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Abstract. This article provides the summary of

[GSY17a] and [GSY17b] where the authors studied the

enumerative geometry of “nested Hilbert schemes”

of points and curves on algebraic surfaces and

their connections to threefold theories, and in

particular relevant Donaldson-Thomas, Vafa-Witten

and Seiberg-Witten theories.
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1. Introduction

In recent years, there has been extensive math-

ematical progress in enumerative geometry of sur-

faces deeply related to physical structures, e.g.

around Gopakumar-Vafa invariants (GV); Gromov-

Witten (GW), Donaldson-Thomas (DT), as well as

Pandharipande-Thomas (PT) invariants of surfaces;

and their “motivic lifts”. There is also a tremen-

dous energy in the study of mirror symmetry of sur-

faces from the mathematics side, especially Homo-

logical Mirror Symmetry. On the other hand, phys-

ical dualities in Gauge and String theory, such as

Montonen-Olive duality and heterotic/Type II du-

ality have also been a rich source of spectacular

predictions about enumerative geometry of moduli

spaces on surfaces. For instance an extensive re-

search activity carried out during the past years was

to prove the modularity properties of GW or DT in-

variants as suggested by the heterotic/Type II dual-

ity. The first prediction of this type, the Yau-Zaslow

conjecture [YZ96], was proven by Klemm-Maulik-

Pandharipande-Scheidegger [KMPS10]. Further recent

developments in this particularly fruitful direction

include: Pandharipande-Thomas proof [PT16] of the

Katz-Klemm-Vafa conjecture [KKV99] for K3 sur-

faces, Maulik-Pandharipande proof of modularity of

GW invariants for K3 fibered threefolds [MP13],

Gholampour-Sheshmani-Toda proof of modularity of

PT and Gholampour-Sheshmani proof of modular-

ity of DT invariants of stable sheaves on K3 fibra-

tions [GST17, GS18] (moreover, the generalizations
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of the latter in [BCDDQS16]), and finally Gholampur-

Sheshmani-Thomas [GS14] proof of modular prop-

erty of the counting of curves on surfaces deforming

freely (in a fixed linear system) in ambient CY three-

folds.

SU(2)-Seiberg-Witten (SW) / DT correspondence.

The introduction of other versions of gauge theo-

ries in dimensions 6 started numerous exciting de-

velopments in physical mathematics and mathemat-

ical physics involving enumerative geometry, mirror

symmetry, and related physics of 4 dimensional man-

ifolds, realized as a complex two dimensional sub-

variety which could exhibit deformations inside am-

bient higher dimensional target varieties, such as

CY threefolds. The SW/DT correspondence is one of

such platforms to find interesting structural sym-

metries between theory of surfaces and theory of

threefolds: having fixed a spin structure on a com-

plex surface S the SW invariant of S roughly counts

with sign the number of points in the parametriz-

ing space (the moduli space) of solutions to SW

equations defined on S [D96, Section 1]. The fo-

cus of SW theory in physics is the study of mod-

uli space of vacua in N = 2, D = 4 super Yang-Mills

theory, and in particular certain dualities of the

theory such as electric-magnetic duality (Montonen-

Olive duality). In [GLSY17] Gukov-Liu-Sheshmani-Yau

conjectured a relation between SW invariants (asso-

ciate to SU(2) gauge invariant theory) of a projec-

tive surface S and DT invariants of a noncompact

threefold X obtained by total space of a line bun-

dle L on S. In a later work [GSY17a, GSY17b], which

will be elaborated below, Gholampour-Sheshmani-

Yau proved the conjecture in [GLSY17, Equation

56].

The key object which bridges the geometry of

complex surface to the ambient noncompact com-

plex threefold is the “nested Hilbert scheme of sur-

face”. This space parametrizes a nested chain of

configurations of curves and points in the surface.

Let us assume that S is a projective simply con-

nected complex surface and let L be a line bundle

on S. In [GSY17a], Gholampour-Sheshmani-Yau an-

alyzed the moduli space of stable compactly sup-

ported sheaves of modules on the noncompact three-

fold X . In physics terms these are D4-D2-D0 branes

wrapping the zero section of X (i.e. sheaves are sup-

ported on S or a fat neighborhood of S in X). The au-
thors showed in [GSY17a] that the DT invariants of

X satisfy an equation in terms of SW invariants of S
and certain correction terms governed by invariants

of nested Hilbert schemes:

DT invariants of X = (SW invariants of S) ·
(Combinatorial coefficients) + Invariants of nested

Hilbert scheme of S

Their main exciting realization was when L = KS, the

canonical bundle of S. In this case the above DT in-

variants of X recover some well known invariants

in physics, the Vafa-Witten (VW) invariants [VW94],

which are known to have modularity property, fol-

lowing the work of Vafa-Witten [VW94] (and verified

by Tanaka-Thomas [TT17), TT18(2)]). On the other

hand the authors also showed that in some cases the

nested Hilbert scheme invariants also have modular

property [GSY17a, Theorem 7]. Therefore, we were

able to show that in some cases, the SW invariants

can be described in terms of modular forms.
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2. Nested Hilbert Schemes on
Surfaces

Hilbert schemes of points and curves on a non-

singular surface S have been vastly studied. Their

rich geometric structures have proved to have many

applications in mathematics and physics (see [N99]

for a survey). The current article is a survey of the

articles [GSY17a] and [GSY17b], where the authors

studied the enumerative geometry of “nested Hilbert

schemes” of points and curves on algebraic surfaces.

Given the sequence

n := n1,n2, . . . ,nr,r ≥ 1

of nonnegative integers, and β := β1, . . . ,βr−1, a se-

quence of classes in H2(S,Z) such that βi ≥ 0, we de-
note the corresponding “nested” Hilbert scheme by

S[n]
β
. A closed point of S[n]

β
corresponds to

(Z1,Z2, . . . ,Zr), (C1, . . . ,Cr−1)

where Zi ⊂ S is a 0-dimensional subscheme of length

ni, and Ci ⊂ S is a divisor with [Ci] = βi, and Zi+1 is a

subscheme of Zi ∪Ci for any i < r, or equivalently

(1) IZi(−Ci)⊂ IZi+1 .

In [GSY17a] and [GSY17b], in order to define in-

variants for the nested Hilbert schemes (see [GSY17a,
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Definitions 2.13, 2.14]), the authors constructed a vir-

tual fundamental class [S[n]
β
]vir and then integrate ap-

propriate cohomology classes against it. More pre-

cisely, they constructed a natural perfect obstruction

theory over S[n]
β
. This is done by studying the defor-

mation/obstruction theory of the maps of coherent

sheaves given by the natural inclusions (1) following

Illusie. It turned out that this construction in partic-

ular provides a uniform way of studying all known

obstruction theories of the Hilbert schemes of points

and curves, as well as the stable pair moduli spaces

on S. The first main result of [GSY17a] is as fol-

lows (see also [GSY17a, Proposition 2.5 and Corollary

2.6]):

Theorem 1 ([GSY17a, Theorem 1]). Let S be a nonsin-

gular projective surface over C and ωS be its canonical

bundle. The nested Hilbert scheme S[n]
β

with r ≥ 2 car-

ries a natural virtual fundamental class

[S[n]
β
]vir ∈ Ad(S

[n]
β
), d = n1 +nr +

1
2

r−1

∑
i=1

βi · (βi − c1(ωS)).

2.1 Special Cases

In the simplest special case, i.e. when r = 1, we
have S[n]

β
= S[n1] is the Hilbert scheme of n1 points on

S which is nonsingular of dimension 2n1, and hence it

has a well-defined fundamental class [S[n1]]∈A2n1(S
[n1]).

For r > 1 and βi = 0, S[n] := S[n]
(0,...,0) is the nested Hilbert

scheme of points on S parameterizing the flag of

0-dimensional subschemes

Zr ⊂ ·· · ⊂ Z2 ⊂ Z1 ⊂ S,

which is in general singular of actual dimension 2n1.

The authors were specifically interested in the

case r = 2, that is: S[n]
β

= S[n1,n2]
β

for some β ∈ H2(S,Z).
Interestingly, in the following cases the invariants of

nested Hilbert schemes coincide with the Poincaré

and the stable pair invariants of S that were pre-

viously studied in the context of algebraic Seiberg-

Witten invariants and curve counting problems. The

following theorem is proven in [GSY17a, Section 3].

Theorem 2 ([GSY17a, Proposition 3.1]). The virtual

fundamental class of Theorem 1 recovers the follow-

ing known cases:

1. If β = 0 and n1 = n2 = n then S[n,n]
β=0

∼= S[n] and [S[n,n]
β=0]

vir =

[S[n]] is the fundamental class of the Hilbert scheme

of n points.

2. If β = 0 and n2 = 0, then S[n,0]
β=0

∼= S[n] and

[S[n,0]
β=0]

vir = (−1)n[S[n]]∩ cn(ω
[n]
S ),

where ω
[n]
S is the rank n tautological vector bundle

over S[n] associated to the canonical bundle ωS of S.1

3. If β = 0 and n = n2 = n1 − 1, then it is known that

S[n+1,n]
β=0

∼= P(I [n]) is nonsingular, where I [n] is the uni-

versal ideal sheaf over S[n] × S [L99, Section 1.2].

Then,

[S[n+1,n]
β=0 ]vir =−[S[n+1,n]

β=0 ]∩ c1(OP(1)�ωS).

4. If n1 = n2 = 0 and β 6= 0, then S[0,0]
β

is the Hilbert

scheme of divisors in class β , and [S[0,0]
β

]vir coincides

with virtual cycle used to define Poincaré invariants

in [DKO07].

5. If n1 = 0 and β 6= 0, then S[0,n2]
β

is the relative Hilbert

scheme of points on the universal divisor over S[0,0]
β

,

which as shown in [PT10], is a moduli space of sta-

ble pairs and [S[0,n2]
β

]vir is the same as the virtual fun-

damental class constructed in [KT14] in the context

of stable pair theory. If Pg(S) = 0 this class was used

in [KT14] to define stable pair invariants.

In certain cases, the authors constructed a re-

duced virtual fundamental class for S[n1,n2]
β

by reducing

the perfect obstruction theory leading to Theorem 1

([GSY17a, Propositions 2.10, 2.12]):

Theorem 3 ([GSY17a, Theorem 3]). Let S be a nonsin-

gular projective surface with pg(S)> 0, and the class β

be such that the natural map

H1(TS)
∗∪β−−→ H2(OS) is surjective,

then, [S[n1,n2]
β

]vir = 0. In this case the nested Hilbert

scheme S[n1,n2]
β

carries a reduced virtual fundamental

class

[S[n1,n2]
β

]vir
red ∈ Ad(S

[n1,n2]
β

), d = n1 +n2 +
1
2

β · (β −KS)+ pg.

The reduced virtual fundamental classes [S[0,0]
β

]vir
red and

[S[0,n2]
β

]vir
red match with the reduced virtual cycles con-

structed in [DKO07, KT14] in cases 3 and 4 of Theorem

2. [S[0,n2]
β

]vir
red was used in [KT14] to define the stable pair

invariants of S in this case.

2.2 Nested Hilbert Scheme of Points

One interesting specialization of the nested

Hilbert schemes is the case where β = 0 and n= n1 ≥ n2.

In [GSY17a] the authors studied the nested Hilbert

schemes of points

S[n1≥n2] := S[n1,n2]
β=0

in much more details. Let ι : S[n1≥n2] ↪→ S[n1] × S[n2] be

the natural inclusion. For the case where S is toric

1 We were notified about this identity by Richard Thomas.
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with the torus T and the fixed set ST, the authors

provided a purely combinatorial formula for comput-

ing [S[n1≥n2]]vir by torus localization along the lines of

[MNOP06]:

Theorem 4. For a toric nonsingular surface S the

T-fixed set of S[n1,n2] is isolated and given by tuple of

nested partitions of n2,n1:{
(µ2,P ⊆ µ1,P)P | P ∈ ST, µi,P ` ni

}
.

Moreover, the T-character of the virtual tangent bun-
dle T of S[n1≥n2] at the fixed point Q = (µ2,P ⊆ µ1,P)P is

given by

trT vir
Q
(t1, t2) = ∑

P∈ST

VP,

where t1, t2 are the torus characters and VP is a Lau-

rent polynomial in t1, t2 that is completely determined

by the µ2,P,µ1,P and is given by the right hand side of

the following formula

(2)

trT vir
I1⊆I2

=Z1+
Z2

t1t2
+
(
Z1 ·Z2 −Z1 ·Z1 −Z2 ·Z2

) (1− t1)(1− t2)
t1t2

.

It turns out that when S is toric and Fano, by torus
localization, one can express [S[n1≥n2]]vir in terms of the

fundamental class of the product of Hilbert schemes

S[n1]×S[n2]:

Theorem 5. If S is a nonsingular projective toric Fano

surface, then,

ι∗[S
[n1≥n2]]vir = [S[n1]×S[n2]]∩ cn1+n2(E

n1,n2),

where En1,n2 is the rank n1 +n2 vector bundle on S[n1]×
S[n2] obtained by the first relative extension sheaf of the

universal ideal sheaves I [n1] and I [n2].

Theorem 5 holds in particular for S = P2, P1 ×P1,

which are the generators of the cobordism ring of

nonsingular projective surfaces. The authors used

this fact together with a degeneration formula devel-

oped for [S[n1≥n2]]vir to prove:

Theorem 6. If S is a nonsingular projective surface,

and α is a cohomology class in Hn1+n2(S[n1]×S[n2]) with

the following properties:

• α is universally defined for any pair of a non-

singular projective surface and a line bundle on

it,

• α is well-behaved under good degenerations of S,

then ∫
[S[n1≥n2 ]]vir

ι
∗
α =

∫
S[n1 ]×S[n2 ]

α ∪ cn1+n2(E
n1,n2),

and En1,n2 is the rank n1 + n2 virtual vector bundle on

S[n1] × S[n2] obtained by taking the alternating sum (in

the K-group) of all the relative extension sheaves of

I [n1] and I [n2].

The operators∫
S[n1 ]×S[n2 ]

−∪ cn1+n2(E
n1,n2
M )

were studied by Carlsson-Okounkov in [CO12]. Here

M ∈ Pic(S), and E
n1,n2
M is the rank n1 + n2 virtual vector

bundle over S[n1] × S[n2] obtained by taking the alter-

nating sum of all the relative extensions of I [n1] and

I [n2]�M defined as follows:

Definition 2.1. For any line bundles M on S, let En1,n2
M ∈

K(S[n1]×S[n2]) be the element of virtual rank n1 +n2 de-

fined by

E
n1,n2
M :=

[
Rπ

′
∗p∗M

]
−
[
RHomπ ′(I [n1],I [n2]⊗ p∗M)

]
,

where p and π ′ are respectively the projections from

S× S[n1] × S[n2] to the first and the product of last two

factors. Let i be the inclusion of the closed point (I1, I2)∈
S[n1]×S[n2], then, we define

E
n1,n2
M |(I1,I2) :=

[
Li∗Rπ

′
∗p∗M

]
−
[
Li∗RHomπ ′(I [n1],I [n2]⊗ p∗M)

]
∈ K(Spec(C)).

If M = O, we sometimes drop it from the notation. We

also define the following generating series

Zprod(S,M) := ∑
n1≥n2≥0

qn1
1 qn2

2

∫
S[n1 ]×S[n2 ]

c(En1,n2)∪ c(En1,n2
M ).

Note that by equation (5) in [CO12], we know

ci(E
n1,n2
M ) = 0 for i > n1 +n2, and so the integrand in the

definition of Zprod(S,M) can be replaced by

cn1+n2(E
n1,n2)∪ cn1+n2(E

n1,n2
M ).

Carlsson and Okounkov were able to express

these operators in terms of explicit vertex opera-

tors. As an application of Theorem 6 and the re-

sult of [CO12], the following explicit formula was

proven:

Theorem 7. Let S be a nonsingular projective surface,

ωS be its canonical bundle, and KS = c1(ωS). Then,

∑
n1≥n2≥0

(−1)n1+n2

∫
[S[n1≥n2 ]]vir

ι
∗c(En1,n2

M )qn1
1 qn2

2

= ∏
n>0

(
1−qn−1

2 qn
1

)〈KS,KS−M〉
(1−qn

1qn
2)

〈KS−M,M〉−e(S) ,

where 〈−,−〉 is the Poincaré paring on S and E
n1,n2
M is

as in Theorem 5.

3. Nested Hilbert Schemes and DT
Theory of Local Surfaces

In this section we give an overview of the results

of [GSY17b]. Let (S,h) be a nonsingular simply con-

nected projective surface with h = c1(OS(1)). Let ωS be
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the canonical bundle of S with the projection map q
to S, and X be the total space of ωS

2. X is a noncom-

pact Calabi-Yau threefold and one can define the DT

invariants of X by using C∗-localization, where C∗-acts

on X by scaling the fibers of ωS. More precisely, let

v = (r,γ,m) ∈ ⊕2
i=0H2i(S,Q)

be a Chern character vector, and MωS
h (v) be the mod-

uli space of compactly supported 2-dimensional sta-

ble sheaves E on X such that ch(q∗ E) = v. Here stabil-
ity is defined by means of the slope of q∗ E with re-

spect to the polarization h. In [GSY17b] the authors

provided MωS
h (v) with a perfect obstruction theory

by reducing the natural perfect obstruction theory

given by [T98]. The fixed locusMωS
h (v)C

∗
of the moduli

space is compact and the reduced obstruction theory

gives a virtual fundamental class over it, denoted by

[MωS
h (v)C

∗
]vir
red. They defined two types of DT invariants:

DTωS
h (v;α) =

∫
[MωS

h (v)C∗ ]vir
red

1

e(Norvir)
∈Q[s,s−1],

α ∈ H∗
C∗(MωS

h (v)C
∗
)s

DTωS
h (v) = χ

vir(MωS
h (v)C

∗
) ∈ Z,

where Norvir is the virtual normal bundle of

MωS
h (v)C

∗ ⊂MωS
h (v), χvir(−) is the virtual Euler charac-

teristic [FG10], and s is the equivariant parameter.

If α = 1 then the authors were able to show that

DTωS
h (v;1) = s−pg VWh(v),

where VWh(−) is the Vafa-Witten invariant (which

were also mathematically studied in detail by Tanaka

and Thomas in [TT17), TT18(2)]) and is expected to

have modular properties based on S-duality conjec-

ture (see [VW94]).

The C∗-fixed locus MωS
h (v)C

∗
consists of sheaves

supported on S (the zero section of ωS) and its thick-

enings. One can write MωS
h (v)C

∗
as a disjoint union

of several types of components, where each type is

indexed by a partition of r. Out of these component

types, there are two types of particular importance;

One of them (we call it type I) is identified withMh(v),
the moduli space of rank r torsion free stable sheaves
on S. The other type (we call it type II) can be identi-

fied with the nested Hilbert scheme S[n]
β

for a suitable

choice of n,β depending on v. The reason that types

I and II are more interesting, is the following result

proven in [GSY17b]:

Theorem 8 ([GSY17b, Theorem 2]). The restriction of

[MωS
h (v)C

∗
]vir
red to the type I component Mh(v) is identi-

fied with [Mh(v)]vir
0 induced by the natural trace free

2 In [GSY17b], we consider a more general case in which X
is the total space of an arbitrary line bundle L with H0(L⊗
ω

−1
S ) 6= 0.

perfect obstruction theory over Mh(v). The restriction

of [MωS
h (v)C

∗
]vir
red to a type II component S[n]

β
is identified

with [S[n]
β
]vir.

When r = 2, then types I and II are the only compo-

nent types of MωS
h (v)C

∗
. This leads us to the following

result:

Theorem 9 ([GSY17b, Theorem 3]). Suppose that v =
(2,γ,m). Then,

DTωS
h (v;α) = DTωS

h (v;α)I + ∑
n1,n2,β

DTωS
h (v;α)

II,S
[n1 ,n2 ]
β

,

DTωS
h (v) = χ

vir(Mh(v))+ ∑
n1,n2,β

χ
vir(S[n1,n2]

β
),

where the sum is over all n1,n2,β (depending on v) for
which S[n1,n2]

β
is a type II component of MωS

h (v)C
∗
, and

the indices I and II indicate the contributions of type I

and II components to the invariant DTωS
h (v;α).

The stability of sheaves imposes a strong condi-

tion on n1,n2,β appearing in the summation in the the-

orem above. For example, if S is a generic complete in-

tersection in a projective space, then for any n1,n2,β

for which S[n1,n2]
β

is a type II component of MωS
h (v)C

∗
,

the condition in Theorem 3 (leading to the vanishing

[S[n1,n2]
β

]vir = 0) is not satisfied.

The invariants χvir(S[n1,n2]
β

) and DTωS
h (v;α)

II,S
[n1 ,n2 ]
β

(for a suitable choice of class α e.g. α = 1) appearing in
the theorem above are special types of the invariants

NS(n1,n2,β ;−)

which are defined as follows:

Definition 3.1 ([GSY17a, Definition 2.13]). Let M ∈
Pic(S). Define the following elements in K(S[n1,n2]

β
) of vir-

tual ranks respectively n1 +n2 and −β ·β D/2+β ·c1(M):

K
n1,n2
β ;M :=

[
Rπ∗M(Zβ )

]
−
[
RHomπ(I [n1],I [n2]

β
⊗M)

]
,

Gβ ;M :=
[
Rπ∗M(Zβ )|Zβ

]
.

If β = 0 we will instead use the notation K
[n1≥n2]
M :=K

n1,n2
0;M

(see [GSY17a, Definition 5.4]). We also define the rank

2ni twisted tangent bundles

TM
S[ni ]

:= [Rπ∗M]−
[
RHomπ(I [ni],I [ni]⊗M)

]
=
[
Ext1

π

(
I [ni],I [ni]⊗M

)
0

]
.

Note that if M =O then TM
S[ni ]

= TS[ni ] .

Let P :=P(M,β ,n1,n2) be a polynomial in the Chern

classes of K
n1,n2
β ;M , Gβ ;M , TS[n1 ] , and TS[n2 ] , then, we can de-

fine the invariant

NS(n1,n2,β ;P) :=
∫
[S
[n1 ,n2 ]
β

]vir
P.
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Moreover under the condition in Theorem 3, the au-

thors defined the reduced invariants

Nred
S (n1,n2,β ;P) :=

∫
[S
[n1 ,n2 ]
β

]vir
red

P.

Mochizuki in [M02] expresses certain integrals

against the virtual cycle of Mh(v) in terms of Seiberg-

Witten invariants and integrals A(γ1,γ2,v;−) over the

product of Hilbert scheme of points on S. Using this

result the authors were able to prove the following:

Theorem 10 ([GSY17b, Theorem 4]). Suppose that

pg(S) > 0, and v = (2,γ,m) is such that γ ·h > 2KS ·h and

χ(v) :=
∫

S v · tdS ≥ 1. Then,

DTωS
h (v;1) =− ∑

γ1+γ2=γ

γ1·h<γ2·h

SW(γ1) ·22−χ(v) ·A(γ1,γ2,v;P1)

+ ∑
n1,n2,β

NS(n1,n2,β ;P1).

DTωS
h (v) =− ∑

γ1+γ2=γ

γ1·h<γ2·h

SW(γ1) ·22−χ(v) ·A(γ1,γ2,v;P2)

+ ∑
n1,n2,β

NS(n1,n2,β ;P2).

Here SW(−) is the Seiberg-Witten invariant of S, Pi and

Pi are certain universally defined explicit integrands,

and the second sum in the formulas is over all n1,n2,β

(depending on v) for which S[n1,n2]
β

is a type II component

of MωS
h (v)C

∗
.

If S is a K3 surface or S is isomorphic to one of the

five types of generic complete intersections

(5)⊂P3, (3,3)⊂P4, (4,2)⊂P4, (3,2,2)⊂P5, (2,2,2,2)⊂P6,

the DT invariants DTωS
h (v;1) and DTωS

h (v) can be com-

pletely expressed as the sum of integrals over the prod-

uct of the Hilbert schemes of points on S.
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