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1. Introduction

In 1975, in a paper [11] with his schoolmate and

friend Shiu-Yuen Cheng, Shing-Tung Yau wrote “Most

of the problems in differential geometry can be re-

duced to problems in differential equations on Rie-

mannian manifolds. Our main purpose here is to

study these equations and their applications in ge-

ometry”. This, in fact, summarizes the basic project

of his research. In this contribution, I shall try to elab-

orate upon this project. This will be interwoven with

the personal story of my collaboration with Shing-

Tung Yau over almost two decades. During these

years, I not only learned a vast range of mathematical

techniques, but also benefitted in many other ways

from his generous friendship.

2. Geometric Analysis

When I first met Shing-Tung Yau, or simply Yau,

as he is called by his friends and colleagues, in the

fall of 1980, he was already recognized as one of

the world’s leading mathematicians. In particular, he

was seen as a leading contender for the Fields Medal,

which he then duly received at the ICM 1983 in War-

saw. He was famous for his solution of the Calabi

conjecture [131, 129], based on a profound analysis

of complex Monge-Ampère equations, and the work

with Shiu-Yuen Cheng on real Monge-Ampère equa-

tions [12, 13], as well as for the solution of the pos-

itive mass conjecture of general relativity (with his

student Richard Schoen, [108, 109], the solution of

the Frankel conjecture in complex geometry (with

Yum-Tong Siu [120]), his novel approach to eigen-

value estimates on Riemannian manifolds (together

with Peter Li [81]), his new ideas about the global the-

ory of harmonic functions [127] and an impressive

number of further fundamental contributions. And in

this period, he was also working with Bill Meeks on a

new approach to the topology of 3-manifolds using

minimal surfaces [86, 87, 88] and with Peter Li on the

Harnack inequality for the heat kernel of a Rieman-

nian manifold [82] and several other projects.

All these works had a profound impact on the

subsequent development of geometric analysis and

several other mathematical disciplines, like Rieman-

nian, Kähler, algebraic and complex geometry, geo-

metric topology, nonlinear partial differential equa-

tions etc, but also in various fields of theoretical

physics, like general relativity or quantum field the-

ory. In particular, his solution of the Calabi conjecture

identified the solutions of the compactification prob-

lem in string theory, that is, certain compact man-

ifolds of six real dimensions that by this theorem

carry a metric of vanishing Ricci curvature, and which

are therefore called Calabi-Yau manifolds. They are,

in fact, analogues of the K3-surfaces, certain com-

plex manifolds of real dimension four, and those also
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carry Ricci flat metrics by his theorem, and this was

the key for the analysis of their moduli space by Siu

[115]. Conversely, Yau could also use concepts from

theoretical physics to discover profound mathemat-

ical structural relations, as in his work with Stro-

minger and Zaslow onmirror symmetry and T-duality

[121]. And in collaborations with several theoretical

physicist and mathematicians, he could also combine

the study of mirror symmetry and Calabi-Yau mani-

folds, see e.g. [47, 48, 76].

The new ideas with Peter Li [81, 82] on eigenvalue

bounds and heat kernels on Riemannian manifolds

also inspired analogous work on graphs of Yau with

Fan Chung and Alexander Grigor’yan, see [19, 20, 17,

21, 22, 18], culminating in the Li-Yau type Harnack

inequality on graphs achieved in [5] (see also [93]).

The work with Bill Meeks [86, 87, 88], enriched

by geometric measure theory tools in collaboration

with Meeks and Leon Simon [85], opened up the ge-

ometric analysis approach to the geometric topology

of 3-manifolds, and in particular to the Poincaré con-

jecture. This approach showed that potential coun-

terexamples to that conjecture had tangible geomet-

ric properties; in fact, they had to carry certain em-

bedded minimal surfaces. This was further explored

in, for instance, [101, 102, 37] and lead to significant

advances in three-dimensional topology. Although ul-

timately another approach, the Ricci flow introduced

by Yau’s friend Richard Hamilton [42] lead to the so-

lution of the Poincaré conjecture, the vision of Meeks

and Yau opened the door for the geometric analysis

attack on that problem. In fact, the Poincaré conjec-

ture was finally solved by Grigory Perel’man [98, 100,

99] who was able to continue the flow through the

singularities that inevitably arise when the flow does

not start with a metric of positive Ricci curvature. As

Perel’man, however, only sketched some crucial de-

tails, it required effort to complete all those details.

Yau was very happy that the first complete proof was

achieved by his former student Huai-Dong Cao and

his friend Xiping Zhu [8, 9]. (Some controversy en-

sued, but this is not the occasion to enter into any

details, and so let it suffice to also mention [75, 92].)

In this direction, let us also mention the monographs

[15, 16].

In [127], Yau had shown that on a complete man-

ifold with non-negative Ricci curvature, any posi-

tive harmonic function is constant. In [11], this re-

sult was improved to show that on such a manifold,

non-constant harmonic functions must grow at least

linearly. Subsequently, in [126], he conjectured that

on an open manifold with nonnegative Ricci curva-

ture the space of harmonic functions with polyno-

mial growth of a fixed rate is finite dimensional. This

famous polynomial growth conjecture was finally

proved by Colding-Minicozzi [23], see also [79, 80].

In fact, this is a more general structural phenomenon

that also holds on graphs, see [49]. In [128], Yau

had shown that Lq harmonic functions (1 < q < ∞) on

complete Riemannian manifolds are constant, with-

out any further condition, a very remarkable and sur-

prising result. Again, this is a general structural prop-

erty that also holds on graphs, see for instance [50].

This brief sketch could, of course, discuss only

some selected contributions of Yau and their impact.

I could not even mention all papers by Yau himself,

let alone those of others that built upon his work. In

the next section, I shall enter in more detail into a

particular topic, that of harmonic maps, where I also

had the opportunity to collaborate with Yau and be

inspired by him.

3. Harmonic Maps as a Tool in
Geometric Analysis

In fact, his paper [106] (with Richard Schoen) had

been an important inspiration for my thesis (see [51],

and as background also the local estimates of Heinz

[43, 44] as well as [61] where those methods are fur-

ther elaborated, as well as the subsequent [63, 27]),

and thereforemy advisor Stefan Hildebrandt had sug-

gested that I visit him as a postdoc to learn the new

methods in geometric analysis first hand. When I ar-

rived at the Institute for Advanced Study in Princeton

in September 1980, Yau suggested that to study the

paper [114] by Yum-Tong Siu about a new approach to

rigidity problems in complex geometry via harmonic

mappings, an approach clearly also inspired by Yau.

In fact, in the introduction of [114], Siu wrote “Yau

conjectured that . . . two compact Kähler manifolds of

complex dimension ≥ 2 with negative sectional cur-

vature are biholomorphic or conjugate biholomor-

phic if they are of the same homotopy type”. Siu

then showed that harmonic mappings into a Kähler

manifold with so-called strongly negative curvature

(a curvature condition stronger than negative sec-

tional curvature, but satisfied by important classes

of Kähler manifolds, in particular by Hermitian sym-

metric spaces of non-compact type) had to be holo-

morphic or antiholomorphic, and in fact under ap-

propriate conditions biholomorphic or conjugate bi-

holomorphic diffeomorphisms. An important inter-

mediate step in Siu’s analysis is to show that har-

monic maps in such contexts are in fact plurihar-

monic, that is, their restriction to any subvariety is

harmonic again. Such a property holds, of course, au-

tomatically for holomorphic maps, but not in general

for harmonic maps. Further results of Siu in this di-

rection can be found in [116, 117].

Siu’s result showed the rigidity of such spaces

in the category of complex manifolds. Following his

suggestion to study harmonic maps between Kähler
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manifolds, I then came up with a surprising compu-

tation that showed that even in situations of nega-

tive target curvature where the harmonic maps could

not be holomorphic, their level sets nevertheless are

holomorphic subvarieties of the domain [65]. This

applies for instance when the target is negatively

curved higher genus Riemann surfaces, whose com-

plex structure can be deformed, as studied in Teich-

müller theory. In discussions with Siu, important con-

sequences gradually emerged, for instance in [119]

that it is a topological invariant of a Kähler manifold

to admit a holomorphic map to some Riemann sur-

face.

Siu’s result can be viewed as a generalization

of Mostow-Margulis rigidity in the case of Hermitian

symmetric spaces, that is, when the symmetric space

carries a Kähler structure. The challenge to carry the

harmonic map approach over to the general situation

without a Kähler structure then lead to substantial

further mathematical developments, culminating in

the theory of Higgs bundles and non-abelian Hodge

theory, that is, the investigation of representations of

fundamental groups. The idea is that for a representa-

tion in a linear algebraic group G of the fundamental

group of a compact Riemannian manifold M, one con-

structs an equivariant harmonicmap from the univer-

sal cover M̃ into the symmetric space G/K on which G
operates. The properties of that harmonic map then

have to be explored. This scheme is described in [68].

Since I have described the resulting developments

already in an earlier article [58] that was also dedi-

cated to Yau, I can be brief here. In particular, detailed

references can be found in that paper.

Siu’s analysis was based on a new Bochner type

identity for harmonic mappings. In general, the idea

of such an identity is to take some expression involv-

ing first order derivatives of the harmonic map in

question, like the pointwise squared norm of those

derivatives, and compute its Laplacian. Because of the

differential equation satisfied by the harmonic map,

third order terms drop out, after commuting some co-

variant derivative operators, and the latter then leads

to curvature terms from the target and domain to

show up in the formula. When those curvatures have

suitable signs, typically some non-positivity assump-

tion on the target curvature, all terms on the right

hand side have the same sign, that is, the expression

of which the Laplacian has been computed, is subhar-

monic. Therefore, on a compact manifold, it has to be

constant.

The challenge then is to find expressions that

have a rich geometric content on which this scheme

works and to identify the necessary curvature con-

ditions. The next successful steps in this direction

were taken by Sampson [105] and Corlette [26]. For a

general theory of representations as pioneered in the

superrigidity theory of Margulis [84], one also needs

to study representations in linear algebraic groups

over non-Archimedean fields. The associated sym-

metric spaces are Euclidean Bruhat-Tits buildings.

A Euclidean Bruhat-Tits is a certain simplicial met-

ric space with nonpositive curvature in the sense of

Alexandrov, that is, no longer a Riemannian mani-

fold, but having similar global properties as Rieman-

nian manifolds with nonpositive sectional curvature.

Gromov and Schoen [40] then constructed harmonic

maps from Riemannian manifolds into such spaces

and investigated their properties. Subsequently, gen-

eral theories of harmonic maps with values in metric

spaces with nonpositive Alexandrov curvature were

developed by Korevaar-Schoen [77, 78] and Jost [54,

55, 56], and the latter theory even applies to target

spaces that are not necessarily locally compact. This

is important for a general theory of representations

in groups over arbitrary fields. Also, that approach

even works under the more general condition of non-

positive Busemann curvature. See [57] for a system-

atic presentation. In fact, the approach of [54, 55, 56]

raised the problem to a higher level of abstraction,

as a minimization problem for convex functionals on

(typically non-locally compact) spaces of generalized

non-positive curvature.

Using such harmonic map tools in a systematic

manner, the most general superrigidity results for

harmonic maps were obtained by Jost and Yau [71]

and Mok, Siu and Yeung [91]. Let us collect the re-

sults stemming from the harmonic map approach to

superrigidity in the following

Theorem 1. We assume that

• M̃ = G/K is an irreducible symmetric space of

noncompact type, different from SO0(p,1)/SO(p)×
SO(1),SU(p,1)/S(U(p)×U(1)),

• Γ is a cocompact lattice in G,
• Y is a complete simply connected Riemannian

manifold of nonpositive curvature operator with

isometry group I(Y ),
• ρ : Γ → I(Y ) is a homomorphism for which ρ(Γ) ei-

ther does not have a fixpoint on the sphere at ∞ of

Y , or if it does, it centralizes a totally geodesic flat

subspace.

Then there exists a totally geodesic ρ-equivariant map,

u : M̃ → Y .

In particular, if H is a semisimple noncompact Lie

group with trivial center and ρ : Γ → H a homomor-

phism with Zariski dense image, then ρ can be ex-

tended to a homomorphism from G onto H.

And if ρ : Γ → Sl(n,Qp) (where Qp are the p-adic
numbers) is a homomorphism, for some n ∈ N and

some prime p, then ρ(Γ) sits in a compact subgroup

of Sl(n,Qp).
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These results generalize Margulis superrigid-

ity and include earlier results by Margulis (for

rank (G/K) ≥ 2), by Corlette [26] (for Sp(p,1)/
Sp(p)×Sp(1) and the hyperbolic Cayley plane), by Gro-

mov and Schoen [40] (for quaternionic hyperbolic

space) and Mok [90, 89] (for Hermitian symmetric

spaces). For a survey of some aspects of the theory,

see also [96].

There are still some open problems in the har-

monic map approach to rigidity. It has not yet been

able to derive Mostow’s rigidity theorem for quotients

of real hyperbolic space. Also, not all cases of spaces

that are of finite volume but not compact (i.e. for

nonuniform lattices) have been dealt with, while Mar-

gulis’ results also hold for such noncompact cases.

In the Hermitian symmetric case, this problem was

solved by Jost and Zuo [73], who proved the existence

and achieved the control of harmonic maps of pos-

sibly infinite energy. (For the finite energy case, see

[66, 67].)

In a slightly different direction, Carlson-Toledo

[10] and Jost-Yau [68] could show that lattices in

SO(n,1) for n ≥ 3 cannot be Kähler groups. This means

that the topologies of real hyperbolic space forms

of dimension n ≥ 3 and those of Kähler manifolds

are completely different. This is different from n = 2
where such a space form is simultaneously a hyper-

bolic Riemann surface and a Kähler manifold. For fur-

ther results in this direction, see [133, 45, 125, 64].

The result of [65] that harmonic maps into nonpos-

itively curved spaces, while not necessary holomor-

phic themselves, yield holomorphic foliations, was

also seminal for the subsequent of the theory of Higgs

bundles and non-abelian Hodge theory. The result

says that for a harmonic map u : M → N between Käh-

ler manifolds, N being nonpositively curved, we ob-

tain a factorization through a holomorphic map. The

level sets u−1(z) for z∈N are analytic subvarieties of M.

Dividing by this foliation yields a holomorphic map

h : M → S into some Kähler manifold, together with a

harmonic map v : S → N, such that u = v◦h.
A theory of representations of π1(M) for a Kähler

manifold M was developed in [46, 24, 25, 111, 112,

134, 113, 135]. This embodied an abstract version of

such a factorization. More precisely, a Higgs bundle

(E,θ) over M consists of a holomorphic vector bundle

E and

(1) θ : E → E ⊗Ω
1(M) with θ ∧θ = 0.

For a stable Higgs bundle, we can then apply the fun-

damental results of Narasimhan-Seshadri [94], Don-

aldson [31, 32], Uhlenbeck-Yau [123] and Simpson

[111] to obtain a Hermitian Yang-Mills connection D,
and D+θ is flat if all ci(E) = 0. Such a D then defines

a harmonic metric on E, i.e., a harmonic map into a

symmetric space G/K, as above. Conversely, from a

reductive representation

(2) ρ : π1(M)→ G, G a linear algebraic group,

one obtains a ρ-equivariant harmonic map

(3) h : M̃ → G/K,

and this defines a Higgs bundle (E,θ)with θ = dh. This
harmonic h turns out to be pluriharmonic which im-

plies θ ∧θ = 0, the condition 1 for a Higgs bundle.

This closes the circle and identifies the moduli

space of stable Higgs bundles over M with that of re-

duction representations of π1(M) (although the com-

plex structures on these two spaces are different

[46]).

Harmonic maps also provide powerful tools for

investigating families of Riemann surfaces. For this,

we need to recall the solutions of the Shafarevitch and

Mordell problems over function fields. The first was

obtained by Parshin [97], with

Theorem 2. Let C be a compact smooth holomorphic

curve and let g ∈ N,g ≥ 2. Then there exist at most

finitely many algebraic surfaces B fibered over C with

smooth fibres of genus g that are not isotrivial, that is,
not finitely covered by a product.

and Arakelov [3] who showed this more gener-

ally when the fibers may have singularities over some

fixed finite subset S of C.
The second problem was solved by Manin [83],

with another proof by Grauert [38],

Theorem 3. Let f : B → C be a nontrivial fibering as

in Theorem 2. Then there exist at most finitely many

holomorphic sections s : C → B.

In [70] (see also [72] for a survey), a harmonic

map approach to these results was developed, based

on the geometry of the moduli space Mg of holomor-

phic curves of genus g(≥ 2). While Mg has certain quo-

tient singularities, a finite cover of it is a manifold

with a natural Kähler metric, the Weil-Petersson met-

ric gWP. Therefore, for our discussion, we simply treat

Mg as a Kähler manifold. It is not compact, but admits

a natural compactification M̄g constructed by Mum-

ford and Deligne [30]. Tromba [122] proved that gWP

has negative sectional curvature, and its holomorphic

sectional curvature even has a negative upper bound

k < 0. Different proofs of these results were found in

[124, 118, 53, 62]. Equipping C with a metric of con-

stant curvature κ , we may apply the Schwarz Lemma

of Yau [130] and Royden [104] for a holomorphic

h : C → Mg to obtain

(4) ‖dh(z)‖2 ≤ κ

k
for all z ∈C,
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unless h is constant. If the genus of C is 0, 1, then

κ ≥ 0, and so, in this case, it follows that any fibering

f : B → C by curves of genus ≥ 2 is isotrivial, because

k < 0 in 4.

In general, by 4, all holomorphic maps h : C →
Mg are equicontinuous. A subtle technical argument

is needed at the boundary of compactified moduli

space, but we may therefore conclude that at most

finitely many homotopy classes of maps from C to

Mg can contain holomorphic maps. This the bounded-

ness part of the proof of Theorem 2 (for a related ar-

gument, see [39, 95]). For the finiteness part, one has

to show that any nontrivial homotopy class of maps

from C′ to M′
g can contain at most one holomorphic

map. This can again be achieved by using the negativ-

ity of the curvature of M′
g. For the proof of Theorem 3,

we utilize the holomorphic fibering

(5) ψ : M′
g → M′

g

with the fiber of q ∈ M′
g being the holomorphic curve

defined by q. M′
g also carries a Weil-Petersson met-

ric with the same negativity properties as the one of

M′
g. A holomorphic section s as in Theorem 3 then in-

duces a holomorphic map k : C′ → M′
g. The bounded-

ness proof works as before, and the finiteness can

also be concluded on the basis of the negativity of

the sectional curvature.

Let me also mention that his paper [107] with

Richard Schoen also inspired my solution [52] of the

Plateau-Douglas problem [33, 34, 35, 36, 28, 29]; [107]

used that the collar lemma [74, 103, 7, 41, 6] to con-

trol families of degenerating Riemann surfaces, and

this technique then was also useful for degenerating

minimal surfaces, when combined with the Courant-

Lebesgue lemma.

Finally, let me mention [69] where we have intro-

duced a variant of the harmonic map system that is

adapted to Hermitianmanifolds that need not be Käh-

ler. In contrast to the usual harmonic map, the re-

sulting system is no longer in divergence form (un-

less the domain manifold is Kähler, in which case it

reduces to the standard harmonic map system) and

therefore not of variational origin. Hence, the anal-

ysis becomes much harder. It enables us to obtain

rigidity results when the Kähler condition is weak-

ened to what we have called astheno-Kähler (after

the Greek word for “weak”). It turned out that anal-

ogous systems could also be constructed and ana-

lyzed in other non-Riemannian contexts, in partic-

ular on affine manifolds [59, 60]. Remarkably, this

makes contact with another fundamental paper by

Cheng and Yau [14] where the analyzed affine flat

structures as real analogues of Kähler manifolds. In-

stead of a strictly plurisubharmonic potential as in

Kähler theory, here one works with a strictly convex

potential. This was developed further in [110], and it

constitutes a differential geometric foundation of in-

formation geometry [2, 1, 4], the differential geomet-

ric treatment of families of probability distributions,

that is, the geometric foundation of statistics.

4. A Remarkable and Unique
Personality

The achievements of Shing-Tung Yau are not con-

fined to geometric analysis and related fields. He has

made seminal contributions to a wide range of math-

ematical fields, as well as to other domains like the-

oretical physics. This is amply documented in other

contributions to this volume. But his achievements

also transcend scientific research; some of them are

listed below.

• When he was asked to become the editor-in-chief

of the Journal of Differential Geometry, within a

short period, he transformed this journal into the

leading topical journal of the field. And the field

of differential geometry was conceived in a wide

sense, including in particular geometric analy-

sis, complex geometry and the relations to the-

oretical physics. It published several seminal pa-

pers, like Witten’s novel approach to Morse the-

ory originating from the supersymmetric sigma

model of quantum field theory.

• Being angry and upset about the prices for jour-

nals and books charged by established publish-

ers, he founded his own publishing company In-

ternational Press. This publishing house not only

took over the established Journal of Differential

Geometry, but he also succeeded in launching

several new journals in many fields of mathemat-

ics. These journals are generally very successful

and quickly publish mathematical papers of high

quality. International Press also took over other

well-established journals like Acta Mathematica.

By now, this publishing house is firmly estab-

lished as a high quality and efficient scientific

publisher. Yau himself is on the editorial board

ofmost of its journals and book series, which cer-

tainly contributes to their success.

• Being very patriotic and wanting to raise mathe-

matics in China to the highest international level,

he undertook several initiatives. He founded new

research institutes in China, Hong Kong, and Tai-

wan. These institutes organize international con-

ferences in mathematics and theoretical physics,

offer visiting positions for excellent young Chi-

nese mathematicians, and attract international

visitors. He also founded a new conference cen-

ter, the Tsinghua International Mathematics Fo-

rum, TSIMF, at Sanya on the tropical island of
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Hainan (the southernmost province of China

from where its navy controls the South China

Sea and which is the most popular vacation des-

tination of middle class Chinese). At this con-

ference center, Oberwolfach style mathematical

workshops can be held, but also larger confer-

ences, because the facilities can accommodate up

to 150 participants in a beautiful resort with an

excellent swimming pool and tennis courts and

very good library access.

• And being very patriotic and wanting to raise the

level of mathematics in China, he also became

openly critical of several practices among aca-

demics in China which he held as corrupt. This

lead to public disputes and created many ene-

mies, but in the end served to raise the awareness

of the importance of basing academic decisions

exclusively on scientific achievement and merit.

• And being very patriotic and wanting to raise the

level of mathematics in China, he inaugurated

the International Congress of Chinese Mathemati-

cians that congegrates every three years at some

location in China (which includes Hong Kong and

Taiwan) to present the most important achieve-

ments of mathematicians of Chinese origin and

awardsmedals to young Chinesemathematicians

of outstanding talent. And since his Chinese pa-

triotism is not just political, but based on the

culture, history and language of China, which in

turn are the proud achievement of the Chinese

people, the selection criteria of that congress are

based on ethnic criteria, in contrast to compa-

rable structures in western countries. Likewise,

at the TSIMF, he insists that a certain number of

young Chinese postdocs and students be invited

for every conference.

• Being aware of the need of generous funding

for fundamental mathematical research, he suc-

ceeded in convincing some rich Hong Kong busi-

ness people to donate generously both to his re-

search centers in China, in particular the Morn-

ingside Institute in Beijing, as well as to his alma

mater, Harvard University. In fact, he acquired

the highest single donation in the entire history

of that university.

• Realizing the importance of the support of po-

litical leaders for basic science, he did a lot of

political lobbying in China, and also publicly

advocated that China take the lead in building

the next generation particle accelerator to probe

hitherto experimentally unaccessible, but theo-

retically deeply explored realms of elementary

particle physics.

• Understanding the importance of mathematical

tradition, he organized a project on the history of

the Mathematics Department of Harvard Univer-

sity; like his other endeavors, this was very well

received.

• Being aware of the importance of communicat-

ing fundamental research to the general scien-

tifically interested public, he wrote a popular

book [132] explaining his vision of geometry and

physics in non-technical terms.

• More generally, as a dynamic leader, he fulfilled

the role of chairman of that department with

much success, several new scientific initiatives,

and a clear vision for the future.

• And, of course, being both an international lead-

ing mathematician and a very open and gener-

ous personality, he educated a huge number of

graduate students and postdocs, many of which

became highly successful scientists themselves.
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