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Liouville Properties

To S.-T. Yau on His Seventieth Birthday

Abstract. The classical Liouville theorem states that

a bounded harmonic function on all of Rn must be

constant. In the early 1970s, S.-T. Yau vastly gen-

eralized this, showing that it holds for manifolds

with nonnegative Ricci curvature. Moreover, he con-

jectured a stronger Liouville property that has gener-

ated many significant developments. We will first dis-

cuss this conjecture and some of the ideas that went

into its proof.

We will also discuss two recent areas where this cir-

cle of ideas has played a major role. One is Kleiner’s

new proof of Gromov’s classification of groups of

polynomial growth and the developments this gen-

erated. Another is to understanding singularities of

mean curvature flow in high codimension. We will see

that some of the ideas discussed in this survey natu-

rally lead to a new approach to studying and classi-

fying singularities of mean curvature flow in higher

codimension. This is a subject that has been notori-

ously difficult and where much less is known than for

hypersurfaces.

Introduction

The classical Liouville theorem, named after

Joseph Liouville (1809–1882), states that a bounded
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(or even just positive) harmonic function on all of Rn

must be constant. There is a very short proof of this

for bounded functions using the mean value prop-

erty:

Given two points, choose two balls with the given points as
centers and of equal radius. If the radius is large enough, the
two balls will coincide except for an arbitrarily small pro-
portion of their volume. Since the function is bounded, the
averages of it over the two balls are arbitrarily close, and so
the function assumes the same value at any two points.

The Liouville theorem has had a huge impact

across many fields, such as complex analysis, par-

tial differential equations, geometry, probability, dis-

crete mathematics and complex and algebraic geom-

etry. As well as many applied areas. The impact of the

Liouville theorem has been even larger as the starting

point of many further developments.

On manifolds with nonegative Ricci curvature,

mean values inequalities hold, but are no longer

equalities, and the above proof does not give a Liou-

ville type property. However, in the 1970s, S.-T. Yau,

[Ya1], showed that the Liouville theorem holds for

such manifolds. Later, in the mid 1970s, Yau together

with S. Y. Cheng, [CgYa], showed a gradient estimate

on these manifolds giving an effective version of the

Liouville theorem; see also, Schoen, [Sc].

The situation is very different for negatively

curved manifolds such as hyperbolic space. This is

easiest seen in two dimensions where being harmonic

is conformally invariant, so each harmonic function

on the Euclidean disk is also harmonic in the hyper-

bolic metric. In particular, each continuous function

on the circle extends to a harmonic function on the

disk and the space of bounded harmonic functions is

infinite dimensional; cf. Anderson, [A], Sullivan, [S],

and Anderson-Schoen, [ASc].

In general, given a complete manifold M and a

nonnegative constant d, Hd(M) is the linear space of

harmonic functions of polynomial growth at most d:
That is, u ∈Hd(M) if ∆u = 0 and for some p ∈ M and

a constant Cu

sup
BR(p)

|u| ≤Cu (1+R)d for all R .

In 1974, S.-T. Yau conjectured the following

stronger Liouville property:

Conjecture 0.1. If Mn has Ric≥ 0, then Hd(M) is finite

dimensional for each d.

This conjecture generatedmany significant devel-

opments and was discussed bymany authors. See, for

instance: page 117 in [Ya3], problem 48 in [Ya4], Con-

jecture 2.5 in [Sc], [Ka1], [Ka2], [Kz], [DF], Conjecture

1 in [Li1], and problem (1) in [LiTa1], amongst others.

The conjecture was settled in [CM4]:

Theorem 0.2. [CM4] Conjecture 0.1 holds.

In fact, [CM4] proved finite dimensionality under

much weaker assumptions of:

(1) A volume doubling bound.

(2) A scale-invariant Poincaré inequality.

Both (1) and (2) hold for Ric≥ 0 by the Bishop-Gromov

volume comparison and [B]. However, these prop-

erties do not require much regularity of the space

and are quite flexible. In particular, they make sense

for more general metric-measure spaces and are pre-

served by bi-Lipschitz changes of the metric. More-

over, the properties (1) and (2) make sense also

for discrete spaces, vastly extending the theory and

methods out of the continuous world. This extension

opens up applications to geometric group theory and

discrete mathematics; some of which we will touch

upon later.

1. Harmonic Polynomials on
Euclidean Space

There are two simple ways to understand Hd(Rn).

The first, which is very special to Euclidean space,

uses that the Laplacian commutes with partial deriva-

tives on Rn. The key is then the gradient estimate1:

If ∆u = 0 on B2R ⊂ Rn, then

sup
BR

|∇u| ≤
√

2n+16
R

sup
B2R

|u| .

Thus, if |u| ≤ C on all of Rn, then supBR
|∇u| ≤ C

√
2n+16
R

for all R. Letting R → ∞ gives that u is constant. Since

∂xi ∆u=∆(∂xi u) onRn, the gradient estimate implies that

if u∈Hd(Rn), then ∂u
∂xi

∈Hd−1(Rn). Applying this d times

gives that the d-th order partials are constant and,

thus, u is a polynomial of degree d. It follows that

Hd(Rn) is the space of harmonic polynomials of de-

gree at most d and, thus, has dimension of the order

dn−1.

There is another way to think of this that gives

a more general perspective. Namely, in polar coordi-

nates (ρ,θ) ∈ R+×Sn−1, the Laplacian is

(1.1) ∆Rn = ρ
−2

∆θ +(n−1)ρ
−1 ∂

∂ρ
+

∂ 2

∂ρ2 .

In particular, the restriction of a homogeneous har-

monic polynomial of degree d to Sn−1 gives an eigen-

function with eigenvalue d2 +(n−2)d.
A similar “cone construction” holds more gener-

ally; cf. [CM2]. Given a manifold Nn−1, the cone over N
is the manifold C(N) = N × [0,∞) with the metric

(1.2) ds2
C(N) = dr2 + r2 ds2

N .

1 The constant
√

2n+16 is not sharp.
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The Laplacians of N and C(N) are related by

(1.3) ∆C(N)u = r−2
∆Nu+(n−1)r−1 ∂

∂ r
u+

∂ 2

∂ r2 u .

Using (1.3), we can now reinterpret the spaces

Hd(C(N)):

Lemma 1.4. If ∆Ng =−λ g on Nn−1, then rd g ∈Hd(C(N))

where

(1.5) d2 +(n−2)d = λ .

As a consequence of Lemma 1.4, the spectral

properties of N are equivalent to properties of har-

monic functions of polynomial growth onC(N). In this

way, the dimension bounds on Hd , for d large, are

related to spectral asymptotics on the cross-section

which are given by Weyl’s asymptotic formula. This

point of view was a focus point of [CM5].

2. Laplacian on a Manifold

On a Riemannian manifold M with metric 〈·, ·〉 and
Levi-Civita connection ∇, the gradient of a function f
is defined by

(2.1) V ( f ) = 〈∇ f ,V 〉 for all vectors fields V .

The Laplacian of f is the trace of the Hessian. That is,
if ei is an orthonormal frame for M, then

(2.2) ∆ f = TrHess f = ∑
i
Hess f (ei,ei) = ∑

i
〈∇eiV,ei〉 .

For harmonic functions, we get the following re-

verse Poincaré inequality (also sometimes called the

Caccioppoli inequality):

Lemma 2.3 (Reverse Poincaré). If ∆u = 0 on B2R ⊂ M,

then

(2.4)

∫
BR

|∇u|2 ≤ 4
R2

∫
B2R

u2 .

Incidentally, Yau used this in [Ya2] to show:

Theorem 2.5 (Yau). If M is open, u is harmonic, and∫
u2 < ∞, then u must be constant. If M has infinite vol-

ume, then u ≡ 0.

2.1 The Bochner Formula

On Euclidean space Rn, partial derivatives com-

mute and

(2.6)
1
2

∆Rn |∇u|2 = |Hessu|2 + 〈∇u,∇∆Rn u〉 .

On a Riemannian manifold M, derivatives do not com-

mute and (2.6) does not hold in general. However,

the failure of derivatives to commute is measured

by the Riemann curvature tensor. Using this, Bochner

proved the following extremely useful formula:

(2.7)
1
2

∆|∇u|2 = |Hessu|2 + 〈∇u,∇∆Mu〉+RicM(∇u,∇u) .

Thus, if RicM ≥ 0, then the energy density of a har-

monic function is subharmonic.

3. Gradient Estimate for Harmonic
Functions

Gradient estimates have played a key role in ge-

ometry and PDE since at least the early work of Bern-

stein in the 1910s. These are probably the most fun-

damental a priori estimates for elliptic and parabolic

equations, leading to Harnack inequalities, Liouville

theorems, and compactness theorems for both linear

and nonlinear PDE.

A typical example for linear equations is the well–

known, and highly influential, gradient estimate of

S. Y. Cheng and S.-T. Yau for harmonic functions:

Theorem 3.1. [CgYa] If ∆u = 0 on BR(0) with nonnega-

tive Ricci curvature, then

(3.2) |∇u|(0)≤
√

2n+16
R

sup
BR

|u| .

Proof. We begin by introducing a cutoff function η

that vanishes on ∂BR and has bounds on its gradient

and Laplacian. Define the cutoff function η(x) = R2 −
r2, where r is the distance function to the center 0 of

the ball. Observe that

∇η = |2r ∇r| ≤ 2R ,(3.3)

|∇η
2|= 2η |∇η | ≤ 4Rη ,(3.4)

∆η =−∆r2 ≥−2n ,(3.5)

∆η
2 = 2 |∇η |2 +2η ∆η ≥−4nη ≥−4nR2 ,(3.6)

where the third line used the Laplacian comparison

theorem (which applies since Ric≥ 0).
Using the product rule the Laplacian, the Bochner

formula and the above formulas for η , we compute

that

∆(η2 |∇u|2) = η
2

∆|∇u|2 +2〈∇η
2,∇|∇u|2〉+ |∇u|2 ∆η

2
(3.7)

≥ 2η
2 |Hessu|2 −16R η |∇u| |Hessu|

−4nR2 |∇u|2

≥−(4n+32)R2 |∇u|2 ,

where the last inequality used the absorbing inequal-

ity 16ab ≤ 2a2 + 32b2 with a = η |Hessu| and b = R |∇u|.
On the other hand, we have ∆u2 = 2 |∇u|2 , so the func-

tion

(3.8) w = (2n+16)R2 u2 +η
2 |∇u|2
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is subharmonic on BR(0) (i.e., ∆w≥ 0). By the maximum

principle, the maximum of w occurs on the boundary

so that

(3.9) R4 |∇u|2(0)≤ w(0)≤ max
∂BR

w = (2n+16)R2 max
∂BR

u2 .

In fact, Cheng and Yau proved a stronger esti-

mate:

Theorem 3.10 (Gradient estimate; [CgYa]). If ∆u = 0
and u is positive on BR(0) with Ric≥ 0, then

(3.11)
|∇u|

u
(0) = |∇ logu|(0)≤ 4n

R
.

An important consequence of (3.11) is the Har-

nack inequality for positive harmonic functions. Ac-

cordingly, estimates of the form (3.11), which give a

bound for the derivative of the logarithm of a positive

function, are often referred to as differential Harnack

estimates. In 1986, Li and Yau proved a sharp gra-

dient, or differential Harnack, estimate for the heat

equation on manifolds with Ric ≥ 0, [LiY]. The paper

[C2] gives a sharp elliptic gradient estimate on such

manifolds. Finally, note that the Harnack inequality

holds more generally for manifolds with a volume

doubling and Poincaré inequality by [Gr], [SC].

4. Harmonic Functions with
Polynomial Growth on General
Spaces

The Cheng-Yau gradient estimate implies the

global Liouville theorem of Yau, [Ya3], by taking R→∞

in (3.11). In fact, it implies the stronger result that

any harmonic function with sublinear growth must

be constant:

Corollary 4.1. [CgYa] If M is complete with RicM ≥ 0,
then Hd(M) = {Constant functions} for d < 1.

Since Rn has nonnegative Ricci curvature and the

coordinate functions are harmonic, this is obviously

sharp. Therefore, when d ≥ 1 a different approach is

needed. Instead of showing a Liouville theorem, the

point is to control the size of the space of solutions.

Over the years, there weremany interesting partial re-

sults (including when M is a surface, [LiTa2] and [DF]).

In [LiTa1], P. Li and L.F. Tam obtained the borderline

case d = 1, showing that

(4.2) dim(H1(M))≤ n+1 ,

for an n-dimensional manifold with RicM ≥ 0. When

M = Rn the space H1(Rn) has dimension n+ 1 and is

spanned by the n coordinate functions plus the con-

stant functions. The corresponding rigidity theorem

was proven in [ChCM] (see [Li2] for the special case

where M is Kähler):

Theorem 4.3. [ChCM] If M is complete with RicM ≥ 0,
then every tangent cone at infinity M∞ splits isometri-

cally as

(4.4) M∞ = N ×Rdim(H1(M))−1 .

Hence, if dim(H1(M)) = n+1, then [C1] implies that M =

Rn.

Finally, in [CM4], Yau’s conjecture from 1974 was

settled. Namely, [CM4] showed that the spaces of

polynomial growth harmonic functions are finite di-

mensional; see Theorem 0.2. The proof consists of

two independent steps (the first does not use har-

monicity):

• Given a 2k-dimensional subspace H ⊂Hd(M) and

h ∈ (0,1], there exists a k-dimensional subspace

K ⊂ H and R > 0 so that

(4.5) sup
v∈K\{0}

∫
B
(1+h)2R

v2∫
BR

v2 ≤C1 (1+h)8d .

• The dimension of a space K of harmonic func-

tions satisfying (4.5) is bounded in terms of h
and d.

To give some feel for the argument, we will sketch

a proof of the second step.

Proof. (Sketch of second step) For simplicity, suppose

that R = 1 and h = 1. Fix a scale r ∈ (0,1) to be chosen

small. We will use two properties of manifolds with

RicM ≥ 0:
First, we can find N ≤Cn r−n balls Br(xi) with

(4.6) χB1 ≤ ∑
i

χBr(xi) ≤Cn χB2 ,

where χE is the characteristic function of a set E. (To
do this, choose a maximal disjoint collection of balls

of radius r/2 and then use the volume comparison to

get the second inequality in (4.6) and bound N.)
Second, there is a uniform Poincaré inequality: If∫

Bs(x) f = 0, then

(4.7)

∫
Bs(x)

f 2 ≤CN s2
∫

Bs(x)
|∇ f |2 .

To bound the dimension of K, we will construct a
linear map M : K → RN and show that M is injective

for r > 0 sufficiently small. We define M by

(4.8) M(v) =

(∫
Br(x1)

v , . . . ,
∫

Br(xN )
v

)
.

We will deduce a contradiction if v ∈ K \ {0} is in the

kernel of M. In particular, (4.7) gives that for each i

(4.9)

∫
Br(xi)

v2 ≤CN r2
∫

Br(xi)
|∇v|2 .
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Combining this with (4.6) gives

∫
B1

v2 ≤
N

∑
i=1

∫
Br(xi)

v2 ≤CN r2
N

∑
i=1

∫
Br(xi)

|∇v|2(4.10)

≤Cn CN r2
∫

B2

|∇v|2 .

We now (for the only time) use that v is har-

monic. Namely, the Caccioppoli inequality (or reverse

Poincaré inequality) for harmonic functions gives

(4.11)

∫
B2

|∇v|2 ≤
∫

B4

v2 .

Combining (4.10) and (4.11), we get

(4.12)

∫
B1

v2 ≤Cn CN r2
∫

B4

v2 .

This contradicts (4.5) if r is sufficiently small, com-

pleting the proof.

On Euclidean space Rn, the spacesHd are given by

harmonic polynomials of degree at most d. In partic-

ular, it is not hard to see that

(4.13) dim(Hd(R
n))≈C dn−1 .

Using the correspondence between harmonic polyno-

mials and eigenfunctions on Sn−1 (see Lemma 1.4),

this is closely related to Weyl’s asymptotic formula

on Sn−1. In [CM5], the authors proved a similar sharp

polynomial bound for manifolds with non–negative

Ricci curvature:

Theorem 4.14. [CM5] If Mn is complete with RicM ≥ 0
and d ≥ 1, then

(4.15) dim(Hd(M))≤C dn−1 .

Taking M =Rn, (4.13) illustrates that the exponent

n−1 is sharp in (4.15). However, as in Weyl’s asymp-

totic formula, the constant in front of dn−1 can be re-

lated to the volume. Namely, we actually showed the

stronger statement

(4.16) dim(Hd(M))≤CnVM dn−1 +o(dn−1) ,

where

• Cn depends only on the dimension n.
• VM is the “asymptotic volume ratio”

limr→∞ Vol(Br)/rn.

• o(dn−1) is a function of d with

limd→∞ o(dn−1)/dn−1 = 0.

As noted above, Theorem 4.14 also gives lower

bounds for eigenvalues on a manifold Nn−1 with

RicN ≥ (n − 2) = RicSn−1 . Using the sharper estimate

(4.16) introduces the volume of N into these eigen-

value estimates (as predicted by Weyl’s asymptotic

formula).

An interesting feature of these dimension esti-

mates is that they follow from “rough” properties of

M and are therefore surprisingly stable under per-

turbation. For instance, in [CM4], we proved Theo-

rem 0.2 for manifolds with a volume doubling and

a Poincaré inequality; unlike a Ricci curvature bound,

these properties are stable under bi-Lipschitz trans-

formations.

This finite dimensionality was not previously

known even for manifolds bi-Lipschitz to Rn (ex-

cept under additional hypotheses, cf. Avellaneda-Lin,

[AvLn], and Moser-Struwe, [MrSt]).

The volume doubling and Poincaré inequality to-

gether imply a meanvalue inequality. Using the mean-

value inequality and the doubling, we prove finite di-

mensionality for harmonic sections of certain bun-

dles in [CM6] (see also [CM3]).

This is just a very brief overview (omitting many

interesting results), but we hope that it gives some-

thing of the flavor of the subject; see [CM3] and ref-

erences therein for more.

5. The Heat Equation

A function u satisfies the heat equation if ut =

∆u. In particular, harmonic functions are static (time-

independent) solutions of the heat equation.

5.1 Ancient Solutions of the Heat Equation

The natural parabolic generalization of a poly-

nomial growth harmonic function is a polynomial

growth ancient solution of the heat equation. On Rn,

it is classical that these are just polynomials in x and t
and, thus, finite dimensional. In view of [CM4], [CM5]

and [CM6] for harmonic functions, it is natural to

seek dimension bounds for these spaces on mani-

folds. This was initiated by Calle in 2006 in her thesis,

[Ca1], [Ca2]; cf. [LZ] for some recent results, including

a parabolic generalization of [CM4].

Given d > 0, let Pd(Rn) be the space of ancient solu-

tions u(x, t) of the heat equation ∂tu = ∆u so that there

exists Cu with

sup
BR×[−R2,0]

|u| ≤Cu (1+R)d .(5.1)

Theorem 5.2. [CM11] If Vol(BR(p)) ≤ C (1 + R)dV for

some p ∈ M, then for 1 ≤ k ∈ Z

dimP2k(M)≤ (k+1) dimH2k(M) .(5.3)

Combining this with the bound dimHd(M)≤C dn−1

when RicMn ≥ 0 from [CM5] gives:

Corollary 5.4. [CM11] There exists C = C(n) so that if

RicMn ≥ 0, then for d ≥ 1

dim Pd(M)≤C dn .(5.5)
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This result is optimal in the following sense:

There is a constant c = cn so that for d ≥ 1

c−1 dn ≤ dimPd(R
n)≤ cdn .(5.6)

Thus, the exponent n in (5.5) is sharp; see Lin and

Zhang, [LZ], for a recent related result that adapts

the methods of [CM4]–[CM6] to get the weaker bound

dn+1.

Theorem 5.2 gives finite dimensionality of Pd(M)

for any M where Hd(M) is finite dimensional. Thus,

the earlier results of [CM4]–[CM6] give finite dimen-

sionality of Pd(M) when M has a volume doubling and

either a Poincaré or meanvalue inequality.

5.2 Parabolic Gradient Estimates

The next lemma gives a simple interior gradient

estimate that parallels the gradient estimate of The-

orem 3.1 for harmonic functions. One can also get

gradient estimates in time, though the scaling factor

is different.

Lemma 5.7. If M is complete with RicM ≥ 0, the there

exists C depending on n so that if (∂t −∆)u = 0 on BR ×
[−R2,0], then

sup
BR/2×[−R2/4,0]

|∇u|2 ≤ C
R2 sup

BR×[−R2,0]
u2 .(5.8)

Proof. By scaling, it suffices to prove the estimate

when R = 1. Let ψ be a cut-off function that is one

on B1/2 × [−1/4,0] and zero on the parabolic boundary

of B1× [−1,0]. Note that (∂t −∆)u2 =−2 |∇u|2 and, by the
Bochner formula since Ric≥ 0, (∂t −∆)|∇u|2 ≤−2 |∇2u|2.
Therefore, the Kato inequality |∇|∇u|| ≤ |∇2u| and the

absorbing inequality give

(∂t −∆)
[
ψ

2|∇u|2
]
≤−2 |∇2u|2 + |∇u|2(∂t −∆)ψ2(5.9)

+8|u| |∇u||ψ||∇ψ|
≤ |∇u|2

{
(∂t −∆)ψ2 +8 |∇ψ|2

}
.

Using the Laplacian comparison theorem, we can con-

struct ψ so that
∣∣(∂t −∆)ψ2 +8 |∇ψ|2

∣∣≤C for a constant

C depending just on n. It follows that C u2 + |∇u|2 ψ2 is

a subsolution of the heat equation and the parabolic

maximum principle gives

sup
B1/2×[−1/4,0]

|∇u|2 ≤C sup
B1×[−1,0]

u2 .(5.10)

After rescaling to radius R, this gives the lemma.

In [LiY], Li and Yau proved a gradient estimate for

positive solutions of the heat equation:

Theorem 5.11 (Differential Harnack inequality; [LiY]).

If ∂tu = ∆u = 0 and u is positive on M× [0,∞) with Ric≥ 0,
then

(5.12)
|∇u|2

u2 − ut

u
≤ n

2t
.

There is also a local version of Theorem 5.11 in

[LiY] when u is positive on BR × [−R2,0] with Ric ≥ 0.
Namely, there exists Cn depending on n so that

(5.13) sup
B R

2
×[− R2

4 ,0]

(
|∇u|2

u2 − ut

u

)
≤ Cn

R2 .

An immediate corollary of (5.13) is a generaliza-

tion of Lemma 5.7:

Corollary 5.14. There exists C depending on n so that

if ∂tu = ∆u = 0 and Ric≥ 0, then

(5.15) sup
B R

2
×[− R2

4 ,0]

|ut | ≤
C
R2 sup

BR×[−R2,0]
|u| .

Similarly, we have sup
B R

2
×[− R2

4 ,0]
|∇u|2 ≤

C
R2 supBR×[−R2,0] u2.

Proof. Let m be the supremum of |u| on BR × [−R2,0].
Then v = u+m and w = m−u satisfy the heat equation

and are positive with

0 ≤ v,w ≤ 2m .(5.16)

Let Ω = B R
2
× [−R2

4 ,0]. Applying (5.13) to v gives on Ω

that

(5.17)
|∇u|2

v2 − ut

v
=

|∇v|2

v2 − vt

v
≤ Cn

R2 .

Thus, we get on Ω that ut ≥ −Cn v
R2 ≥ − 2Cn m

R2 . Applying

(5.13) to w gives on Ω that

(5.18)
|∇u|2

w2 +
ut

w
=

|∇w|2

w2 − wt

w
≤ Cn

R2 ,

which gives that ut ≤ Cn w
R2 ≤ 2Cn m

R2 . Combining the up-

per and lower bounds on ut gives (5.15). Finally, using

(5.15) in (5.18) gives the spatial gradient estimate.

Using the parabolic gradient estimate of Li-Yau

in place of the Cheng-Yau gradient estimate, we will

get generalizations of the harmonic rigidity theorems

when the degree of growth is low.

Corollary 5.19. Suppose that RicMn ≥ 0. If d < 1, then
Pd(M) = {constant functions}. If d < 2, then Pd(M) =

Hd(M). Finally,

dimP1(M)≤ n+1

with equality only on Rn

Proof. Suppose that u ∈ Pd(M) with d < 1. By taking

R → ∞ in Lemma 5.7, we see that |∇u| ≡ 0 and, thus, u
is constant in space. The equation ut =∆u then implies

that u is also constant in time.

By Corollary 5.14, we see that if d < 2, then

Pd(M) = Hd(M). In particular, dimP1(M) ≤ n + 1, by

[LiTa1], and equality holds if and only if M = Rn by

[ChCM].
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6. Recent Results

In the last two sections we will discuss two re-

cent applications of the methods discussed here in

two very different directions. The first is a new proof,

by Kleiner, of Gromov’s theorem about groups of

polynomial growth whereas the second, which is dis-

cussed in the next section, is to blow-ups (ancient so-

lutions) of curvature flow.

6.1 Connections with Geometric Group Theory

Recently Kleiner, [K], (see also Shalom-Tao, [ST])

used, in part, the circle of ideas discussed here in his

new proof of an important and foundational result

in geometric group theory, originally due to Gromov,

[G]. Gromov’s theorem asserts that any finitely gen-

erated group of polynomial growth has a finite index

nilpotent subgroup.

Given an infinite group generated by a finite sym-

metric set, a function on the group is said to be

harmonic if it obeys the mean value equality. Here

the mean is taken over adjacent elements. Kleiner’s

proof has roughly four steps, cf. [T1], [T2]. The first

is to construct plenty of polynomial growth harmonic

functions on any group with polynomial growth. The

second step uses that the space of polynomial growth

functions Hd on the group is finite dimensional for

each d. The third step shows that any finitely gener-

ated group of polynomial growth that sits inside a

compact Lie subgroup of the general linear group is

virtually abelian. Finally, the fourth step uses an in-

duction argument to reduce the general question to

the third step. Steps one and two together give that

step three applies. To get the key finite dimensional-

ity of the second step, Kleiner shows a Poincaré in-

equality and observes that the group satisfies a type

of doubling condition.

7. A New Approach to MCF in Higher
Codimension

Wewill see that ideas discussed in this survey nat-

urally lead to a new approach to studying and classi-

fying singularities of mean curvature flow (MCF) in

higher codimension. This is a subject that has been

notoriously difficult and where much less is known

than for hypersurfaces. The idea of [CM10] is to use

ideas described in the earlier sections to show that

blowups of higher codimension MCF have codimen-

sion that typically is much smaller than in the original

flow. In many important instances we can show that

blowups are evolving hypersurfaces in a Euclidean

subspace even when the original flow is very far from

being hypersurfaces.

A one-parameter family of n-dimensional sub-

manifolds Mn
t ⊂ RN evolves by mean curvature flow

if each point x(t) evolves by

∂tx =−H ,(7.1)

where H =−TrA is the mean curvature vector and A is

the second fundamental form. It is said to be ancient

if it exists for all negative times. The restrictions of

the coordinate functions on RN to the evolving sub-

manifolds satisfy the heat equation. This connects

the study of MCF with the study of spaces of poly-

nomial growth functions. Indeed one way of thinking

about MCF is that the position vector x ∈ Mn
t ⊂ RN sat-

isfies the nonlinear heat equation

(∂t −∆Mt )x = 0 .(7.2)

This equation is nonlinear since the Laplacian de-

pends on the evolving submanifold Mt .

There is a Lyapunov function for the flow that is

particularly useful. To define it recall that the Gaus-

sian surface area F of an n-dimensional submanifold

Σn ⊂ RN is

F(Σ) = (4π)−
n
2

∫
Σ

e−
|x|2

4 .(7.3)

The factor (4π)−
n
2 is chosen to make the Gaussian

area one for an n-plane through the origin. Following

[CM9], the entropy λ is the supremum of F over all

translations and dilations

λ (Σ) = sup
c,x0

F(cΣ+ x0) .(7.4)

By Huisken’s monotonicity, [H], it follows that λ is

monotone nonincreasing under the flow. From this,

and lower semi continuity of λ , we have that all

blowups have entropy bounded by that of the initial

submanifold in a MCF.

MCF in higher codimension is a complicated non-

linear parabolic system and much less is known than

for hypersurfaces. The singularities are modeled by

shrinkers Σ that evolve by scaling. Shrinkers get more

complicated as the codimension increases. The most

fundamental shrinkers are cylinders Sk√
2k
×Rn−k, but

there are many others including all n-dimensional

minimal submanifolds of the sphere ∂B√
2n ⊂ RN . The

entropy of round spheres is monotone decreasing in

the dimension, [St], with

√
2 ≤ λ (Sn)< λ (Sn−1)< · · ·< λ (S1) =

√
2π

e
≈ 1.52 ,

(7.5)

and λ (Σ×R) = λ (Σ).

Any blowup of a MCF leads to an ancient flow.

A particularly important way of blowing up is around
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a fixed point in space-time. This kind of ancient flow

is a shrinker. A submanifold Σ is a shrinker if it satis-

fies the equation

H =
x⊥

2
,(7.6)

where x⊥ is the perpendicular part of the position vec-

tor field. This is equivalent to saying that the one pa-

rameter family
√
−t Σ flows by the MCF.

7.1 Bounding Codimension

Let Mn
t ⊂ RN be an ancient MCF with entropies

λ (Mt) ≤ λ0 < ∞. The space Pd consists of polynomial

growth caloric functions u(x, t) on ∪tMt ×{t} so that

(∂t −∆Mt )u = 0 and there exists C depending on u with

|u(x, t)| ≤C (1+ |x|d + |t|
d
2 ) for all (x, t) with x ∈ Mt .

(7.7)

In [CM10], for each d we bound the dimension of

Pd(Mt) for an ancient MCF Mt ⊂ RN . The bound is in

terms of the dimension of Mt , the entropy, and d. The
next result is a special case of this for d = 1 that shows
that the codimension of the smallest Euclidean space

that the flow sits inside is bounded in terms of the

entropy.

Theorem 7.8. (Bounding codimension by entropy for

ancient flows, [CM10]). If Mn
t ⊂ RN is an ancient

MCF, then Mt ⊂ a Euclidean subspace of dimension

≤Cn supt λ (Mt).

There is a parallel of this result that can be seen

as a generalization of a well-known result of Cheng-

Li-Yau. To explain this let Σn ⊂ RN be a shrinker with

finite entropy λ (Σ). We will use ‖u‖L2 to denote the

Gaussian L2 norm. As in [CM6], the drift Laplacian

(Ornstein-Uhlenbeck operator) L = ∆ − 1
2 ∇xT is self-

adjoint with respect to the Gaussian inner product∫
Σ

uve−
|x|2

4 . We will say that u is a µ-eigenfunction if

Lu = −µ u and 0 < ‖u‖L2 < ∞. The spectral counting

function N (µ) is the number of eigenvalues µi ≤ µ

counted with multiplicity. In [CM10] we bound the

spectral counting function for any shrinker in terms

of n, λ (Σ), and µ . As a special case we get:

Theorem 7.9. (Bounding codimension by entropy for

shrinkers, [CM10]). If Σn ⊂ RN is a shrinker, then Σ ⊂ a

Euclidean subspace of dimension ≤Cn λ (Σ).

Our estimates in Theorems 7.8 and 7.9 are linear

in the entropy, which is known to be sharp. The cor-

responding linear estimate for algebraic varieties in

complex projective space follows from Bézout’s the-

orem, 18.3 in [Ha]. When Σ ⊂ ∂B√
2n ⊂ RN is a closed

n-dimensional minimal submanifold of the sphere

and the entropy reduces to the volume, then this es-

timate follows from Theorem 6 in [CLY].

In Theorem 1.5 in [dCW], do Carmo and Wallach

construct families of minimal submanifolds of the

sphere, each isometric to the same round sphere, gen-

eralizing earlier results of Calabi [Ca]. The bound-

ary immersions of the families in [dCW] lie in a

lower-dimensional affine space. Obviously, they have

the same volume and, since they are contained in

spheres, also the same entropy. Thus, the number of

linearly independent coordinate functions can vary

along a family.

7.2 Sharp Bound for Codimension

Suppose that Mn
t ⊂ RN is an ancient MCF with

supt λ (Mt)< ∞. For each constant c > 0 define the flow

Mc,t by

Mc,t =
1
c

Mc2 t .(7.10)

It follows that Mc,t is an ancient MCF as well. Since

supt λ (Mt)<∞, Huisken’s monotonicity, [Hu], and work

of Ilmanen, [I], White, [Wh1], gives that every se-

quence ci → ∞ has a subsequence (also denoted by ci)

so that Mci,t converges to a shrinker M∞,t (so M∞,t =√
−t M∞,−1) with supt λ (M∞,t) ≤ supt λ (Mt). We will say

that such a M∞,t is a tangent flow at −∞ of the orig-

inal flow.

The next result gives a sharp bound for the codi-

mension:

Theorem 7.11. (Sharp codimension bound, [CM10]).

If Mn
t ⊂ RN is an ancient MCF and one tangent flow at

−∞ is a cylinder, then Mt is a flow of hypersurfaces in

a Euclidean subspace.

We believe that this theorem will have wide rang-

ing consequence for MCF in higher codimension. To

briefly explain some of these we make the following

conjecture:

Conjecture 7.12. For n ≤ 4 and any codimension,

round generalized cylinders, Sk√
2k

× Rn−k, are the

shrinkers with the lowest entropy.

We also conjecture that for any n the round Sn has

the least entropy of any closed shrinker Σn ⊂ RN . The

corresponding result for hypersurfaces was proven in

[CIMW]; see also [HW]. It was also noted in [CIMW] that

the “Simons cone” over S2 × S2 has entropy strictly

less than that of S1 ×R4. In other words, already for

n = 5, the round generalized cylinders is not a com-

plete list of the lowest entropy shrinkers. Conjec-

ture 7.12 is known for n = 1 since shrinking curves

are contained in affine two-planes and have entropy

at least that of round circles. It is also known to hold

for n = 2 and N = 3 by work of Bernstein-Wang, [BW].
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If Conjecture 7.12 holds, then combined with

Theorem 7.11 it would follow that any ancient flow

Mn
t ⊂ RN with entropy at most λ (S1) plus some small

ε > 0 would be a hypersurface in some Euclidean sub-

space of dimension n+ 1 provided n ≤ 4. This would

give that all blowups near any cylindrical singularity

for n ≤ 4 are ancient flows of hypersurfaces. Thus,

reducing the system to a single differential equa-

tion.
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