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1. Introduction

I would like to dedicate this paper to

Prof. S.-T. Yau on the occasion of his seventieth

birthday. As have many mathematicians, I have

learned a great deal of geometry and analysis from

Yau, and I appreciate his generous spirit and ground-

breaking mathematics. It is a privilege to have been

and to continue to be a student of Prof. Yau.

This note will address a bit of the history and

impact of the Donaldson-Uhlenbeck-Yau correspon-

dence. Of course, this is a very active and wide-

ranging field, and due to my limited knowledge and

perspective, I will not attempt to be comprehensive

in the selection of topics.

Given a holomorphic vector bundle (E, ∂̄ ) over a
compact Kähler manifold (M,ω) of complex dimen-

sion n, a Hermitian metric h on E canonically deter-

mines a Chern connection ∇ which preserves both the

metric and the complex structure ∂̄ on E. The curva-

ture F∇ in turn is a (1,1) form with values in End(E).
Let Λ be the contraction operator with respect to the

Kähler form

Λ : F∇ 7→ (F∇ ∧ω
n−1)/ω

n.

Then ∇ is said to be a Hermitian-Yang-Mills connec-

tion if the contracted curvature endomorphism ΛF∇

is diagonal in that

ΛF∇ = 2πiµIE

for µ the slope of E and IE the identity endomorphism.

We also call h a Hermitian-Yang-Mills metric on E.
The Donaldson-Uhlenbeck-Yau Theorem re-

lates Hermitian-Yang-Mills connections to an alge-

braic property of the holomorphic vector bundle,

Mumford-Takemoto stability. For a holomorphic

vector bundle E, the degree is defined by

d =
∫

M
c1(E)∧ω

n−1 =
i

2π

∫
M

TrF∇ ∧ω
n−1,

while the slope µ = d/r for r the rank of E. This defini-
tion also extends tomore singular objects than vector

bundles, coherent analytic sheaves. A holomorphic

vector bundle E over (M,ω) isMumford-Takemoto sta-

ble if for every proper nontrivial coherent analytic

subsheaf F of E, the slopes satisfy µ(F) < µ(E). E is

polystable if it is a direct sum of one or more holo-

morphic subbundles each with the same slope.

Now we are ready to state the Donaldson-

Uhlenbeck-Yau Theorem.

Theorem 1. Let (M,ω) be a compact Kähler mani-

fold, and let E be a holomorphic vector bundle over M.

Then E admits a Hermitian-Yang-Mills connection if

and only if E is polystable. The Hermitian-Yang-Mills

connection is unique. The polystable decomposition of

holomorphic subbundles is orthogonal with respect to

the associated Hermitian-Yang-Mills metric, and the

metric is unique on each of these stable subbundles.

The easier part of this theorem, that Hermitian-

Yang-Mills bundles are polystable, is due indepen-

dently to Kobayashi and Lübke, while the more dif-

ficult converse is due to Donaldson for algebraic sur-

faces [9] and to Uhlenbeck-Yau for the general case of

Kähler manifolds [31].

There is a small issue with terminology.

Hermitian-Yang-Mills connections/metrics are also
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known as Hermitian-Einstein. Hermitian-Yang-Mills

connections are so named because of their relations

to Yang-Mills theory from physics. On a Riemannian

manifold M, Yang-Mills connections for the group

U(r) are critical points of the functional∫
M
|FA|2,

where A is a Hermitian connection on a rank-r com-

plex vector bundle over M. Over a Kähler surface,

anti-self-dual connections are Yang-Mills, and the

Hermitian-Yang-Mills condition is then a generaliza-

tion of these ASD connections to arbitrary Kähler

manifolds.

On the other hand, the Hermitian-Einstein

nomenclature reflects the geometry of Einstein

metrics in Riemannian geometry, in which the Ricci

curvature tensor is a constant multiple of the metric.

In particular, Yau’s construction of a Kähler-Einstein

metric on a complex manifolds with negative or zero

first Chern class [34] induces a Hermitian-Einstein

metric on the holomorphic tangent bundle. The

contracted curvature ΛF∇ plays the role of the Ricci

tensor.

2. Early Developments

Narasimhan-Seshadri first proved a version of the

Donaldson-Uhlenbeck-Yau Theorem on compact Rie-

mann surfaces in the 1960s [26]. Even earlier, in the

1950s, Calabi began investigating the geometry and

analysis behind Kähler-Einstein metrics [5]. In the

1970s, the construction of Kähler-Einstein metrics on

compact Kähler manifolds of negative and zero first

Chern class by Yau [34] (and also [3] for the neg-

ative case). Moreover, the mathematical community

was recognizing the importance of Yang-Mills theory

in geometry, which one can see a bit later in the pio-

neering work of Atiyah-Bott [2].

With these background developments in mind,

there was a conjecture known to many experts in the

US, the UK and the Soviet Union that the existence

of Hermitian-Yang-Mills connections on holomor-

phic vector bundles over Kähler manifolds should

be equivalent to Mumford-Takemoto polystability.

In other words, the conjecture was to generalize

Narasimhan-Seshadri’s result to Kähler manifolds of

higher dimension. Given the deep analytic techniques

needed to prove this conjecture in general, it is strik-

ing and important to note that it was not a conjec-

ture for long: At least in manuscript form, Uhlenbeck-

Yau’s proof began to circulate a few years before it

publication date of 1986, and Donaldson’s work on

algebraic surfaces was earlier.

Kobayashi and Lübke independently proved that

every Hermitian-Yang-Mills vector bundle over a com-

pact Kähler manifold must be polystable [17, 23]. As

we will see, the other implication in the Donaldson-

Uhlenbeck-Yau Theorem requires significantly more

advanced analytic techniques.

We also mention that as an initial effort in this

circle of ideas, Donaldson reproved Narasimhan-

Seshadri’s theorem on Riemann surfaces using tech-

niques of Hermitian-Yang-Mills theory [8].

3. Donaldson-Uhlenbeck-Yau
Theorem

The proof that every polystable holomorphic vec-

tor bundle E over a compact Kähler manifold (M,ω)

admits a Hermitian-Yang-Mills connection is due in-

volves deep techniques in partial differential equa-

tions.

Donaldson’s approach on an algebraic surface M
[9] is to begin with an initial Hermitian metric h0 on E
and then to consider the Yang-Mills flow

(1) h−1
t

∂ht

∂ t
=−2i(ΛFh −2πµIE).

Crucially, Donaldson identifies this flow as the gradi-

ent flow with respect to a natural functional involving

secondary Bott-Chern classes. This functional is con-

vex in an appropriate sense, and moreover, there is

an adjunction-type formula for a hyperplane section

consisting of an algebraic curve C ⊂ M. The minima

of Donaldson’s functional are Hermitian-Yang-Mills

metrics.

Donaldson uses the stability of the bundle E via

a theorem of Mehta-Ramanathan in algebraic geome-

try [24], which allows him to use hyperplane sections

to reduce to the case of an algebraic curve C ⊂ M.

In this way, Donaldson’s functional is proved to be

bounded below on M by using Narasimhan-Seshadri’s

theorem to bound the corresponding functional on

C. In this way, Donaldson applies PDE techniques to

show that the gradient flow (1) for the convex func-

tional bounded below exists for all time and con-

verges as t →∞ to a Hermitian-Yang-Mills metric h∞. In

the process of proving this convergence as t →∞, Don-

aldson uses Uhlenbeck’s weak compactness and re-

movable singularities theorems for Lp-bounded con-

nections [32, 33]. Via these techniques and Hartogs

extension, Donaldson shows h∞ is a Hermitian-Yang-

Mills metric on a holomorphic vector bundle E ′ which

is an image under a holomorphic map of E.
Soon thereafter, in an analytic tour de force,

Uhlenbeck-Yau proved the DUY correspondence on a

general Kähler manifold (M,ω) [31]. The Uhlenbeck-

Yau approach differs from Donaldson’s in a few im-

portant ways.

• Uhlenbeck-Yau solve an elliptic system instead of

a parabolic one. (Note Simpson incorporated the
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Uhlenbeck-Yau estimates into Donaldson’s flow

later in his study of Higgs bundles.)

• Uhlenbeck-Yau work directly with the stabil-

ity condition in producing, via an intricate

continuity-method argument, either a Hermitian-

Yang-Mills metric (in the polystable case) or a

destabilizing subsheaf.

• Uhlenbeck-Yau develop new estimates in

Hermitian-Yang-Mills theory related to Yau’s

C2 estimates for the complex Monge-Ampére

equation.

• Uhlenbeck-Yau develop a new regularity result

for weakly meromorphic functions to character-

ize projections to possibly singular analytic sub-

sheaves of E.

We outline in very broad strokes Uhlenbeck-Yau’s

proof. First of all, on a holomorphic vector bundle E
over a compact Kähler manifold (M,ω), equip E with

a background Hermitian metric h0. Then for another

Hermitian metric h, consider the positive-definite

Hermitian endomorphism H = hh−1
0 . Then Uhlenbeck-

Yau consider the system for ε > 0

Lε(H) = ΛF0 −Λ∂̄ (H−1
∂0H)+ ε logH = 0,

where F0 is the curvature of h0, ∂0 is the (1,0) part of
the Chern connection of h0 (note for simplicity here,

I have written only the case for degree µ = 0). The case
L0(H) = 0 is the Hermitian-Yang-Mills equation for H,

and so the strategy is to consider the limit as ε → 0.
For large ε, Uhlenbeck-Yau use an auxiliary continuity

method to find a solution to Lε(H) = 0. They then de-

velop detailed and powerful estimates to show both

openness and closedness in the continuity method in

ε for Lε(H) = 0 away from ε = 0.
There are two cases to address the limit as ε→ 0.

If the L2 norm of logHε remains bounded as ε→ 0, then
the closedness estimates show that there is a limit

H0 which must solve the Hermitian-Yang-Mills equa-

tion. On the other hand, if the L2 norm of logHε is
unbounded, we may rescale Hε so that its supremum

norm is 1, and then take a subsequential weak limit

to find H̃0, whose kernel is a destabilizing subsheaf

of E. In particular, the limit

Π = IE − lim
s→0

H̃s
0

exists in a weak sense, is a projection operator almost

everywhere, and satisfies

|(IE −Π)∂̄Π|2 = 0

in the sense of distributions. (For Π a smooth endo-

morphism on E, this last equation exactly states that

Π is a holomorphic projection to a subbundle.)

By a detailed and powerful analytic argument,

Uhlenbeck-Yau show that Π is a projection onto a

holomorphic subsheaf, and use the Chern-Weil the-

ory to show the image subsheaf is destabilizing. One

of the regularity results Uhlenbeck-Yau develop to ad-

dress the projection to a subsheaf, on the meromor-

phicity of separately meromorphic functions, is also

due to Shiffman [28].

Later, Donaldson gave a proof in the case of

M projective of arbitrary dimension [10], which in

some sense simplifies the Uhlenbeck-Yau proof but

at the cost of relaying on algebraic geometry re-

sults of Mehta-Ramanathan [25]. To this day, the

Uhlenbeck-Yau techniques (including the parabolic

versions of the estimates developed in Simpson’s the-

sis) remain the only proof which works in all cases of

the Donaldson-Uhlenbeck-Yau correspondence.

4. Later Developments

Soon after Uhlenbeck-Yau’s groundbreaking pa-

per, Hitchin introduced a generalization (at least on

Riemann surfaces) in terms ofHiggs bundles [15]. The

generalization to higher dimensional Kähler mani-

folds is due to Simpson. On a Kähler manifold (M,ω),

a Higgs bundle is a pair (E,Φ), where E is a holomor-

phic vector bundle over M and Φ ∈ H0(M,K ⊗EndE) is
a holomorphic one-form valued endomorphism of E.
In this case, one still seeks a metric h on E, but the
Higgs field Φ modifies the Chern connection ∇ = ∇h

of h to form the connection

AΦ,h = ∇
h +Φ+Φ

∗h ,

where ∗h is the adjoint with respect to the metric h.
Hitchin’s case of a Higgs bundle over a Riemann

surface (for technical reasons, Hitchin addresses only

the case of rank-2 bundles) is a dimension reduction

of the self-dual Yang-Mills equations on R4. The the-

ory of Higgs bundles is a far-reaching achievement in

its own right, and though our main focus is more gen-

erally on the DUY correspondence, we do note a few

of the major consequences of Hitchin’s theory here.

• Moduli spaces of Higgs bundles over a closed

Riemann surface provide many natural examples

of complete hyper-Kähler manifolds (these are

Riemannian manifolds with metric g and 3 in-

tegrable complex structures I,J,K for which g is

Kähler and which satisfy the quaternion relations

I2 = J2 = K2 = IJK =−1) [15].
• Hitchin and Simpson’s theory of Higgs bundles

on Riemann surfaces, together with a comple-

mentary result of Donaldson, Corlette and also

Jost-Yau, can be used to analyze the space of ir-

reducible representations from the fundamental

group of a surface of genus at least 2 into a Lie

group G. In particular, Hitchin identifies a com-

ponent of the representation variety, now called
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the Hitchin component, analogous to Teichmüller

space for any split real G [16].

• Hitchin’s geometric and analytic techniques (the

Hitchin fibration [14]) were adapted by Ngô

to prove the Fundamental Lemma in geometric

Langlands theory [27].

In light of Hitchin’s work, the Donaldson-Uhlenbeck-

Yau correspondence may rightly be called the

Hitchin-Donaldson-Uhlenbeck-Yau correspondence

in the case of Higgs bundles.

Simpson’s proof the Donaldson-Uhlenbeck-Yau

correspondence for Higgs bundles of arbitrary rank

over Kähler manifolds is another major achievement

[29]. Simpson incorporated the Uhlenbeck-Yau esti-

mates into Donaldson’s flow, as well as the Higgs

field. The adaptation of the elliptic Uhlenbeck-Yau es-

timates to the parabolic setting is not surprising, as

it is common for a parabolic problem and the cor-

responding stationary elliptic problem to share com-

mon estimates. The incorporation of the Higgs field

into the Uhlenbeck-Yau estimates is a demonstration

of their flexibility and power.

On a compact complex manifold of dimension n
with an arbitrary Hermitian metric g, there is a con-

formal modification of g, which is unique up to con-

stant multiples, satisfying the Gauduchon condition

∂ ∂̄ (ωn−1) = 0 [12, 13]. The Gauduchon condition is

sufficient to define the degree of sheaves and thus

the Mumford-Takemoto stability conditions. Li-Yau

developed the Donaldson-Uhlenbeck-Yau correspon-

dence in this case [18]. Li-Yau-Zheng then used it to

find a new proof of Bogomolov’s theorem on class

VII0 complex surfaces with b2 = 0 [20, 21]. See also

[30]. A striking feature of Li-Yau-Zheng’s argument

is as these complex surfaces are very far from being

projective, they contain no curves, and in fact there

are no nontrivial subsheaves which may destabilize

the bundle. Thus the stability condition is trivially

checked to construct the Hermitian-Yang-Mills con-

nection needed in the proof.

We alsomention other versions of the Donaldson-

Uhlenbeck-Yau correspondence for vortices over Käh-

ler manifolds [4]; these are formally similar to Higgs

bundles. As well, one can consider real special affine

manifolds instead of a complex manifold as a base

[22]. And there are ways to expand the DUY corre-

spondence in terms of algebraic or tensorial construc-

tions from the case of vector bundles, such as princi-

pal bundles [1].

In terms of more recent advances, Li-Yau and

later Fu-Yau and others have investigated the Stro-

minger system, which describes supersymmetric

string theory with torsion [19, 11]. The Strominger

system is a coupled system on a compact complex

manifold M and holomorphic vector bundle E satis-

fying c1(M) = c1(E) = 0 and c2(M) = c2(E). The solution

involves Hermitian metrics on both M and E, where
the metric g on M is balanced in that d(ωn−1

g ) = 0 and

the metric on E is Hermitian-Yang-Mills with respect

to ωg. This system serves as a non-Kähler analog of a

Calabi-Yau manifold in string theory.

The deformed Hermitian-Yang-Mills equation

arises in mirror symmetry as a mirror to the special

Lagrangian equation. On a holomorphic line bundle

over Kähler manifold (M,ω) of dimension n, a connec-
tion ∇ is deformed Hermitian-Yang-Mills if there is a

constant θ so that

(F∇)2,0 = 0, Im
(

e−iθ (ω +F∇)n
)
= 0.

Recently Collins-Jacob-Yau have found necessary and

sufficient analytic conditions to solve this deformed

Hermitian-Yang-Mills equation in the critical phase

case [6], and Collins-Yau have further developed alge-

braic conditions as well [7]. The story is still very far

from finished with the geometry and physics of spe-

cial Lagrangians and the deformed Hermitian-Yang-

Mills equation, and this is an example of the vigor-

ous and important research still ongoing within the

framework of the Donaldson-Uhlenbeck-Yau corre-

spondence.
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