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On a Few of Shing-Tung Yau’s
Contributions to String Theory

Let me begin by thanking the editors of this vol-

ume for inviting me to contribute. At first they asked

me to write an article on the SYZ conjecture [1]. How-

ever, despite being a lead editor of a book almost half

of which is devoted to the SYZ conjecture [2], I felt

thatmy expertise in this area was not really up to it (in

fact, that part of the book was edited by Mark Gross).

Another natural topic, the importance of Yau’s proof

of the Calabi conjecture for string theory, I had al-

ready written about in [3]. Still, I appreciated the offer

and I felt that it really could not be hard to find plenty

more to write about Yau’s contributions to string the-

ory, so I accepted the invitation.

I began by doing what particle physicists often

do when beginning to write a paper, namely, to do

a search on Inspire [4], in this case for find author
S.-T. Yau. Nowadays there is also an author profile

page which makes this easier. Somewhat to my sur-

prise, I found 207 papers in their database, more than

my own 128. This could make for quite a long arti-

cle!

To narrow down the scope, I restricted myself to

the “famous” papers with at least 250 citations, of

which there turned out to be 5 (remember, this only

covers physics papers). Number 1 on this list was in-

deed SYZ, while numbers 2 and 4 are the proof of the

positive mass theorem with Richard Schoen [5, 7].

The positive mass and energy theorems are ar-

guably some of the deepest results in mathemati-

cal physics, as it is a basic consistency condition for

general relativity that localized solutions must have

positive mass, since otherwise Minkowski space-time

would be unstable to decay to negative mass objects.

Furthermore the claim is not at all obvious, as gravi-

tational attraction contributes negatively to the total

mass of a bound system. Schoen and Yau developed a

geometric proof, originally in four space-time dimen-

sions, and later generalized to up to eight space-time

dimensions [6]. Soon after, Witten contributed a note-

worthy proof using spinors [8].

The same physical consistency condition applies

in string theory, and it would be nice to have a proof

for ten and eleven space-time dimensions. Appar-

ently there are technical barriers to extending the ge-

ometric proof (though see [9]). Witten’s proof works

in any number of dimensions, but assumes that space

is a spin manifold. Now since superstring theory has

fermions, onemight think that this would be required

anyways, but this is not obvious: the spinors in su-

pergravity couple to other bundles besides the spinor

bundle, there are quantum global anomalies, and the

IIb superstring has a self-dual five-form field which

also affects the topological constraints. I do not think
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this is fully understood in string/M theory, see [10],

§4.6 for some of the many issues.

More seriously, the proof assumes that space-

time is a manifold, but space-time in string/M the-

ory can have singularities. Even worse, the dominant

energy condition the proof assumes as a hypothesis,

can fail both in quantum gravity and in string the-

ory. Thinking about the problem in quantum gravity

seems to be pointing towards a radical new connec-

tion between the geometry of space-time and quan-

tum concepts such as entanglement entropy, see for

example [11, 12]. Leaving quantum gravity for the fu-

ture, one can think about the semiclassical limit of

string theory and M theory as described by ten and

eleven-dimensional supergravity theories with addi-

tional terms in the action beyond the minimal two

derivative terms, and allowing certain singular so-

lutions. These higher derivative terms include the

Chern-Simons terms which play an important role in

the original Candelas, Horowitz, Strominger and Wit-

ten construction of Calabi-Yau compactifications of

the heterotic string [13]. These terms can lead to vio-

lations of the dominant energy condition, so it would

be interesting to know if they can lead to violations

of the positive energy theorem.

Another example of higher derivative terms in

string theory is the Dirac-Born-Infeld action on a

Dirichlet brane world-volume. This can be related to

modified stability conditions in string theory, as dis-

cussed in [14, 15, 2]. This is a good place to mention

my own work with Reinbacher and Yau [15], where

we made the so-called “DRY conjecture” about sta-

ble bundles on Calabi-Yau threefolds, giving suffi-

cient conditions on the Chern classes for their exis-

tence, including an upper bound on the third Chern

class. These bounds were motivated by the attractor

mechanism in string theory, according to which sta-

ble bundles can be used to produce D-branes which

are equivalent to extremal black holes in string the-

ory. Following a conjecture of Moore [16] about these

extremal black holes leads to our conjecture. Some

recent works on the conjecture are [17, 18].

Paper number 3 is the famous “Stringy Cosmic

Strings” paper with Greene, Shapere and Vafa. [19] In

physics, a cosmic string is a codimension two solu-

tion of general relativity coupled to a scalar field. It

is characterized by its behavior at infinity: the scalar

has a winding number, and the metric is asymptot-

ically flat but with a deficit angle. It had been well

studied in cosmology but what had not beenmuch ap-

preciated was the wealth of possibilities if the scalar

field takes values in a nontrivial target manifold,

in physics terms defining a nonlinear sigma model.

This comes up naturally in string compactification,

as the choice of metric on the compact manifold is

parameterized by scalar fields in the lower dimen-

sional theory, usually called moduli fields. For exam-

ple, if we consider compactification on T 2, the flat

metric is parameterized by a real field (the volume)

and a complex structure modulus which lives on the

upper half plane modulo SL(2,Z). In this case, the

winding number of the simple solution generalizes

to a monodromy which can be a general element of

SL(2,Z).1
Now, if the scalar field theory comes from a re-

duction of Einstein theory in the higher dimension,

then it is natural to expect that solutions of the

lower dimensional theory, including the stringy cos-

mic strings, will be Ricci flat manifolds from the

higher dimensional point of view. This is true and in

the T 2 example, if we use the complex structure mod-

ulus of the T 2 as our scalar, in the cosmic string solu-

tions it is a holomorphic function of the two spatial

dimensions. In mathematical terms, the solutions are

elliptic fibrations. The authors then show that all of

these stringy cosmic string solutions correspond to

two complex dimensional Ricci-flat Kähler manifolds.

Thus, there is a single natural family of solutions in

which space is compact: the K3 manifold regarded as

an elliptic fibration over P1. But there is a wide class

of solutions in which space is noncompact, and the

authors devote much discussion to argue that these

noncompact Calabi-Yau manifolds are just as inter-

esting for string theory.

This was very prescient, as the study of noncom-

pact Calabi-Yau manifolds turned out to be more im-

portant than the compact case for much of the devel-

opment of superstring duality in the mid-90’s. This

was because the natural string theory duals to N = 1
and N = 2 supersymmetric quantum field theories

are strings on noncompact Calabi-Yau manifolds. Al-

though there are other arguments for this, one of the

simplest is to consider theories of Dirichlet branes

which fill the Minkowski space-time dimensions and

which sit at points in the extra dimensions. In these

theories, the energy scale of the open string degrees

of freedom is proportional to the distance between

the branes. Thus, to take the low energy limit, one

focuses on a small region in the extra dimensions,

which is noncompact. To get nontrivial theories with

less than N = 4 supersymmetry, the small region must

have reduced holonomy and be topologically nontriv-

ial. A prototypical example is to consider the resolu-

tion of an orbifold singularity C2/Γ or C3/Γ, as first

studied in [20, 21]. By now there are literally thou-

sands of papers which study string theory on non-

compact Calabi-Yau manifolds.

1 String compactifications have another parameter, the inte-
gral of the two-form B over the T 2. This combines with the
volume to produce another complex variable, and the string
symmetry T-duality acts on this variable by another SL(2,Z).
In fact the full duality group is SO(2,2;Z).
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Equally prescient was the description of ellipti-

cally fibered Calabi-Yau manifolds in terms of a mod-

ulus field varying holomorphically on the base. This

modulus need not have a geometric origin, and an-

other example of a modulus admitting a duality ac-

tion of SL(2,Z) is the dilaton-axion field of type IIb

superstring theory. The cosmic string in this case is

a seven-brane, a Dirichlet brane in the case in which

the monodromy is τ → τ +1, but more generally a du-

ality image or (p,q)-seven-brane. String compactifica-

tions which incorporate these seven-branes are now

known as F theory compactifications [22], and this

is the most general class of string compactifications

currently known.

Finally, paper number 5 is a joint work with

Hosono, Klemm and Theisen on mirror symmetry for

hypersurfaces in toric varieties [23]. From the point of

view of physics and string theory, this is a technical

paper, explaining how to derive Picard-Fuchs equa-

tions and the mirror map for Calabi-Yau hypersur-

faces in toric varieties. Still, as technical results go,

these are very important. One famous application was

the work [24] of Kachru and Vafa on type II-heterotic

duality, which first showed how to get exact results

for N = 2 four-dimensional gauge theories from these

results of mirror symmetry. This was also the start-

ing point for the later work on flux compactifications

and moduli stabilization, so it plays a central role in

current discussions of quasi-realistic string compact-

ifications [25].

To conclude, Shing-Tung Yau’s contributions to

string theory have been very broad and very deep,

and here we saw this just from looking at the first

five papers in this list of physics publications. Best

wishes on this occasion of his seventieth birthday,

and the string theory community looks forward to

many more.
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