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Problem 2018001 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

The existence of integrable complex structures

is an important problem. It is well known that the

existence of almost complex structure on an even-

dimensional manifold can be reduced to homotopic

theory. However, how to deform the almost com-

plex structure to an integrable one is far more diffi-

cult. The power of Riemann-Roch formula for com-

plex manifolds allows Kodaira to classify complex

surfaces. The only unknown complex surface that are

not Kähler are those which are called class VII0. There

were examples given by Kodaira, Inoue and Bombieri.

They are the only examples of the surfaces admit no

closed curve. This was proved by Bogomolov [1] and

Li-Yau-Zheng [2]. It remains an open problem to clas-

sify those that have curves. Such surfaces have first

Betti number equal to one.
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In higher dimension, there are many more

non-Kähler complex manifolds. For example, the

twistor spaces of anti-self-dual 4-manifolds are com-

plex threefolds which are not Kähler. Riemann-

Roch in higher dimension is not as powerful as in

2-dimension. I was motivated by this fact to conjec-

ture that every almost complex manifold with dimen-

sion greater than two admits an integrable complex

structure, although it may not be homotopic to the

original almost complex structure.

[1] F.A. Bogomolov, Surfaces of class VII0 and affine

geometry, Math. USSR-Izv. 21:1 (1983), 31–73.

[2] J. Li, S.-T. Yau and F. Zheng, A simple proof of

Bogomolov’s theorem on class VII0 surfaces with

b2 = 0, Illinois J. Math. 34 (1990), 217–220.

Problem 2018002 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

This problem is about the construction of ge-

ometric structures on a manifold. Classically, a

2-dimensional surface admits many structures such

as conformal structures and projective structures.

They are good as the moduli space is finite dimen-

sional and it means that the structures are reason-

ably canonical. The moduli space is not completely

understood, even with modern technology. We like to

construct geometric structure on topological space

whose moduli space is finite dimensional. This be-

comes very tough when the dimension is greater than

two.

The geometrization conjecture of Thurston

solves the problem for 3-manifold beautifully. The

approach of Hamilton-Perelman based on Hamil-

ton’s Ricci flow approach is still complicated to be

understood thoroughly.

On the other hand, the construction of geometric

structures over 4-dimensional manifolds are far more

complicated. Algebraic surfaces have given a large set
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of beautiful examples of 4-manifolds. They have to

play an important role in any approach to understand

4-manifolds. How do we tell which 4-dimensional

manifolds admit an algebraic structure, besides some

topological constraints given by Hodge theory and

Riemann-Roch formula. The Miyaoka-Yau inequality

gives a nontrivial topological constraint that went

beyond Riemann-Roch. Donaldson invariants or the

Seiberg-Witten invariants give different constraints

on smooth structures of 4-dimensional manifolds.

Even for a much weaker question on the existence

of symplectic structure on a 4-manifold, the answer is

not satisfactory, despite there are constructions due

to Gompf et al. In the theory of mirror symmetry,

the category of symplectic structures is supposed to

be dual to the category of complex structures. It is

not clear whether this should tell us some relation-

ship between moduli space of symplectic manifolds

and the moduli space of complex surfaces. On the

other hand, a very important structure called self-

dual structure can exist on many 4-manifolds, due

to a theorem of Cliff Taubes [1]. The problem is that

we do not know whether there can be infinite num-

ber of components of self-dual structures on a given

smooth manifold. It should be noted that due to the

theorem of David Gieseker [2] and later by Viehweg [2]

that if we fix the Hilbert polynomial, the number of

components of moduli space of projective structure

on a 4-manifold is bounded. Is there any way to find

and prove a similar statement for the moduli space

of self-dual structures on a 4-manifold?

Anti-self-dual 4-manifolds give rise to twistor

space which has an integrable complex structure.

So we should ask whether there are infinite num-

ber of components of moduli space of integrable

complex structures over such complex 3-dimensional

manifold or not. Perhaps we can classify these non-

Kähler manifolds according to their algebraic dimen-

sion. If two anti-self-dual manifolds have the same

twistor spaces up to birational type, what can we

say about the relation between the two original anti-

self-dual spaces? Can we construct interesting ge-

ometric invariants on the twistor space from the

anti-self-dual structure? For higher dimensional hy-

perkähler manifolds, we can also construct twistor

space. Similar questions can be asked. Conversely,

can we construct interesting topological invariants

on 4-manifolds based on the existence of anti-self-

dual structures or the complex structures on twistor

space.

If my conjecture that every almost complex man-

ifold with dimension greater than two admits an in-

tegrable complex structure is correct, it opens up a

nice way to construct geometric structures over even-

dimensional manifolds with almost complex struc-

ture (the existence of which can be reduced to ho-

motopy problem). But we have little experience on

non-Kähler complex manifolds. Some structure on

top of integrable complex structure is needed. In re-

cent years, the concept of balanced metric is stud-

ied. It would be great to find conditions for a com-

plexmanifold to admit balanced structure. In the sub-

ject of algebraic manifolds, objects such as holomor-

phic vector bundles are important. Can we construct

such objects by solving some differential equations

over a complex vector bundle assuming some topo-

logical conditions? The major integrability condition

for a complex vector bundle over a complex manifold

to admit integrable complex structure comes from

Riemann-Roch formula. Can we formulate these con-

ditions clearly and can one find other obstructions?
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Problem 2018003 (Symplectic Geometry). Proposed

by Shing-Tung Yau, Harvard University.

Cliff Taubes [1] established one of the most fun-

damental work in symplectic geometry by proving the

existence of pseudo-holomorphic curves for almost

complex structure compatible with the symplectic

form, based on information from the Seiberg-Witten

invariant, which is a topological invariant. However,

this only works in 4-manifolds. What happens in

higher dimensional symplectic manifolds? For exam-

ple, can there be more than one symplectic structure

on complex projective space CPn with n > 2?
In the theory of mirror symmetry, symplectic ge-

ometry is mirror to complex structures. What is the

correct concept of period integral in symplectic ge-

ometry as analogue of periods in algebraic geometry.

And do they satisfy some kind of Picard-Fuchs equa-

tion? For a stable holomorphic bundle over an alge-

braic manifold, it is again stable when restricted to a

generic hyperplane section. Since stable holomorphic

bundle is mirror to special Lagrangian submanifold in

symplectic geometry, presumably there is some spe-

cial property if we intersect special Lagrangian sub-

manifold with certain symplectic submanifolds.

Is there good concept of moduli space of com-

plexified symplectic structures? If a natural mod-

uli space exists, what kind of structure would it

have?Would it admit symplectic structure or complex

structure? The concept of period of integral is im-

portant in algebraic geometry. Is there such concept

in symplectic geometry that can be used to reflect
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symplectic structure? Is there analogue of Torelli the-

orem? For even-dimensional manifolds with dimen-

sion greater than 6, is there any obstruction for the

existence of symplectic structure besides the obvious

cohomology conditions?
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Problem 2018004 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

Suppose a compact Riemannian manifold M can

be stratified by a finite union of submanifolds: Be-

sides a finite number of them are compact with posi-

tive scalar curvature, the rest of them can be foliated

by complete submanifolds (possibly varying dimen-

sional leaves) with positive scalar curvature. Prove

that the ambient manifold M admits a metric with

positive scalar curvature. When the foliation is ob-

tained by orbits of SU(2)-action, this was proved by

Lawson and Yau [1]. The case when all leaves are same

dimension, this appeared in the recent work of Weip-

ing Zhang [2], who took my suggestion to generalize

the above theorem of Lawson-Yau in 1994 when he

visited Harvard. An important question is a noncom-

pact Lie group G such as SL(2)-action where we like

to construct a left invariant metric on G and trans-

plant the metric to the orbits of the action. In order

to do so, theremay be certain assumption on the orbit

structure to build a global metric with positive scalar

curvature.
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Problem 2018005 (Differential Geometry). Proposed

by Shing-Tung Yau, Harvard University.

Ray and Singer [1] defined the Ray-Singer tor-

sion for Riemannian manifods using zeta functions.

Ray-Singer conjectured that for 3-dimensional man-

ifolds, the analytic invariant is the same as the Rei-

demeister torion which is related to triangulation of

the 3-dimensional manifolds. The later torsion was

used by Milnor to distinguish the topological type of

lens spaces which are homotopy equivalent to each

other. The conjecture of Ray-Singer was proved by

Cheeger [2] and Müller [3]. Later, Ray and Singer [4]

defined their torion for Kähler manifolds. They are

called holomorphic torsion. It appeared in genus 1

curve counting invariant from BCOV theory. Can one

define an analogue of Reidemeister torsion in holo-

morphic category, perhaps using Čech theory?
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