
n

n!2 P2n

(
(X +Y )(1−XY )
(X −Y )(1+XY )

)(
X −Y
1+XY

)2n

=
1+XY

2 2F1

( 1
2 ,

1
2

1

∣∣∣∣ 1−X2
)

2F1

( 1
2 ,

1
2

1

∣∣∣∣ 1−Y 2
)

and

∞

∑
n=0

( 1
3 )n(

2
3 )n

n!2 P3n

(
X +Y −2X2Y 2

(X −Y )
√

1+4XY (X +Y )

)
×
(

X −Y√
1+4XY (X +Y )

)3n

=

√
1+4XY (X +Y )

3 2F1

( 1
3 ,

2
3

1

∣∣∣∣ 1−X3
)

2F1

( 1
3 ,

2
3

1

∣∣∣∣ 1−Y 3
)
,

and use them for proving other observations of

Sun [58]. In showing the equalities we needed to es-

tablish a certain generalization of Bailey’s identity

(13) to non-hypergeometric settings, when the factors

2F1

(
a, b

c

∣∣∣∣ z

)
in the product (13) are replaced with solutions

∑
∞
n=0 u(n)zn of more general (arithmetic) differential

equation of order 2 with four regular singularities. We

refer the interested reader to our original paper [60]

for the details of the formula and story.

There is a more significant difference between

Clausen’s formula (15) and Bailey’s (13): the former

one depends on a single variable while there are

two variables involved in the latter. There are effi-

cient algorithms to determine whether a given solu-

tion F(z) of a third order (Picard–Fuchs) linear dif-

ferential equation can be written in the form F(z) =
α(z) · f (β (z))2 where α(z) and β (z) are algebraic func-

tions and f (z) satisfies a second order linear differen-

tial equation. At the same time, no general algorithm

is known to write for a given function F(X ,Y ) a repre-

sentation

(17) F(X ,Y ) = α(X ,Y ) · f (β (X ,Y )) f (γ(X ,Y ))

(or even to check whether one exists) with some alge-

braic functions α(X ,Y ), β (X ,Y ) and γ(X ,Y ) and f (z) a
solution of a second order (Picard–Fuchs) differential

equation. Many cases when we expect such factorisa-

tions (17) to exist are suggested by later experimen-

tal findings of Sun, which he fed in the later updates

of [58]. For example, we expect factorisations of the

form (17) to hold for the generating functions

∞

∑
n=0

Pn(x)
3zn and

∞

∑
n=0

(
2n
n

)
Pn(x)

2zn,

where Pn(x) are again the Legendre polynomials, but

we only know [72] a formula for the latter one when

z = 4(x2 −1)/(x2 +3)2.

Most of the known factorisations (17) follow from

Bailey’s formula (13) or from its generalization in [60].

Aware of our interest in collecting such examples,

Frits Beukers communicated to us in 2013 his per-

sonal finding of factorisation of Appell’s function F2,

which he had come across accidentally when study-

ing reducible cases of GKZ hypergeometric functions

and proved using somewhat ad hoc methods. Beuk-

ers’ identity is

F2

(
a+b− 1

2 ; a,b; 2a,2b

∣∣∣∣ 4u(1−u)(1−2v)
(1−2uv)2 ,

4v(1− v)(1−2u)
(1−2uv)2

)
= (1−2uv)−1+2a+2b

2F1

(
a+b− 1

2 , a
2a

∣∣∣∣ 4u(1−u)

)
× 2F1

(
a+b− 1

2 , b
2b

∣∣∣∣ 4v(1− v)

)
,

and it indeed follows from the combination of (12)

with (13) (Bailey himself wrote an equivalent form of

Beukers’ formula in his 1938 paper [14]; see eq. (3.1)

there).

Bailey’s last publication [21] in 1959 was again

about the formula (13), this time from a historical per-

spective. While working on the obituary notice [20] of

Ernest William Barnes for the London Mathematical

Society, Bailey was given access to some unpublished

materials fromMrs. Barnes. Onemanuscript prepared

by Barnes in 1907 for publication (but never pub-

lished) gave the formula and its proof. Bailey writes

in [21]:

“The formula (1.1)2 was obtained by myself in 1933, and
I did not know until the discovery of the manuscript that
Barnes had obtained the formula a quarter of a century be-
fore I did. The manuscript was quite a lengthy one and gave
different forms of (1.1) with a number of diagrams illustrat-
ing the regions of validity in the different cases. I sent the
work to Professor Watson, and at one time he contemplated
writing a short note on it, but was deterred by the fact that
the state of printing at the time was very difficult.”

2 This is equation (13) above.

DECEMBER 2019 NOTICES OF THE ICCM 39



We can speculate that such finding was a personal

tragedy to Bailey and one possible reason for the de-

cline of his research activities. It is certain to us that

the formula (13) is Bailey’s, and we admire his act of

honesty in reporting on the discovered manuscript of

Barnes in public.

We conclude this section by presenting one more

episode on the function F4. In his brief exposition

about Appell’s hypergeometric functions [10, Chap-

ter 9], Bailey notices (in Section 9.3, after recording

Euler-type double integrals for the functions F1, F2

and F3) that “[t]here appears to be no simple inte-

gral representation of this type for the function F4.”

A formula of this type was given by Burchnall and

Chaundy in 1940 in the paper [30] where they in-

troduced a symbolic notation for expressing Appell’s

functions bymeans of single-variable hypergeometric

functions. Bailey discusses the results from [30] and

gives his own proof of the double integral representa-

tion of F4 in [15]. Surprisingly enough, this discovery

is not reflected in later Slater’s book [56], where she

misleadingly indicates (in Section 8.2) “no similar in-

tegral for F4 has been found.”

4. An Algebraic Identity: Variations
on q-Analogues of Zeta Values

An algebraic, as appears in the title of Bai-

ley’s short communication [12], identity in question

is in fact of combinatorial nature and the adjec-

tive ‘algebraic’ is probably used as a synonym to

‘non-analytical’ (though the identity is analytical as

well):

(18)
∞

∑
n=1

qn

(1−qn)2

n

∑
l=1

1
1−ql =

∞

∑
n=1

n2qn

1−qn .

He learned about it from Hardy and attributed it to

E. T. Bell; in [12] Bailey records three different proofs

of the identity. If we denote σk(n) = ∑d|n dk the sum of

the kth powers of the divisors of n then the Lambert

series on the right-hand side of (18) can be alterna-

tively written as ∑
∞
n=1 σ2(n)qn. As Bell mentions himself

[24] (see the related discussion in the later note [13]

of Bailey) the identity has the following combinatorial

interpretation stated without proof by Liouville [42]:

the number of representation of a positive integer n
in the form ab+bc+cd+de, where a,b,d,e > 0 and c ≥ 0
are integers, is σ2(n)−nσ0(n).

As pointed out in the introduction, the identity is

a q-analogue of Euler’s ζ (2,1) = ζ (3) and it was stated

by us with a mistake in the survey [65] on the so-

called multiple zeta values (MZVs). (At the time of

writing [65] we were not aware of Bailey’s [12] and its

predecessors.) The mistake was soon after corrected

by D. Bradley in [27] and the whole area of q-MZVs

has exploded in the last years; we limit ourselves here

to mention of the two excellent representatives of

the explosion—Bachmann’s bi-brackets and multiple

Eisenstein series in [6] and the structural relations of

q-MZVs in [31] by J. Castillo Medina, K. Ebrahimi-Fard

and D. Manchon.

The result (18) is particularly interesting as it

gives two representations of a generating function

linked with the world of Maass forms [39] rather than

modular forms. The latter fact makes this story quite

disjoint with that for the Rogers–Ramanujan identi-

ties [53, 54] when the both sides of such an identity

are expected to represent some modular forms. (Re-

cent experimental discoveries of Kanade and Russell

in [37] give some evidence in that the modularity may

not be always a feature.) This makes Slater’s remark

[55] about connection of the two related equations

from [12],

(1−q)
∞

∑
n=1

(1−q2n+1)qn

(1−qn)2(1−qn+1)2(19)

×
(

1+q
1−q

+
1+q2

1−q2 + · · ·+ 1+qn

1−qn

)
=

∞

∑
n=1

n2qn

1−qn

and

(1+q)
∞

∑
n=1

(1+q2n+1)qn

(1−qn)2(1+qn+1)2(20)

×
(

1+q2

1−q2 +
1+q4

1−q4 + · · ·+ 1+q2n

1−q2n

)
=

∞

∑
n=1

n2qn

1−qn ,

to the Rogers–Ramanujan identities unjustified,

though indeed the left-hand sides of both (19)

and (20) smell like the sum-parts of some Rogers–

Ramanujan-type identities. Apart from this similarity

and the similarity of the methods used in proofs, they

share little.

We can also remark that the non-modularity of

the series

ζq(s) =
∞

∑
n=1

ns−1qn

1−qn

for odd integers s ≥ 1 and the fact that (1−q)sζq(s)→
(s− 1)!ζ (s) for any integer s > 1 make the series per-

fect q-analogues of (odd) q-zeta values [64]. The first

arithmetic result in their direction was obtained by

Paul Erdo
′′
s [34] in 1948, who proved the irrationality

of the q-harmonic series ζq(1) for q a reciprocal of an

integer > 1. The analogies between the q-series ζq(s)
and quantities ζ (s) for positive s > 1 have deep hy-

pergeometric roots; in particular, the q-basic version
of the very-well-poised construction from Section 2
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produces the linear forms in odd q-zeta values ζq(s)
with coefficients from Q(q). This was exploited in our

joint paper [38] with Krattenthaler and Rivoal to es-

timate the dimension of the Q-space spanned by the

odd q-zeta values under the conditions on q similar

to that of Erdo
′′
s in [34]. This is a number-theoretical

q-analogue of Rivoal’s theorem [22, 51, 52].

5. The Erdo
′′
s Number of W. N. Bailey

Bailey’s lack of collaboration is striking: among

the 75 papers and one book authored by him

(which are carefully listed by Slater in [55]) there

is only one work coauthored. This is the joint pa-

per [63] with John Macnaghten Whittaker published

in 1938, which is one page long and places Bai-

ley second on the authors’ list! Already this sin-

gle little publication makes Bailey’s Erdo
′′
s number

(that is, his collaboration distance to Erdo
′′
s) finite,

namely equal to 4, in view of the collaboration chain

J. M. Whittaker–R. Wilson (J. London Math. Soc. 14

(1939), 202–208), R. Wilson–A. J. Macintyre (5 joint

papers recorded by the MathSciNet including, e.g.,

Proc. London Math. Soc. (2) 47 (1940), 60–80) and

A. J. Macintyre–P. Erdo
′′
s (Proc. Edinburgh Math. Soc.

(2) 10 (1954), 62–70). The sequence was communi-

cated to us by Jonathan Sondow. Before his send-

ing we believed that Bailey’s Erdo
′′
s number was in-

finite, and designed a different path from Bailey to

Erdo
′′
s through J. M. Whittaker’s biological father, Ed-

mund Taylor Whittaker (who clearly had had some

mathematical impact on his son). According to the

MathSciNet (accessed on 30 October 2016), the Erdo
′′
s

number of E. T. Whittaker is equal to 4 and it goes

through his famous collaboration A course of mod-

ern analysis with George Neville Watson (with the

latter placed second!), who coauthored the memoir

[1] with Bruce Berndt, who in turn had a joint pa-

per with Sarvadaman Chowla, an Erdo
′′
s’s collabora-

tor. (The search in Zentralblatt reveals a different col-

laboration path from Whittaker the father to Erdo
′′
s,

through Harry Bateman, Stephen Rice and Nicolaas

de Bruijn—not a bad one either!) The fact that Wat-

son authored a paper some 20 years after passing

away immediately caused a question of whether an-

other G. N. Watson exists, with a similar circle of

mathematical interests. Here we reproduce the re-

sponse of Bruce Berndt (dated 30 October 2016) to

our query:

“In regard to our AMS Memoir on Chapter 16 of the sec-
ond notebook, coauthored with Watson, the three living au-
thors felt that Watson should be given the credit that he de-
served, and so we listed him as a coauthor. Fortunately, the
Memoir editors were sympathetic with our view. I tried at
least one other time to list Watson as a coauthor, namely
for my paper with Ron Evans, Extensions of asymptotic ex-
pansions from Chapter 15 of Ramanujan’s second notebook,

J. Reine Angew. Math. 361 (1985), 118–134. However, the ed-
itors of Crelle told us that each author needed to give explicit
agreement for publication. Since Watson was dead, it was of
course impossible to get his consent.”

We can only add to the story that these days consents

for publication are even tougher.

One remarkable story of what came out from Bai-

ley’s interest in basic hypergeometric functions and

generalizations of the famous Rogers–Ramanujan

identities was his correspondence with Freeman

Dyson in the 1940s. Dyson records this in [33] as

one of his visits to Ramanujan’s garden. We are fortu-

nate to include copies of those few (originally hand-

written) letters from Bailey to Dyson below as an ap-

pendix to the paper, in which one can get a feel-

ing for the personality of W. N. Bailey. There it be-

comes transparent that the correspondence has orig-

inated a method that would be later published by

Bailey in [16, 19] and much later coined the name

“Bailey’s lemma” by George Andrews [5] in 1984.

This method and its generalizations have had a

great impact on many developments in hypergeo-

metric functions, combinatorics and number the-

ory [61].

A somewhat different implication of Bailey’s

work was on classifying algebraic hypergeometric

functions, and our exposition of this here is some-

what approximate (as we could not witness the events

ourselves). In 1957 Antonius Levelt started his PhD

work under supervision of de Bruijn. An initial task

for him was to find an appropriate way of represent-

ing the material in Bailey’s book [10]. One should

take into account that the late 1950s and 1960s were

an explosion of Bourbaki’s ideas and abstract alge-

braic approaches in mathematics—the one-page ex-

position in [48, Section 8.4] is an excellent reference

for gaining the “spirit of the epoch”—and Levelt fol-

lowed Grothendieck’s lectures in Paris for two years.

The subject of hypergeometric functions was hardly

considered as “sexy” at that time and he found diffi-

culties in just appreciating the magical formulae that

were always established by a combination of certain

tricks. What Levelt managed to do, however, was find-

ing a different route of his own to the subject and

relating the monodromy of hypergeometric differen-

tial equations to a simple and elegant problem in lin-

ear algebra. He defended his thesis [40] cum laude

in 1961, and in the last chapter of the thesis he illus-

trated the power of the machinery he developed by

proving certain particular entries from Bailey’s book.

Levelt’s work was picked up later by Frits Beukers and

Gert Heckman [26] to give a complete description of

groups that show up as the (Zariski closures of) hy-

pergeometric monodromy groups and, by this means,

to give a complete list of hypergeometric functions (1)

which are algebraic.
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Appendix:
W. N. Bailey’s Letters to F. Dyson

A historical context of the correspondence can be

found in the visit entitled “III. Bailey” of Dyson’s “walk

through Ramanujan’s garden” [33].

17 Prince’s Road,

Heaton Moor,

Stockport,

Cheshire.

Dec. 22/43

Dear Dyson,

I am writing to you in connection with my paper

for the L.M.S. I had a letter from Hardy two days ago,

& he enclosed your report (a rather unusual thing to

do, but very useful in the circumstances).

Many thanks for your comments. Actually I have

not seen Rogers’ papers for some years & I am in the

unfortunate position of not being able to look them

up. The only copy in Manchester (as far as I am aware)

was destroyed in the blitz in 1940, or I should cer-

tainly have refreshed my memory. I am now trying to

purchase the parts of the L.M.S. Proceedings in which

they appear, but don’t know whether I shall be suc-

cessful. I shall, of course, after the last part of §1 and

the first part of §2 to meet your criticism.

With regard to the formulae (4.3) & (5.3), I did

not remember that they were given by Rogers, and I

couldn’t look up this paper either. I had, however, dis-

covered them in a paper by Jackson, a copy of which

I enclose as it might interest you. [He sent me two

copies]. Jackson makes no reference to Rogers. The

formulae are the last on p. 175 & the first on p. 176

(with a misprint). My (6.3) was, I thought, new, but I

think the third formula on p. 170 of Jackson’s paper

is meant to be the same, but it is wrong. I am not sure

that he deserves to be quoted when he simply states

the formula & gives it incorrectly, but I shall probably

put in a reference. Jackson is terribly careless & has

caused me a good deal of trouble, but he has a good

many curious results in this paper.

With regard to your formulae for products in

which the powers of x advance by 27, I am afraid I

don’t see how you obtained them. I should very much

like to know. The products in the first three are the

products occurring in my formulae for 9’s with x re-

placed by x3, as I suppose you noticed. If you like, you

could make a short paper about them & ask for it to

follow mine probably in the Proceedings or write one

for the journal quoting what is necessary of my pa-

per. If you still don’t think it worth while making a

separate paper, I will incorporate the formulae in my

paper with due acknowledgements. I should however

have to give at least some indication of how they were

obtained. I may be dense, but they don’t seem at all

obvious to me. I shall certainly be interested to know

how you got them.

Yours sincerely,

W. N. Bailey

17 Prince’s Road,

Heaton Moor,

Stockport.

Dec. 24/43

Dear Dyson,

Just a line to tell you not to bother writing out

proofs of your identities—if I am not already too late.

I have rather belatedly found out how you got them.

Two of them come from

1+
∞

∑
n=1

(−1)n[ax3]n−1(1−ax6n)a4nx
1
2 (27n2−3n)

[x3]n

=
∞

∏
1
(1−axn)

∞

∑
n=0

anxn2
[ax3]n−1

xn!(ax)2n−1

where [ ] denote the powers of x advance by 3. Two of

your identities come by taking a= 1 & a= x3. I suppose

you got your results in the same way as I have done,

by taking αr = 0 unless r is a multiple of 3. I should

also have got the last formula of the original three,

but something has gone wrong & I cannot find the

error at present. Perhaps it is too near Xmas!

I think several other formulae should be obtain-

able by similar methods, but of course they may not

be new.

By the way, the third formula on p. 170 of Jack-

son’s paper is evidently meant to be one of mine. All

that is needed to put it right is to change the sign of

q on one side.

If you decide to let your identities go in my paper

I will send the paper on to you when finished. They

would put a finishing touch on my paper, & definitely

increase its value, but I think you would be perfectly

justified in making a separate paper.

Best seasonal greetings.

W. N. Bailey

17 Prince’s Road,

Heaton Moor,

Stockport,

Cheshire.

Jan. 5/44

Dear Dyson,

I am writing to give you information this time—

not to worry you.
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Your method of getting “27” identities appears to

be equivalent to the method I found. I have added two

paragraphs to my paper, the first bringing in the idea

of making various αr = 0 (or taking various cosrθ = 0),
& getting in particular two of your “27” identities. In

the last paragraph I give a list of all the identities you

sent, but I don’t attempt to provide proofs. Actually I

have only looked at Rogers’ methods from one aspect,

& I doubt whether proofs of all your identities could

be got by the methods of my paper.

I have now got a copy of Rogers’ paper which he

wrote in 1917—borrowed it from Jackson who very

kindly sent me some other including Rogers’ “Third

Memoir”, but unfortunately not the other two.

By the way, the formula for
∞

∏
1

(
1− x9n

1− xn

)
is a brute

to get. It is easy enough to get a series for it, but I find

it an awful business to get your series.

I thought it wasn’t necessary to worry you again

with my paper, particularly as you are so busy, but I

wanted to let you know that I have put your identities

on record.

Yours sincerely,

W. N. Bailey

17 Prince’s Road,

Heaton Moor,

Stockport,

Ches.

Feb. 13/44

Dear Dyson,

I was interested in your last letter which I received

some time ago. I should think your proof of the iden-

tity for
∞

∏
1
(1−q9n) is as short as can be expected. I have

got a-generalisation for it, but unfortunately it is not

at all elegant. It is, in fact,

1+
∞

∑
1

(−1)n{ax3}n−1

x3
n!

(1−ax6n)(1−x3n+ax6n)a4n−1x
1
2 (27n2−9n)

=
∞

∏
m=1

(1−axm)
∞

∑
n=0

{ax3}n

xn!(ax)2n+1
anxn2+n,

where {a}n = (1− a)(1− ax3) · · ·(1− ax3n−3), and I don’t

see any nicer way of writing it.

I am really writing to you to let you know how

things are going. I have been pretty busy in other ways

lately, but I have done enough to feel rather disap-

pointed with this sort of thing. After studying Rogers’

papers, I was led to put things in this way:

If βn =
n
∑

r=0
αrun−rvn+r, and γn =

∞

∑
r=n

δrur−nvr+n, then

∞

∑
n=0

αnγn =
∞

∑
n=0

βnδn, provided of course that convergence

conditions are satisfied. This leads, in particular, to

all the known transformations of ordinary hyperge-

ometric series. In fact, it is substantially equivalent

to the method used in my tract, though I think this is

rather a more illuminating way of putting it. Similarly

it is substantially equivalent to the method I used in

my last paper to find the transformation of a nearly

poised basic series. One form we can take is

βn =
n

∑
r=0

αr

(q)n−r(aq)n+r

γn =
∞

∑
r=n

δr

(q)r−n(aq)r+n

and then

(aq)2nβn = Rogers’ m2n if a = 1

= ′′ m2n+1 if a = q

while

δn(aq)2n = a2n if a = 1

= a2n+1 if a = q

and γn = b2n or b2n+1, αn = m2n or m2n+1.

The formula for γn gives, if δr =(ρ1)r(ρ2)r(aq/ρ1ρ2)
r,

by Gauss’s theorem,

γn =
(ρ1)n(ρ2)n

(aq/ρ1)n(aq/ρ2)n

(
aq

ρ1ρ2

)n

·
∞

∏
m=1

[
(1−aqm/ρ1)(1−aqm/ρ2)

(1−aqm)(1−aqm/ρ1ρ2)

]
.

Consequently

∞

∑
n=0

(ρ1)n(ρ2)n(aq/ρ1ρ2)
n
βn

=
∞

∏
m=1

[ ]
∞

∑
n=0

(ρ1)n(ρ2)n

(aq/ρ1)n(aq/ρ2)n

(
aq

ρ1ρ2

)n

αn.

When a = 1 or a = q this is equivalent to Rogers’s for-

mulae with u & v in them,* from which he deduces 19

particular cases giving Fourier series in terms of A’s.
Actually u = q

1
2 /ρ1, v = q

1
2 /ρ2.

Similarly the relations between βn & αn gives, with

the analogue of Dougall, relations corresponding to

those given by Dougall connecting the a’s & b’s. It
is evident from all this, for example, that any re-

sults obtained from Rogers’ formulae E1, E3, F1, F2,

E2, E4, F3, F4 (+perhaps others) all the 19 uv formu-

lae can be derived from Watson’s transformation di-

rectly. Of course one could work out a few formulae

which would generalise all those given by Rogers or

obtainable by the methods of his 1917 paper, but,

apart from the results given already, these formu-

lae appear to me to be anything but elegant. Some

* This makes the uv formulae seem almost trivial!
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have some factors advancing by
√

q & some by q,
& the series are not of any general type. In fact it

seems to me that, apart from the general transfor-

mations already given, the method is only useful for

obtaining formulae of the Rogers’–Ramanujan type.

They are, at any rate, reasonably simple in appear-

ance.

Of course the simple result at the beginning of

this letter has its analogue for integrals. Thus if

F(y) =
∫ y

0
ϕ(x) f (y− x)g(y+ x)dx,

and

G(y) =
∫

∞

y
ψ(x) f (x− y)g(x+ y)dx,

then ∫
∞

0
ϕ(x)G(x)dx =

∫
∞

0
ψ(x)F(x)dx.

One might hope that results could be got for in-

tegrals corresponding to those got for series, but the

trouble is to start. So far I have got nowhere.

The result of all this is that I feel that the only

thing I am being led to is a search for more R-R iden-

tities, & probably you have found the most interest-

ing ones that are new. Of course the method gives

a-generalisations of them.

Yours sincerely,

W. N. Bailey

17 Prince’s Road,

Heaton Moor,

Stockport,

Cheshire.

Aug. 1/44

Dear Dyson,

Hardy has passed on your comments onmy paper

on “Identities of the Rogers–Ramanujan type.” Many

thanks for reading it so carefully & for finding the er-

rors. I had checked the formulae a little, but evidently

not enough. The first two formulae were got from

(6.4) 1+
∞

∑
n=1

(ρ1)n(ρ2)n{ax3}n−1

xn!(ax)2n−1

(
ax

ρ1ρ2

)n

=
∞

∏
m=1

[
(1−axm/ρ1)(1−axm/ρ2)

(1−axm)(1−axm/ρ1ρ2)

]
×
[

1+
∞

∑
n=1

(−1)n{ax3}n−1(1−ax6n)(ρ1)3n(ρ2)3n

x3
n!(ax/ρ1)3n(ax/ρ2)3n

× a4nx
3
2 n(3n+1)

ρ3n
1 ρ3n

2

]
,

where {a}n = (1− a)(1− ax3) · · ·(1− ax3n−3). If we take

ρ1 =−
√

a, ρ2 =−
√

ax, this becomes

1+
∞

∑
n=1

(−
√

a)n(−
√

ax)n{ax3}n−1x
1
2 n

xn!(ax)2n−1

=
∞

∏
m=1

[
(1+

√
axm)(1+

√
axm− 1

2 )

(1−axm)(1− xm− 1
2 )

]

×
[

1+
∞

∑
n=1

(−1)n{ax3}n−1(1−
√

ax3n)(1+
√

a)anx
9n2

2

x3
n!

]
.

I got the first incorrect result by taking
√

a = x
3
2 . I find

that I dropped a factor (−1)n, & the formula I now get

is

∞

∑
n=0

x6
n!xn

x2n+2!x2
n!

=
∞

∏
n=1

(1− x18n)(1− x18n−3)(1− x18n−15)

(1− xn)(1− x2n−1)
.

(7.1)

Similarly by taking
√

a = 1, I got the second formula,

viz

1+2
∞

∑
n=1

x6
n−1!xn

x2n−1!x2
n!

=
∞

∏
n=1

(1+ xn)(1− x9n)

(1− xn)(1+ x9n)
.(7.2)

You say this is correct up to the term x6. I must

confess that I cannot find anything wrong in the

working.

The third formula was certainly wrong, & should

have been the same as the first of the five you sent.

I will incorporate these formulae in the paper, but

I should be very glad if you could say whether you

agree with (7.1) & (7.2) now. I find these things very

tedious to check to any extent, though I thought I was

fairly safe.

Again, many thanks for all the care you have

taken & for the new results.

Yours sincerely,

W. N. Bailey

8 Langton Avenue,

Whetstone,

London, N. 20.

Oct. 8/46

Dear Dyson,

I was interested to hear from you again & that

you are back to Cambridge. I am now in London (at

Bedford College) & have been for the past two years.

I have had two papers ready for P.L.M.S. for about

3 years or more, so they ought to be published in an-

other year or two! Actually the L.M.S. have done all

they can to speed up publication, but first of all short-

age of paper & then shortage of labour have been too

much for them.
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After coming here I had rather a strenuous time

getting used to the ways of London University, find-

ing a house, & so on, so I didn’t make much progress

with the work I was doing. Lately, however, I have sent

a paper to the Quarterly Journal in which I give the

basic analogues of 6.6(3) in my tract, & of 6.8(3) &

7.6(2). The first of these is what Dougall’s theorem be-

comes when the series does not terminate. The other

two are the relations connecting 4 9F8’s. I found the

analogue of 6.6(3) was merely a particular case of a

formula given in a Q.J. paper in 1936 (Series of hyp.

type infinite in both dirns, Q.J. 7 (105) first formula in

§ 5).

I got the analogue of 6.8(3) by transforming the

argument in §§6.7 & 6.8 of my tract into series by

considering poles on the right of the contours. Then I

did the corresponding work for basic series. The idea

was simple enough, but the details nearly broke my

heart.

In P.L.M.S. 42 (1934) 410–421, Whipple gave (or

rather showed how to find) a connection between 4

9F8’s (well-poised) when there was no restriction on

the sums of numerator & den. parameters. This leaves

the obvious problem of finding the corresponding re-

sult for basic series, but I hadn’t the pluck to start

that. Whipple’s proof is very short & depends on a

contour integral, but I don’t see how one could adapt

this method to basic series, unless one worked out

a good deal about integrals generalising integrals of

Barnes’ type.

These was another thought I had that seemed to

hold promise at one time, but I never got anything out

of it. In the papers you saw I gave a general theorem

on series which has the integral analogue: If

F(y) =
∫ y

0
ϕ(x) f (y− x)g(y+ x)dx

&

G(y) =
∫

∞

y
ψ(x) f (x− y)g(x+ y)dx,

then ∫
∞

0
ϕ(x)G(x)dx =

∫
∞

0
ψ(x)F(x)dx.

With so much being derivable from the series theo-

rem I thought that there might be possibilities from

the integral theorem, but I did not succeed in getting

anything interesting. Still, there may be something in

it.

I didn’t try to get any more identities of the

Rogers–Ramanujan type. We got a good many be-

tween us 3 years ago!

Yours sincerely,

W. N. Bailey
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