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Comments on S.-T. Yau

S.-T. Yau came to prominence when I was a grad

student at UC Berkeley around 1980. At that time,

S. S. Chern was the figure-head of geometry at Berke-

ley, and I was a PhD student of Alan Weinstein,

a former student of Chern. Geometry went through

a phase transition at Berkeley when Yau (among oth-

ers) put nonlinear PDE at the forefront of geome-

try. Previously, one might say that ODE’s such as the

geodesic equation weremore in the forefront; e.g. We-

instein’s thesis was about geodesics (Cut loci and con-

jugate loci). At around the same time, the role of

pseudo-differential and Fourier integral operator the-

ory as the rigorous framework for the classical limit

of quantum mechanics became established. It is a

very different use of (mostly linear) PDE in geomet-

ric analysis and classical dynamics.

Granted Yau’s leadership in directing geometers

and mathematical physicists to nonlinear PDE, one

might imagine that he might not be supportive of

work in a linear PDE area such as quantum mechan-

ics and spectral geometry. Leaders in a field of math-

ematics are not always open to ideas coming from

other branches where they do not specialize. But I

have seen no trace of this ‘closed’ attitude in Yau’s

mathematics. It is obvious that quantum mechanics

and field theory are the physics of the 20th–21st cen-

tury, andmy perception is that Yau is interested in ev-

ery aspect of ‘Geometry and Physics’, including quan-

tum mechanics and its classical limit. This includes

the eigenvalue problem ∆ϕ = −λϕ on a Riemannian

manifold (M,g).
Yau’s breadth of interests is reflected by the prob-

lems in his problem lists. One of his most famous

problems is to prove the Yau conjecture on nodal

sets: namely if (M,g) is a compact C∞ Riemannian

manifold of dimension n, and ϕλ is a ∆-eigenfunction

of eigenvalue −λ , then the surface measure Hn−1(Zϕλ
)

of the nodal set of ϕλ satisfies

cg

√
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for some positive constants cg,Cg > 0. Both the upper

and lower bound were proved by Donnelly-Fefferman

in the late 1980s in the real analytic case. The C∞

case remained open until 2016, when Malinnikova-

Logunov proved the sharp lower bound and gave a

polynomial upper bound. It is still open to prove (or

dis-prove) the sharp upper bound.

A related problem on Yau’s lists is to bound (from

above or below) the number of critical points of an

eigenfunction in terms of the eigenvalue. Since crit-

ical point sets may be hypersurfaces (e.g. for zonal

spherical harmonics) it is better to ask for bounds on

the number of critical values. This number is finite

if the metric is real analytic. To date, no one has ob-

tained an upper bound in this or any case. Jakobson-

Nadirashvili constructed metrics on the 2-torus for

which there exists a sequence of eigenfunctions with

eigenvalue tending to infinity and with a bounded
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number of critical points. Hence there does not ex-

ist an interesting lower bound, at least on a 2-torus.

One may try to add curvature assumptions or gener-

icity hypotheses. Yau has recently put another crit-

ical point problem on the 2015 ICCM problem list

asking about the number of critical points of the

Green’s function on certain manifolds. The Green’s

function is a solution of ∆G(x,y) = δy(x)− 1
V where V

is the volume of (M,g). More generally one consider

the Green’s functions Gλ (x,y) solving (∆+λ )Gλ (x,y) =
δy(x)− 1

V . I worked on this and related critical point

problems off and on for Neumann Green’s functions

of bounded plane domains. At one point I mentioned

a few problems and results to Yau but expressed

some reservations on the grounds that I did not see

any applications. His answer was, “so what, it’s inter-

esting”.

This answer might apply to the problem of Yau

that I spent the most time on. The problem was to

characterize metrics g on S2 whose Laplacian has the

same eigenvalue multiplicities as the standard Lapla-

cian. Recall that the standard one has eigenvalues

λN :=N(N+1)withmultiplicities mN = 2N+1. The prob-
lem is to forget the eigenvalues and only require

that the multiplicity of the Nth distinct eigenvalue is

2N + 1. I like this problem because it is elementary

to state, and it seems almost certain that the only

such metric is the standard one. It is a test of the

tools of inverse spectral theory to see if they can re-

solve the problem. On the first day I considered it,

I proved that such a metric g must be a Zoll met-

ric, i.e. one all of whose geodesics are closed. More-

over, there do not exist exceptionally short closed

geodesics, such as on a Moebius band. For such Zoll

metrics, the eigenvalues come in clusters of width

1 around the standard eigenvalues. Under the mul-

tiplicity assumption, each cluster is a single eigen-

value, so that I called them ‘maximally degenerate

Laplacians’. Moreover, I proved that the Nth eigen-

value was N(N + 1) +O(N−∞). I also proved that g is

standard if it is a Zoll surface of revolution1. At that

point, I got stuck: I could not get rid of the small er-

ror and prove that both the eigenvalues and the mul-

tiplicities were those of the standard Laplacian. I cal-

culated what are known as the sub-principal and sub-

1 I later learned that M. Engman had proved this result by a
different method.

sub-principal symbols of the Laplacian, which had to

be zero in this case. The first is well-known to be

zero, and the second is given by integrals of certain

types of polynomials over closed geodesics; the poly-

nomials being in the curvature (and its derivatives)

and the Jacobi fields (and their derivatives). These

integrals all had to vanish, but I could not see how

that implied that the metric was round. I therefore

tried out a different approach in a subsequent article,

showing that the spectral projections for such clus-

ters had nice asymptotic expansions, and on the di-

agonal were constants plus rapidly decaying errors.

In addition, I proved that if one pulls back the Eu-

clidean metric on the eigenspace under the eigenmap

embedding, one gets the Zoll metric plus a rapidly

decaying error. At that point, I recalled (from the

book of Boutet de Monvel-Guillemin) that Zoll met-

rics are analogous circle bundles of holomorphic line

bundles over Kähler manifolds. The Zoll spectral pro-

jections are analogous to Bergman kernels on Kähler

manifolds. I therefore decided to prove the analogous

result in the line bundle setting. The proof is quite

different from the Zoll case, but using the so-called

Boutet-Sjostrand parametrix for the Bergman kernel

of a strictly pseudo-convex domain, it is actually eas-

ier than in the Zoll case. Thus, I came to prove what is

sometimes called the TYZ expansion after Tian-Yau-

myself. I was unaware of Kähler geometry at the time

and did not know that Yau had also posed the prob-

lem of studying asymptotics of Bergman kernels and

Bergman metrics, nor that Tian had written a thesis

with Yau on the problem. This was explained to me

by my Hopkins colleague B. Shiffman, who taught me

some complex geometry in the process. The TYZ ex-

pansion of course became better known that the Zoll

Kodaira-type embedding theorem. To me, the moral

of the story is that work on an interesting, but ap-

parently un-important problem, can have unexpected

and ‘important’ applications in apparently unrelated

fields. It may be a dangerous to work on ‘interesting,

un-important problems’ for too much of the time, but

Yau’s phrase “so what, it’s interesting” seems to me

a healthy and profitable view for some of the time.

Naturally, one sees a lot more of the “it’s interesting

and it’s important” in Yau’s own work.
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